Bateman Oscillators: Caldirola-Kanai and Null Lagrangians and Gauge Functions
Abstract
:1. Introduction
2. Lagrangians and Gauge Functions for Bateman Oscillators
2.1. Equations of Motion
2.2. Novel Method to Derive Standard and Null Lagrangians
2.3. Gauge Functions and General Null Lagrangians
2.4. Role of the Caldirola-Kanai Lagrangian
3. From Undriven to Driven Bateman Oscillators
3.1. Total Energy Function
3.2. Gauge Functions and Forces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bateman, H. On dissipative systems and related variational principles. Phys. Rev. 1931, 38, 815–819. [Google Scholar] [CrossRef]
- Vujanovic, B.D.; Jones, S.E. Variational Methods in Nonconservative Phenomena; Academic Press: New York, NY, USA, 1989. [Google Scholar]
- Weiss, U. Quantum Dissipative Systems; World Scientific: Singapore, 2008. [Google Scholar]
- Razavy, M. Classical and Quantum Dissipative Systems; World Scientific: Singapore, 2017. [Google Scholar]
- Murphy, G.M. Ordinary Differential Equations and Their Solutions; Dover Publication, Inc.: New York, NY, USA, 2011. [Google Scholar]
- Lopuszanski, J. The Inverse Variational Problems in Mechanics; World Scientific: Singapore, 1999. [Google Scholar]
- Caldirola, P. Forze non conservative nella meccanica quantista. Nuovo Cim. 1941, 18, 393–400. [Google Scholar] [CrossRef]
- Kanai, E. On the quantization of the dissipative systems. Prog. Theor. Phys. 1948, 3, 440–442. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer-Verlag: New York, NY, USA, 1993. [Google Scholar]
- Crampin, M.; Saunders, D.J. On null Lagrangians. Diff. Geom. Its Appl. 2005, 22, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Vitolo, R. On different geometric formulations of Lagrange formalism. Diff. Geom. Its Appl. 1999, 10, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Krupka, D.; Musilova, J. Trivial Lagrangians in field theory. Diff. Geom. Its Appl. 1998, 9, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Krupka, D.; Krupkova, O.; Saunders, D. The Cartan form and its generalizations in the calculus of variations. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 631–654. [Google Scholar] [CrossRef]
- Levy-Leblond, J.-M. Group theoretical foundations of classical mechanics: The Lagrange gauge problem. Comm. Math. Phys. 1969, 12, 64–79. [Google Scholar] [CrossRef]
- Musielak, Z.E.; Watson, T.B. Gauge functions and Galilean invariance of action. Phys. Lett. A 2020, 384, 126642. [Google Scholar] [CrossRef]
- von Helmholtz, H. On physical significance of the principle of least action. J. f. d. Reine u. Angew Math. 1887, 100, 137–166. (In German) [Google Scholar]
- Kahn, P.B. Mathematical Methods for Scientists and Engineers; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics, 3rd ed.; Addison-Wesley: San Francisco, CA, USA, 2002. [Google Scholar]
- José, J.V.; Saletan, E.J. Classical Dynamics, A Contemporary Approach; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Musielak, Z.E.; Watson, T.B. General null Lagrangians, exact gauge functions and forces in Newtonian mechanics. Phys. Lett. A 2020, 384, 126838. [Google Scholar] [CrossRef]
- Musielak, Z.E.; Vestal, L.C.; Tran, B.D.; Watson, T.B. Gauge functions in classical mechanics: From undriven to driven dynamical systems. Physics 2020, 2, 24. [Google Scholar] [CrossRef]
- Musielak, Z.E.; Davachi, N.; Rosario-Franco, M. Special functions of mathematical physics: A unified Lagrangian formalism. Mathematics 2020, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Chaves, F. The one-dimensional harmonic oscillator damped with Caldirola-Kania Hamiltonian. Rev. Mex. Fisica E 2018, 64, 47–51. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35422018000100047 (accessed on 9 June 2021). [CrossRef] [Green Version]
- Ray, J.R. Lagrangians and systems they describe—How not to treat dissipation in quantum mechanics. Am. J. Phys. 1979, 47, 626–629. [Google Scholar] [CrossRef]
- Del Castillo, G.F.T. Comment on “The one-dimensional harmonic oscillator damped with Caldirola-Kania Hamiltonian”. Rev. Mex. Fisica E 2019, 65, 103. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Carlson, D.E.; Fried, E. A continuum-mechanical theory for nematic elastomers. J. Elast. 1999, 56, 33–58. [Google Scholar] [CrossRef]
- Saccomandi, G.; Vitolo, R. Null Lagrangians for nematic elastomers. J. Math. Sci. 2006, 136, 4470–4477. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Tilbi, A.; Boudjedaa, T.; Merad, M.; Chetouani, L. The Kanai-Caldirola propagator in the de Broglie-Bohm theory. Phys. Scr. 2007, 75, 474–479. [Google Scholar] [CrossRef]
- Pais, A.; Uhlenbeck, G.E. On field theories with non-localized action. Phys. Rev. 1950, 79, 145–165. [Google Scholar] [CrossRef]
- Feshbach, H.; Tikochinsky, Y. Quantization fo the damped harmonic oscillator. Transact. N. Y. Acad. Sci. 1977, 38, 44–53. [Google Scholar] [CrossRef]
- Deguchi, S.; Fujiwara, Y.; Nakano, K. Two quantization approaches to the Bateman oscillator model. Ann. Phys. 2019, 403, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, F.; Gargano, F.; Roccati, F. A no-go result for the quantum damped harmonic oscillator. Phys. Lett. A 2019, 383, 2836–2838. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, F.; Gargano, F.; Roccati, F. Some remarks on few recent results on the damped quantum harmonic oscillator. Ann. Phys. 2020, 414, 168091. [Google Scholar] [CrossRef]
- Guerrero, J.; López-Ruiz, F.F.; Aldaya, V.; Cossio, F. Symmetries of the quantum damped harmonic oscillator. J. Phys. A Math. Theor. 2012, 45, 475303. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vestal, L.C.; Musielak, Z.E. Bateman Oscillators: Caldirola-Kanai and Null Lagrangians and Gauge Functions. Physics 2021, 3, 449-458. https://doi.org/10.3390/physics3020030
Vestal LC, Musielak ZE. Bateman Oscillators: Caldirola-Kanai and Null Lagrangians and Gauge Functions. Physics. 2021; 3(2):449-458. https://doi.org/10.3390/physics3020030
Chicago/Turabian StyleVestal, Lesley C., and Zdzislaw E. Musielak. 2021. "Bateman Oscillators: Caldirola-Kanai and Null Lagrangians and Gauge Functions" Physics 3, no. 2: 449-458. https://doi.org/10.3390/physics3020030
APA StyleVestal, L. C., & Musielak, Z. E. (2021). Bateman Oscillators: Caldirola-Kanai and Null Lagrangians and Gauge Functions. Physics, 3(2), 449-458. https://doi.org/10.3390/physics3020030