Excited States in Isobaric Multiplets—Experimental Advances and the Shell-Model Approach
Abstract
:1. Introduction
2. Advances in Experimental Techniques and Selected Case Studies
2.1. Prompt Tagging of Fusion-Evaporation Channels and a Case Study: The A = 23, Mirror Nuclei
2.2. Decay Tagging of Fusion-Evaporation Channels and a Case Study: The Nucleus Se
2.3. Knockout Reactions at Intermediate Energies and a Case Study: The Nuclei Fe and Zn
3. Shell Model Approach for Energy Differences between Excited Analogue States
3.1. Coulomb Multipole Interaction:
3.2. Single-Particle Contributions: and
3.3. Radial Contribution:
3.4. Isospin Non-Conserving (INC) Interaction:
4. Recent Advances Based on Shell-Model Analysis
4.1. Isospin-Non-Conserving Interactions
4.2. Nuclear Radii and Neutron Skins
5. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Machleidt, R.; Slaus, I. The nucleon-nucleon interaction. J. Phys. Nucl. G Part. Phys. 2001, 27, R69–R108. [Google Scholar] [CrossRef]
- Wigner, E. On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 1937, 51, 106–119. [Google Scholar] [CrossRef]
- Bentley, M.A.; Lenzi, S.M. Coulomb energy differences between high-spin states in isobaric multiplets. Prog. Part. Nucl. Phys. 2007, 59, 497–561. [Google Scholar] [CrossRef]
- Ekman, J.; Fahlander, C.; Rudolph, D. Mirror symmetry in the upper fp shell. Mod. Phys. Lett. A 2005, 20, 2977–2992. [Google Scholar] [CrossRef]
- Davies, P.J.; Bentley, M.A.; Henry, T.W.; Simpson, E.C.; Gade, A.; Lenzi, S.M.; Baugher, T.; Bazin, D.; Berryman, J.S.; Bruce, A.M.; et al. Mirror energy differences at large isospin studied through direct two-nucleon knockout. Phys. Rev. Lett. 2013, 111, 072501. [Google Scholar] [CrossRef]
- Milne, S.A.; Bentley, M.A.; Simpson, E.C.; Dodsworth, P.; Baugher, T.; Bazin, D.; Berryman, J.S.; Bruce, A.M.; Davies, P.J.; Diget, C.A.; et al. Mirrored one-nucleon knockout reactions to the Tz = ±A=53 mirror nuclei. Phys. Rev. C 2016, 93, 024318. [Google Scholar] [CrossRef]
- Milne, S.A.; Bentley, M.A.; Simpson, E.C.; Baugher, T.; Bazin, D.; Berryman, J.S.; Bruce, A.M.; Davies, P.J.; Diget, C.A.; Gade, A.; et al. Isospin symmetry at high spin studied via nucleon knockout from isomeric states. Phys. Rev. Lett. 2016, 117, 082502. [Google Scholar] [CrossRef]
- Yajzey, R.; Bentley, M.A.; Simpson, E.C.; Haylett, T.; Uthayakumaar, S.; Bazin, D.; Belarge, J.; Bender, P.C.; Davies, P.J.; Elman, B.; et al. Spectroscopy of the Tz = ±2 mirror nuclei 48Fe/48Ti using mirrored knockout reactions. Phys. Lett. B 2021, 823, 136757. [Google Scholar] [CrossRef]
- Fernández, A.; Jungclaus, A.; Doornenbal, P.; Bentley, M.A.; Lenzi, S.M.; Rudolph, D.; Browne, F.; Cortés, M.L.; Koiwai, T.; Taniuchi, R.; et al. Mirror energy differences above the 0f7/2 shell: First γ-ray spectroscopy of the Tz = −2 nucleus 56Zn. Phys. Lett. B 2021, 823, 136784. [Google Scholar] [CrossRef]
- Uthayakumaar, S.; Bentley, M.A.; Simpson, E.C.; Haylett, T.; Yajzey, R.; Lenzi, S.M.; Satuła, W.; Bazin, D.; Belarge, J.; Bender, P.C.; et al. Spectroscopy of the T = A = 47 and A = 45 mirror nuclei via one- and two-nucleon knockout reactions. Phys. Rev. C 2022, 106, 024327. [Google Scholar] [CrossRef]
- Boso, A.; Lenzi, S.M.; Recchia, F.; Bonnard, J.; Zuker, A.P.; Aydin, S.; Bentley, M.A.; Cederwall, B.; Clement, E.; de France, G.; et al. Neutron skin effects in mirror energy differences: The case of 23Mg−23Na. Phys. Rev. Lett. 2018, 121, 032502. [Google Scholar] [CrossRef]
- Ruotsalainen, P.; Jenkins, D.G.; Bentley, M.A.; Wadsworth, R.; Scholey, C.; Auranen, K.; Davies, P.J.; Grahn, T.; Greenlees, P.T.; Henderson, J.; et al. Spectroscopy of proton-rich 66Se up to Jπ = 6+: Isospin-breaking effect in the A = 66 isobaric triplet. Phys. Rev. C 2013, 88, 041308. [Google Scholar] [CrossRef]
- Debenham, D.M.; Bentley, M.A.; Davies, P.J.; Haylett, T.; Jenkins, D.G.; Joshi, P.; Sinclair, L.F.; Wadsworth, R.; Ruotsalainen, P.; Henderson, J.; et al. Spectroscopy of 70Kr and isospin symmetry in the T = 1fpg shell nuclei. Phys. Rev. C 2016, 94, 054311. [Google Scholar] [CrossRef]
- Wimmer, K.; Korten, W.; Arici, T.; Doornenbal, P.; Aguilera, P.; Algora, A.; Ando, T.; Baba, H.; Blank, B.; Boso, A.; et al. Shape coexistence and isospin symmetry in A = 70 nuclei: Spectroscopy of the Tz = −1 nucleus 70Kr. Phys. Lett. B 2018, 785, 441–446. [Google Scholar] [CrossRef]
- Henderson, J.; Jenkins, D.G.; Kaneko, K.; Ruotsalainen, P.; Sarriguren, P.; Auranen, K.; Bentley, M.A.; Davies, P.J.; Görgen, A.; Grahn, T.; et al. Spectroscopy on the proton drip-line: Probing the structure dependence of isospin nonconserving interactions. Phys. Rev. C 2014, 90, 051303. [Google Scholar] [CrossRef]
- Zuker, A.P.; Lenzi, S.M.; Martínez-Pinedo, G.; Poves, A. Isobaric multiplet yrast energies and isospin nonconserving forces. Phys. Rev. Lett. 2002, 89, 142502. [Google Scholar] [CrossRef]
- Bentley, M.A.; Lenzi, S.M.; Simpson, S.A.; Diget, C.A. Isospin-breaking interactions studied through mirror energy differences. Phys. Rev. C. 2015, 92, 024310. [Google Scholar] [CrossRef]
- Lenzi, S.M.; Bentley, M.A.; Lau, R.; Diget, C.A. Isospin-symmetry breaking corrections for the description of triplet energy differences. Phys. Rev. C. 2018, 98, 054322. [Google Scholar] [CrossRef]
- Bonnard, J.; Lenzi, S.M.; Zuker, A.P. Neutron skins and halo orbits in the sd and pf shells. Phys. Rev. Lett. 2016, 116, 212501. [Google Scholar] [CrossRef]
- Kaneko, K.; Sun, Y.; Mizusaki, T.; Tazaki, S. Variation in displacement energies Due to isospin-nonconserving forces. Phys. Rev. Lett. 2013, 110, 172505. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Sun, Y.; Mizusaki, T.; Tazaki, S. Isospin nonconserving interaction in the T = 1 analogue states of the mass-70 region. Phys. Rev. C 2014, 89, 031302. [Google Scholar] [CrossRef]
- Azaiez, F. EXOGAM: A γ-ray spectrometer for radioactive beams. Nucl. Phys. A 1999, 654, 1003c–1008c. [Google Scholar] [CrossRef]
- Skeppstedt, O.; Roth, H.A.; Lindström, L.; Wadsworth, R.; Hibbert, I.; Kelsall, N.; Jenkins, D.G.; Grawe, H.; Górska, M.; Moszyński, M.; et al. The EUROBALL neutron wall–design and performance tests of neutron detectors. Nucl. Instrum. Meth. Phys. Res. A 1999, 421, 531–541. [Google Scholar] [CrossRef]
- Scheurer, J.N.; Aiche, M.; Aleonard, M.M.; Barreau, G.; Bourgine, F.; Boivin, D.; Cabaussel, D.; Chemin, J.F.; Doan, T.P.; Goudour, J.P.; et al. Improvements in the in-beam γ-ray spectroscopy provided by an ancillary detector coupled to a Ge γ-spectrometer: The DIAMANT-EUROGAM II example. Nucl. Instrum. Meth. Phys. Res. A 1997, 385, 501–510. [Google Scholar] [CrossRef]
- Valiente-Dobón, J.J.; Jaworski, G.; Goasduff, A.; Egea, F.J.; Modamio, V.; Hüyük, T.; Triossi, A.; Jastrząb, M.; Söderström, P.A.; Di Nitto, A.; et al. NEDA—NEutron Detector Array. Nucl. Instrum. Meth. Phys. Res. A 2019, 927, 81–86. [Google Scholar] [CrossRef]
- Akkoyun, S.; Algora, A.; Alikhani, B.; Ameil, F.; de Angelis, G.; Arnold, L.; Astier, A.; Ataç, A.; Aubert, Y.; Aufranc, C.; et al. AGATA—Advanced GAmma Tracking Array. Nucl. Instrum. Meth. Phys. Res. A 2012, 668, 26–58. [Google Scholar] [CrossRef]
- Korten, W.; Atac, A.; Beaumel, D.; Bednarczyk, P.; Bentley, M.A.; Benzoni, G.; Boston, A.; Bracco, A.; Cederkäll, J.; Cederwall, B.; et al. Physics opportunities with the Advanced Gamma Tracking Array: AGATA. Eur. Phys. J. A 2020, 56, 137. [Google Scholar] [CrossRef]
- Cederwall, B.; Liu, X.; Aktas, O.; Ertoprak, A.; Zhang, W.; Qi, C.; Clément, E.; de France, G.; Ralet, D.; Gadea, A.; et al. Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus 88Ru. Phys. Rev. Lett. 2020, 124, 062501. [Google Scholar] [CrossRef]
- Steer, A.; Jenkins, D.; Glover, R.; Bondili, S.N.; Pattabiraman, N.; Wadsworth, R.; Eeckhaudt, S.; Grahn, T.; Greenlees, P.; Jones, P.; et al. Recoil-beta tagging: A novel technique for studying proton-drip-line nuclei. Nucl. Instrum. Meth. Phys. Res. A 2006, 565, 630–636. [Google Scholar] [CrossRef]
- Nara Singh, B.S.; Steer, A.N.; Jenkins, D.G.; Wadsworth, R.; Bentley, M.A.; Davies, P.J.; Glover, R.; Pattabiraman, N.S.; Lister, C.J.; Grahn, T.; et al. Coulomb shifts and shape changes in the mass 70 region. Phys. Rev. C 2007, 75, 061301. [Google Scholar] [CrossRef] [Green Version]
- Leino, M.; Äystö, J.; Enqvist, T.; Heikkinen, P.; Jokinen, A.; Nurmia, M.; Ostrowski, A.; Trzaska, W.; Uusitalo, J.; Eskola, K.; et al. Gas-filled recoil separator for studies of heavy elements. Nucl. Instrum. Meth. Phys. Res. B 1995, 99, 653–656. [Google Scholar] [CrossRef]
- Sarén, J.; Uusitalo, J.; Leino, M.; Sorri, J. Absolute transmission and separation properties of the gas-filled recoil separator RITU. Nucl. Instrum. Meth. Phys. Res. A 2011, 654, 508–521. [Google Scholar] [CrossRef]
- Henderson, J.; Ruotsalainen, P.; Jenkins, D.G.; Scholey, C.; Auranen, K.; Davies, P.J.; Grahn, T.; Greenlees, P.T.; Henry, T.W.; Herzáň, A.; et al. Enhancing the sensitivity of recoil-beta tagging. J. Instrum. 2013, 8, P04025. [Google Scholar] [CrossRef]
- Sarén, J.; Uusitalo, J.; Leino, M.; Greenlees, P.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Nyman, M.; et al. The new vacuum-mode recoil separator MARA at JYFL. Nucl. Instrum. Meth. Phys. Res. B 2008, 266, 4196–4200. [Google Scholar] [CrossRef]
- Kubo, T.; Kameda, D.; Suzuki, H.; Fukuda, N.; Takeda, H.; Yanagisawa, Y.; Ohtake, M.; Kusaka, K.; Yoshida, K.; Inabe, N.; et al. BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory. Prog. Theor. Exp. Phys. 2012, 2012. [Google Scholar] [CrossRef]
- Takeuchi, S.; Motobayashi, T.; Togano, Y.; Matsushita, M.; Aoi, N.; Demichi, K.; Hasegawa, H.; Murakami, H. DALI2: A NaI(Tl) detector array for measurements of γ rays from fast nuclei. Nucl. Instrum. Meth. Phys. Res. A 2014, 763, 596–603. [Google Scholar] [CrossRef]
- Morrissey, D.J.; Sherrill, B.M.; Steiner, M.; Stolz, A.; Wiedenhoever, I. Commissioning the A1900 projectile fragment separator. Nucl. Instrum. Meth. Phys. Res. B 2003, 204, 90–96. [Google Scholar] [CrossRef]
- Weisshaar, D.; Bazin, D.; Bender, P.C.; Campbell, C.M.; Recchia, F.; Bader, V.; Baugher, T.; Belarge, J.; Carpenter, M.P.; Crawford, H.L.; et al. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes. Nucl. Instrum. Meth. Phys. Res. A 2017, 847, 187–198. [Google Scholar] [CrossRef]
- Bazin, D.; Caggiano, J.A.; Sherrill, B.M.; Yurkon, J.; Zeller, A. The S800 spectrograph. Nucl. Instrum. Meth. Phys. Res. B 2003, 204, 629–633. [Google Scholar] [CrossRef]
- Spieker, M.; Gade, A.; Weisshaar, D.; Brown, B.A.; Tostevin, J.A.; Longfellow, B.; Adrich, P.; Bazin, D.; Bentley, M.A.; Brown, J.R.; et al. One-proton and one-neutron knockout reactions from N=Z = 2856Ni to the A = 55 mirror pair 55Co and 55Ni. Phys. Rev. C 2019, 99, 051304. [Google Scholar] [CrossRef] [Green Version]
- Yajzey, R. The Isospin Symmetry of the A = 48, T = 2 Mirror Nuclei Studied Through the Mirrored Knockout Technique. Ph.D. Thesis, University of York, York, UK, 2022. Available online: https://etheses.whiterose.ac.uk/30822/ (accessed on 6 July 2022).
- Caurier, E.; Nowacki, F. Present Status of Shell Model Techniques. Acta Phys. Pol. B 1999, 30, 705–714. Available online: https://www.actaphys.uj.edu.pl/R/30/3/705 (accessed on 3 August 2022).
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427–488. [Google Scholar] [CrossRef]
- Bentley, M.A.; O’Leary, C.D.; Poves, A.; Martinez-Pinedo, G.; Appelbe, D.E.; Bark, R.A.; Cullen, D.M.; Ertürk, S.; Maj, A. Mirror and valence symmetries at the centre of the f7/2 shell. Phys. Lett. B 1998, 437, 243–248. [Google Scholar] [CrossRef]
- Williams, S.J.; Bentley, M.A.; Warner, D.D.; Bruce, A.M.; Cameron, J.A.; Carpenter, M.P.; Fallon, P.; Frankland, L.; Gelletly, W.; Janssens, R.V.F.; et al. Anomalous Coulomb matrix elements in the f7/2 shell. Phys. Rev. C 2003, 68, 011301. [Google Scholar] [CrossRef]
- Bentley, M.A.; Williams, S.J.; Joss, D.T.; O’Leary, C.D.; Bruce, A.M.; Cameron, J.A.; Carpenter, M.P.; Fallon, P.; Frankland, L.; Gelletly, W.; et al. Mirror symmetry at high spin in 51Fe and 51Mn. Phys. Rev. C 2000, 62, 051303. [Google Scholar] [CrossRef]
- Poves, A.; Sánchez-Solano, J.; Caurier, E.; Nowacki, F. Shell model study of the isobaric chains A=50, A = 51 and A = 52. Nucl. Phys. A 2001, 694, 157–198. [Google Scholar] [CrossRef]
- Duflo, J.; Zuker, A.P. Mirror displacement energies and neutron skins. Phys. Rev. C 2002, 66, 051304. [Google Scholar] [CrossRef]
- Nolen, J.A.; Schiffer, J.P. Coulomb Energies. Annu. Rev. Nucl. Sci. 1969, 19, 471–526. [Google Scholar] [CrossRef]
- Ekman, J.; Rudolph, D.; Fahlander, C.; Zuker, A.P.; Bentley, M.A.; Lenzi, S.M.; Andreoiu, C.; Axiotis, M.; de Angelis, G.; Farnea, E.; et al. Unusual isospin-breaking and isospin-mixing effects in the A = 35 mirror nuclei. Phys. Rev. Lett. 2004, 92, 132502. [Google Scholar] [CrossRef]
- Lenzi, S.M.; Mărginean, N.; Napoli, D.R.; Ur, C.A.; Zuker, A.P.; de Angelis, G.; Algora, A.; Axiotis, M.; Bazzacco, D.; Belcari, N.; et al. Coulomb energy differences in T = 1 mirror rotational bands in 50Fe and 50Cr. Phys. Rev. Lett. 2001, 87, 122501. [Google Scholar] [CrossRef]
- Lenzi, S.M.; Lau, R. A systematic study of mirror and triplet energy differences. J. Phys. Conf. Ser. 2015, 580, 012028. [Google Scholar] [CrossRef]
- Testov, D.A.; Boso, A.; Lenzi, S.M.; Nowacki, F.; Recchia, F.; de Angelis, G.; Bazzacco, D.; Colucci, G.; Cottini, M.; Galtarossa, F.; et al. High-spin intruder states in the mirror nuclei 31S and 31P. Phys. Rev. C 2021, 104, 024309. [Google Scholar] [CrossRef]
- Bentley, M.A.; Chandler, C.; Taylor, M.J.; Brown, J.R.; Carpenter, M.P.; Davids, C.; Ekman, J.; Freeman, S.J.; Garrett, P.E.; Hammond, G.; et al. Isospin symmetry of odd-odd mirror nuclei: Identification of excited states in N = Z−248Mn. Phys. Rev. Lett. 2006, 97, 132501. [Google Scholar] [CrossRef] [PubMed]
- Honma, M.; Otsuka, T.; Mizusaki, T.; Hjorth-Jensen, M. New effective interaction for f5pg9-shell nuclei. Phys. Rev. C 2009, 80, 064323. [Google Scholar] [CrossRef]
- Ormand, W.E.; Brown, B.A. Empirical isospin-nonconserving hamiltonians for shell-model calculations. Nucl. Phys. A 1989, 491, 1–23. [Google Scholar] [CrossRef]
- Bonnard, J.; Zuker, A.P. Radii in the sd shell and the 1s1/2 “halo” orbit: A game changer. J. Phys. Conf. Ser. 2018, 1023, 012016. [Google Scholar] [CrossRef]
EXTRACTEDPARAMETERS FOR THEORBITAL | |||||||
Matrix elements(keV) | Matrix elements(keV) | ||||||
One-parameter fit | |||||||
−79(6) | - | - | - | 98(11) | - | - | - |
Full fits: centroid-subtracted | |||||||
−72(7) | 32(6) | 8(6) | −12(4) | 113(18) | 23(29) | 5(24) | −21(22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentley, M.A. Excited States in Isobaric Multiplets—Experimental Advances and the Shell-Model Approach. Physics 2022, 4, 995-1011. https://doi.org/10.3390/physics4030066
Bentley MA. Excited States in Isobaric Multiplets—Experimental Advances and the Shell-Model Approach. Physics. 2022; 4(3):995-1011. https://doi.org/10.3390/physics4030066
Chicago/Turabian StyleBentley, Michael A. 2022. "Excited States in Isobaric Multiplets—Experimental Advances and the Shell-Model Approach" Physics 4, no. 3: 995-1011. https://doi.org/10.3390/physics4030066
APA StyleBentley, M. A. (2022). Excited States in Isobaric Multiplets—Experimental Advances and the Shell-Model Approach. Physics, 4(3), 995-1011. https://doi.org/10.3390/physics4030066