Photons as a Signal of Deconfinement in Hadronic Matter under Extreme Conditions
Abstract
1. Introduction
2. Gluon Conversion in the Confinement Phase
3. Gluon Conversion and Photon Production in the Deconfinement Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agakichiev, G. et al. [CERES Collaboration] Low mass e+e− pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum. Phys. Lett. B 1998, 422, 405–412. [Google Scholar] [CrossRef][Green Version]
- Adare, A. et al. [PHENIX Collaboration] Observation of direct-photon collective flow in = 200 GeV Au+Au collisions. Phys. Rev. Lett. 2012, 109, 122302. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Adam, J. et al. [ALICE Collaboration] Direct photon production in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2016, 754, 235–248. [Google Scholar] [CrossRef]
- Skokov, V.; Illarionov, A.Y.; Toneev, V. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 2009, 24, 5925–5932. [Google Scholar] [CrossRef][Green Version]
- Voronyuk, V.; Toneev, V.D.; Cassing, W.; Bratkovskaya, E.L.; Konchakovski, V.P.; Voloshin, S.A. Electromagnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 2011, 83, 054911. [Google Scholar] [CrossRef][Green Version]
- Bzdak, A.; Skokov, V. Anisotropy of photon production: Initial eccentricity or magnetic field. Phys. Rev. Lett. 2013, 110, 192301. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tuchin, K. Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 2013, 490495. [Google Scholar] [CrossRef][Green Version]
- Ayala, A.; Castaño-Yepes, J.D.; Dominguez, C.A.; Hernández, L.A.; Hernández-Ortiz, S.; Tejeda-Yeomans, M.E. Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions. Phys. Rev. D 2017, 96, 014023, Erratum in Phys. Rev. D 2017, 96, 119901. [Google Scholar] [CrossRef][Green Version]
- Goloviznin, V.V.; Nikolskii, A.V.; Snigirev, A.M.; Zinovjev, G.M. Probing confinement by direct photons and dileptons. Eur. Phys. J. A 2019, 55, 142. [Google Scholar] [CrossRef][Green Version]
- Ayala, A.; Castaño Yepes, J.D.; Dominguez Jimenez, I.; Salinas San Martín, J.; Tejeda-Yeomans, M.E. Centrality dependence of photon yield and elliptic flow from gluon fusion and splitting induced by magnetic fields in relativistic heavy-ion collisions. Eur. Phys. J. A 2020, 56, 53. [Google Scholar] [CrossRef]
- Galilo, B.V.; Nedelko, S.N. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations. Phys. Rev. D 2011, 84, 094017. [Google Scholar] [CrossRef][Green Version]
- Nedelko, S.N.; Voronin, V.E. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions. Eur. Phys. J. A 2015, 51, 45. [Google Scholar] [CrossRef][Green Version]
- Nedelko, S.N.; Voronin, V.E. Energy-driven disorder in mean field QCD. Phys. Rev. D 2021, 103, 114021. [Google Scholar] [CrossRef]
- Bonati, C.; Calì, S.; D’Elia, M.; Mesiti, M.; Negro, F.; Rucci, A.; Sanfilippo, F. Effects of a strong magnetic field on the QCD flux tube. Phys. Rev. D 2018, 98, 054501. [Google Scholar] [CrossRef][Green Version]
- Nedelko, S.; Nikolskii, A. Photons production in heavy-ion collisions as a signal of deconfinement phase. Eur. Phys. J. A 2023, 59, 70. [Google Scholar] [CrossRef]
- Astrakhantsev, N.Y.; Braguta, V.V.; Kotov, A.Y.; Kuznedelev, D.D.; Nikolaev, A.A. Lattice study of QCD at finite chiral density: Topology and confinement. Eur. Phys. J. A 2021, 57, 15. [Google Scholar] [CrossRef]
- Lombardo, M.P.; Trunin, A. Topology and axions in QCD. Int. J. Mod. Phys. A 2020, 35, 2030010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedelko, S.; Nikolskii, A. Photons as a Signal of Deconfinement in Hadronic Matter under Extreme Conditions. Physics 2023, 5, 547-553. https://doi.org/10.3390/physics5020039
Nedelko S, Nikolskii A. Photons as a Signal of Deconfinement in Hadronic Matter under Extreme Conditions. Physics. 2023; 5(2):547-553. https://doi.org/10.3390/physics5020039
Chicago/Turabian StyleNedelko, Sergei, and Aleksei Nikolskii. 2023. "Photons as a Signal of Deconfinement in Hadronic Matter under Extreme Conditions" Physics 5, no. 2: 547-553. https://doi.org/10.3390/physics5020039
APA StyleNedelko, S., & Nikolskii, A. (2023). Photons as a Signal of Deconfinement in Hadronic Matter under Extreme Conditions. Physics, 5(2), 547-553. https://doi.org/10.3390/physics5020039