# Cosmological Formation of (2 + 1)-Dimensional Soliton Structures in Models Possessing Potentials with Local Peaks

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Adams, F.C.; Bond, J.R.; Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation: Particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer. Phys. Rev. D
**1993**, 47, 426–455. [Google Scholar] [CrossRef] [PubMed][Green Version] - Linde, A. Hybrid inflation. Phys. Rev. D
**1994**, 49, 748–754. [Google Scholar] [CrossRef] [PubMed] - Liddle, A.R.; Mazumdar, A.; Schunck, F.E. Assisted inflation. Phys. Rev. D
**1998**, 58, 061301. [Google Scholar] [CrossRef][Green Version] - Kim, J.E.; Nilles, H.P.; Peloso, M. Completing natural inflation. J. Cosmol. Astropart. Phys.
**2005**, 2005, 005. [Google Scholar] [CrossRef][Green Version] - Battefeld, D.; Battefeld, T. A smooth landscape: Ending saddle point inflation requires features to be shallow. J. Cosmol. Astropart. Phys.
**2013**, 2013, 038. [Google Scholar] [CrossRef] - Peloso, M.; Unal, C. Trajectories with suppressed tensor-to-scalar ratio in aligned natural inflation. J. Cosmol. Astropart. Phys.
**2015**, 2015, 040. [Google Scholar] [CrossRef][Green Version] - Evans, J.L.; Gherghetta, T.; Peloso, M. Affleck-Dine sneutrino inflation. Phys. Rev. D
**2015**, 92, 021303. [Google Scholar] [CrossRef][Green Version] - Susskind, L. The Anthropic landscape of string theory. In Proceedings of the Davis Meeting on Cosmic Inflation, Davis, CA, USA, 22–25 March 2003; p. 26. Available online: https://arxiv.org/abs/hep-th/0302219 (accessed on 20 July 2021).
- Basu, R.; Guth, A.H.; Vilenkin, A. Quantum creation of topological defects during inflation. Phys. Rev. D
**1991**, 44, 340–351. [Google Scholar] [CrossRef] [PubMed] - Garriga, J.; Vilenkin, A.; Zhang, J. Black holes and the multiverse. J. Cosmol. Astropart. Phys.
**2016**, 2016, 064. [Google Scholar] [CrossRef][Green Version] - Deng, H.; Garriga, J.; Vilenkin, A. Primordial black hole and wormhole formation by domain walls. J. Cosmol. Astropart. Phys.
**2017**, 2017, 050. [Google Scholar] [CrossRef] - Deng, H.; Vilenkin, A. Primordial black hole formation by vacuum bubbles. J. Cosmol. Astropart. Phys.
**2017**, 2017, 044. [Google Scholar] [CrossRef][Green Version] - Vilenkin, A. Cosmic strings and domain walls. Phys. Rep.
**1985**, 121, 263–315. [Google Scholar] [CrossRef] - Vilenkin, A.; Shellard, E. Cosmic Strings and Other Topological Defects; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Garriga, J.; Vilenkin, A. Black holes from nucleating strings. Phys. Rev. D
**1993**, 47, 3265–3274. [Google Scholar] [CrossRef][Green Version] - Hansen, R.N.; Christensen, M.; Larsen, A.L. Cosmic string loops collapsing to black holes. Int. J. Mod. Phys. A
**2000**, 15, 4433–4445. [Google Scholar] [CrossRef] - Hiramatsu, T.; Kawasaki, M.; Saikawa, K. Gravitational waves from collapsing domain walls. J. Cosmol. Astropart. Phys.
**2010**, 2010, 032. [Google Scholar] [CrossRef][Green Version] - Vilenkin, A.; Levin, Y.; Gruzinov, A. Cosmic strings and primordial black holes. J. Cosmol. Astropart. Phys.
**2018**, 2018, 008. [Google Scholar] [CrossRef][Green Version] - Helfer, T.; Aurrekoetxea, J.C.; Lim, E.A. Cosmic string loop collapse in full general relativity. Phys. Rev. D
**2019**, 99, 104028. [Google Scholar] [CrossRef][Green Version] - Liu, J.; Guo, Z.K.; Cai, R.G. Primordial black holes from cosmic domain walls. Phys. Rev. D
**2020**, 101, 023513. [Google Scholar] [CrossRef][Green Version] - Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. The formation of primary galactic nuclei during phase transitions in the early Universe. J. Exp. Theor. Phys.
**2001**, 92, 921–929. [Google Scholar] [CrossRef][Green Version] - Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C
**2019**, 79, 246. [Google Scholar] [CrossRef][Green Version] - Carr, B.; Kühnel, F. Primordial black holes as dark matter: Recent developments. Annu. Rev. Nucl. Part. Sci.
**2020**, 70, 355–394. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Rubin, S.G. Abilities of multidimensional gravity. Grav. Cosmol.
**2007**, 13, 253–258. Available online: https://arxiv.org/abs/0712.0888 (accessed on 20 July 2021). - Ketov, S.V. Multi-field versus single-field in the supergravity models of inflation and primordial black holes. Universe
**2021**, 7, 115. [Google Scholar] [CrossRef] - Gani, V.A.; Kirillov, A.A.; Rubin, S.G. Transitions between topologically non-trivial configurations. J. Phys. Conf. Ser.
**2017**, 934, 012046. [Google Scholar] [CrossRef] - Gani, V.A.; Kirillov, A.A.; Rubin, S.G. Classical transitions with the topological number changing in the early Universe. J. Cosmol. Astropart. Phys.
**2018**, 2018, 042. [Google Scholar] [CrossRef][Green Version] - Kirillov, A.A.; Murygin, B.S. Domain walls and strings formation in the early Universe. Bled Workshop Phys.
**2020**, 21, 128–133. Available online: http://bsm.fmf.uni-lj.si/bled2020bsm/talks/BledVol21No2Proceedings-proc20Vol2.pdf (accessed on 20 July 2021). - Kirillov, A.A.; Murygin, B.S. The mechanism of domain walls and strings formation in the early Universe. J. Phys. Conf. Ser.
**2020**, 1690. [Google Scholar] [CrossRef] - Chang, S.; Hagmann, C.; Sikivie, P. Studies of the motion and decay of axion walls bounded by strings. Phys. Rev. D
**1998**, 59, 023505. [Google Scholar] [CrossRef][Green Version] - Hindmarsh, M.B.; Kibble, T.W.B. Cosmic strings. Rep. Prog. Phys.
**1995**, 58, 477–562. [Google Scholar] [CrossRef] - Linde, A.D. Scalar field fluctuations in the expanding universe and the new inflationary universe scenario. Phys. Lett. B
**1982**, 116, 335–339. [Google Scholar] [CrossRef]

**Figure 1.**The potential (6) and the distribution (areas in red) of the $(\phi ,\chi )$-fields for (

**a**) initial, (

**b**) intermediate, and (

**c**) final field configurations with the final state, corresponding to the domain wall.

**Figure 2.**The potential (6) and the distribution (areas in dark blue) of the $(\phi ,\chi )$-fields for (

**a**) initial, (

**b**) intermediate, and (

**c**) final field configurations with the-final state, corresponding to the string.

**Figure 4.**The contour plot of the potential (6) of scalar fields. The areas, surrounded by the red and green curves, show the regions which might be achieved by quantum fluctuations to form strings and domain walls, respectively. The areas differ by the factor $\varkappa \sim {10}^{3}$. If the fluctuations lead to the field values ${\Phi}_{1}$ and ${\Phi}_{2}$, located outside the regions, the vacuum solution inevitably occurs. The initial possible field value, ${\Phi}_{\mathrm{in}}$, and the subsequent values ${\Phi}_{1}$ and ${\Phi}_{2}$ are shown schematically. The labels “MIN” and “MAX” indicate the global minimum and the local maximum (peak) of the potential, respectively.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Murygin, B.S.; Kirillov, A.A.; Nikulin, V.V.
Cosmological Formation of (2 + 1)-Dimensional Soliton Structures in Models Possessing Potentials with Local Peaks. *Physics* **2021**, *3*, 563-568.
https://doi.org/10.3390/physics3030035

**AMA Style**

Murygin BS, Kirillov AA, Nikulin VV.
Cosmological Formation of (2 + 1)-Dimensional Soliton Structures in Models Possessing Potentials with Local Peaks. *Physics*. 2021; 3(3):563-568.
https://doi.org/10.3390/physics3030035

**Chicago/Turabian Style**

Murygin, Boris S., Alexander A. Kirillov, and Valery V. Nikulin.
2021. "Cosmological Formation of (2 + 1)-Dimensional Soliton Structures in Models Possessing Potentials with Local Peaks" *Physics* 3, no. 3: 563-568.
https://doi.org/10.3390/physics3030035