The Higgs Field and Early Universe Cosmology: A (Brief) Review
Abstract
:1. Introduction: Implications of = 125 GeV
2. The Higgs Field and Inflation
2.1. The Higgs Field as the Inflaton
2.2. The Higgs as a Spectator Field
3. The Higgs Field and Vacuum Metastability
3.1. Stability of the SM Vacuum
3.2. Electroweak Phase Transition
4. The Higgs Field and the Landscape
5. Conclusions and Future Directions
- While it is possible to build models where the SM Higgs field serves as the inflaton, generating the observed primordial power spectrum requires the quartic Higgs potential to be flattened somehow at large field values. Coupling the Higgs to gravity can accomplish this, but the existence of non-renormalizable corrections to the field theory means that this class of models may not be as simple to realize, nor its predictions as specific and universal, as originally envisioned.
- Even when the Higgs field makes a subdominant contribution to the energy during inflation, its dynamics may be imprinted on the primordial power spectrum via one of several different mechanisms (e.g., curvaton, modulated reheating, or “Higgscitement”). Precision observables such as the non-Gaussianities, the spectral tilt and the tensor-to-scalar ratio can provide strong but model-dependent constraints on such scenarios. Furthermore, the fact that the Higgs couplings to the SM are well understood makes the Higgs useful for building models of reheating and the exit from inflation.
- If the SM remains valid up to high scales, then the measured values of the SM parameters are consistent with a metastable SM vacuum that lies close to the edge of stability. The fact that the RG-extrapolated SM is on the edge of stability may have a dynamical or anthropic explanation, or a combination thereof. In models where the metastability exists, new dynamics may be necessary to ensure that the Universe ends up in the electroweak vacuum after the eras of inflation and reheating.
- The electroweak phase transition will not be first-order, nor will CP violation be sufficiently large for electroweak baryogenesis to occur, without extensions to the SM. If extensions to the SM do result in electroweak baryogenesis, however, cosmological signatures from the phase transition can be cross-correlated with observations of new particles and couplings slightly at or above the TeV scale.
- Although it is difficult to predict where the SM vacuum may lie in the landscape, the genericity of models with additional moduli raises the possibility that the Higgs couples to additional scalar moduli with interesting cosmological consequences. Understanding Higgs and moduli dynamics in the early universe may therefore help us understand our place in the landscape, and whether it is dynamically or anthropically selected. However, the cosmological constant problem still looms, and it is not clear that the same dynamics can resolve both the cosmological constant problem and the hierarchy problem simultaneously without resorting to anthropic arguments.
- Nonperturbative dynamics of the Higgs field and other scalar fields may imprint experimental cosmological signatures such as features in the primordial power spectrum, stochastic gravity wave backgrounds, or primordial magnetic fields.
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AdS | Anti De Sitter |
CP | Charge-Parity |
EFT | Effective Field Theory |
eV | electron volt |
LHC | Large Hadron Collider |
QCD | Quantum Chromodynamics |
RG | Renormalization Group |
SM | Standard Model |
UV | Ultraviolet |
VEV | Vacuum Expectation Value |
References
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Amor Dos Santos, S.P.; Anjos, N. Measurement of the Higgs boson coupling properties in the H→ZZ*→4ℓ decay channel at s = 13 TeV with the ATLAS detector. J. High Energy Phys. 2018, 2018, 095. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; et al. Combined measurements of Higgs boson couplings in proton–proton collisions at s=13TeV. Eur. Phys. J. C 2019, 79, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aad, G.; Abbott, B.; Abbott, D.C. Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at s= 13 TeV collected with the ATLAS experiment. Phys. Rev. D 2020, 101, 012002. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Han, T.; Mangano, M.; Wang, L.T. Physics opportunities of a 100 TeV proton–proton collider. Phys. Rep. 2016, 652, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Apollinari, G.; Alonso, I.B.; Brüning, O.; Fessia, P.; Lamont, M.; Rossi, L.; Tavian, L. High-Luminosity Large Hadron Collider (HL-LHC). CERN Yellow Rep. Monogr. 2017, 4, 1–516. [Google Scholar] [CrossRef]
- Charles, T.K.; Giansiracusa, P.J.; Lucas, T.G.; Rassool, R.P.; Volpi, M.; Balazs, C.; Afanaciev, K.; Makarenko, V.; Patapenka, A.; Zhuk, I.; et al. The Compact Linear Collider (CLIC)—2018 Summary Report. arXiv 2018, arXiv:1812.06018. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S. FCC Physics Opportunities. Eur. Phys. J. C 2019, 79, 474. [Google Scholar] [CrossRef] [Green Version]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Fernandez, J.A.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. FCC-ee: The Lepton Collider. Eur. Phys. J. Spec. Top. 2019, 228, 261–623. [Google Scholar] [CrossRef]
- Dine, M. Naturalness Under Stress. Ann. Rev. Nucl. Part Sci. 2015, 65, 43–62. [Google Scholar] [CrossRef]
- Bezrukov, F.L.; Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703. [Google Scholar] [CrossRef] [Green Version]
- Degrassi, G.; Vita, S.D.; Elias-Miro, J.; Espinosa, J.R.; Giudice, G.F.; Isidori, G.; Strumia, A. Higgs mass and vacuum stability in the Standard Model at NNLO. J. High Energy Phys. 2012, 2012, 098. [Google Scholar] [CrossRef] [Green Version]
- Buttazzo, D.; Degrassi, G.; Giardino, P.P.; Giudice, G.F.; Sala, F.; Salvio, A.; Strumia, A. Investigating the near-criticality of the Higgs boson. J. High Energy Phys. 2013, 2013, 089. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Adv. Ser. Astrophys. Cosmol. 1987, 3, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Adv. Ser. Astrophys. Cosmol. 1987, 3, 149–153. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Adv. Ser. Astrophys. Cosmol. 1987, 3, 158–161. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.D.; Starobinsky, A.A. Towards the theory of reheating after inflation. Phys. Rev. D 1997, 56, 3258–3295. [Google Scholar] [CrossRef] [Green Version]
- Coughlan, G.D.; Fischler, W.; Kolb, E.W.; Raby, S.; Ross, G.G. Cosmological Problems for the Polonyi Potential. Phys. Lett. 1983, 131, 59. [Google Scholar] [CrossRef]
- De Carlos, B.; Casas, J.A.; Quevedo, F.; Roulet, E. Model independent properties and cosmological implications of the dilaton and moduli sectors of 4-d strings. Phys. Lett. B 1993, 318, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Banks, T.; Kaplan, D.B.; Nelson, A.E. Cosmological implications of dynamical supersymmetry breaking. Phys. Rev. D 1994, 49, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezrukov, F.; Shaposhnikov, M. Inflation, LHC and the Higgs boson. Int. J. Mod. Phys. A 2015, 30, 1545001. [Google Scholar] [CrossRef]
- Shaposhnikov, M. The Higgs boson and cosmology. Phil. Trans. R. Soc. Lond. A 2015, 373, 20140038. [Google Scholar] [CrossRef]
- Moss, I.G. Higgs boson cosmology. Contemp. Phys. 2015, 56, 468–476. [Google Scholar] [CrossRef]
- Rajantie, A. Higgs cosmology. Phil. Trans. R. Soc. Lond. A 2018, 376, 20170128. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J. Higgs inflation. Front. Astron. Space Sci. 2019, 5, 50. [Google Scholar] [CrossRef]
- Steinwachs, C.F. Higgs field in cosmology. arXiv 2019, arXiv:1909.10528. [Google Scholar]
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535. [Google Scholar]
- Baumann, D.; McAllister, L. Inflation and String Theory; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Salopek, D.S.; Bond, J.R.; Bardeen, J.M. Designing Density Fluctuation Spectra in Inflation. Phys. Rev. D 1989, 40, 1753. [Google Scholar] [CrossRef]
- Fakir, R.; Unruh, W. Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 1990, 41, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Dong, X.; Horn, B.; Silverstein, E.; Westphal, A. Simple exercises to flatten your potential. Phys. Rev. D 2011, 84, 026011. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bellido, J.; Rubio, J.; Shaposhnikov, M.; Zenhausern, D. Higgs-Dilaton Cosmology: From the Early to the Late Universe. Phys. Rev. D 2011, 84, 123504. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.; Karananas, G.K.; Rubio, J.; Shaposhnikov, M. Higgs-Dilaton Cosmology: An effective field theory approach. Phys. Rev. D 2013, 87, 096001. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Simone, A.D.; Hertzberg, M.P.; Wilczek, F. Running Inflation in the Standard Model. Phys. Lett. B 2009, 678, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.L.; Magnin, A.; Shaposhnikov, M. Standard Model Higgs boson mass from inflation. Phys. Lett. B 2009, 675, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.; Shaposhnikov, M. Standard Model Higgs boson mass from inflation: Two loop analysis. J. High Energy Phys. 2009, 2009, 089. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Kamenshchik, A.Y.; Kiefer, C.; Starobinsky, A.A.; Steinwachs, C. Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. J. Cosmol. Astropartic. Phys. 2009, 2009, 003. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Kamenshchik, A.Y.; Kiefer, C.; Starobinsky, A.A.; Steinwachs, C.F. Higgs boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C 2012, 72, 2219. [Google Scholar] [CrossRef]
- Enckell, V.; Enqvist, K.; Nurmi, S. Observational signatures of Higgs inflation. J. Cosmol. Astropartic. Phys. 2016, 2016, 047. [Google Scholar] [CrossRef]
- He, M.; Starobinsky, A.A.; Yokoyama, J. Inflation in the mixed Higgs-R2 model. J. Cosmol. Astropartic. Phys. 2018, 2018, 064. [Google Scholar] [CrossRef] [Green Version]
- Gundhi, A.; Steinwachs, C.F. Scalaron-Higgs inflation. Nucl. Phys. B 2020, 954, 114989. [Google Scholar] [CrossRef]
- Enckell, V.; Enqvist, K.; Rasanen, S.; Wahlman, L. Higgs-R2 inflation—Full slow-roll study at tree-level. J. Cosmol. Astropartic. Phys. 2020, 2020, 041. [Google Scholar] [CrossRef] [Green Version]
- Canko, D.D.; Gialamas, I.D.; Kodaxis, G.P. A simple F(R,ϕ) deformation of Starobinsky inflationary model. Eur. Phys. J. C 2020, 80, 458. [Google Scholar] [CrossRef]
- Burgess, C.; Lee, H.M.; Trott, M. Power-counting and the Validity of the Classical Approximation during Inflation. J. High Energy Phys. 2009, 2009, 103. [Google Scholar] [CrossRef] [Green Version]
- Barbon, J.; Espinosa, J. On the Naturalness of Higgs Inflation. Phys. Rev. D 2009, 79, 081302. [Google Scholar] [CrossRef] [Green Version]
- Lerner, R.N.; McDonald, J. Higgs Inflation and Naturalness. J. Cosmol. Astropartic. Phys. 2010, 2010, 015. [Google Scholar] [CrossRef] [Green Version]
- Atkins, M.; Calmet, X. Unitarity bounds on low scale quantum gravity. Eur. Phys. J. C 2010, 70, 381–388. [Google Scholar] [CrossRef]
- Bezrukov, F.; Magnin, A.; Shaposhnikov, M.; Sibiryakov, S. Higgs inflation: Consistency and generalisations. J. High Energy Phys. 2011, 2011, 016. [Google Scholar] [CrossRef] [Green Version]
- Germani, C.; Kehagias, A. New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity. Phys. Rev. Lett. 2010, 105, 011302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, M.; Calmet, X. Remarks on Higgs Inflation. Phys. Lett. B 2011, 697, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.; Lee, H.M.; Trott, M. Comment on Higgs Inflation and Naturalness. J. High Energy Phys. 2010, 2010, 007. [Google Scholar] [CrossRef] [Green Version]
- Hertzberg, M.P. On Inflation with Non-minimal Coupling. J. High Energy Phys. 2010, 2010, 023. [Google Scholar] [CrossRef] [Green Version]
- Giudice, G.F.; Lee, H.M. Unitarizing Higgs Inflation. Phys. Lett. B 2011, 694, 294–300. [Google Scholar] [CrossRef]
- Barbon, J.; Casas, J.; Elias-Miro, J.; Espinosa, J. Higgs Inflation as a Mirage. J. High Energy Phys. 2015, 2015, 027. [Google Scholar] [CrossRef] [Green Version]
- Enckell, V.M.; Enqvist, K.; Rasanen, S.; Tomberg, E. Higgs inflation at the hilltop. J. Cosmol. Astropartic. Phys. 2018, 2018, 005. [Google Scholar] [CrossRef] [Green Version]
- Gialamas, I.D.; Lahanas, A.B. Reheating in R2 Palatini inflationary models. Phys. Rev. D 2020, 101, 084007. [Google Scholar] [CrossRef] [Green Version]
- Cheong, D.Y.; Lee, S.M.; Park, S.C. Primordial Black Holes in Higgs-R2 Inflation as a whole dark matter. arXiv 2019, arXiv:1912.12032. [Google Scholar]
- Garcia-Bellido, J.; Figueroa, D.G.; Rubio, J. Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity. Phys. Rev. D 2009, 79, 063531. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, D.G. Preheating the Universe from the Standard Model Higgs. AIP Conf. Proc. 2010, 1241, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Repond, J.; Rubio, J. Combined Preheating on the lattice with applications to Higgs inflation. J. Cosmol. Astropartic. Phys. 2016, 2016, 043. [Google Scholar] [CrossRef]
- Linde, A.D.; Mukhanov, V.F. Nongaussian isocurvature perturbations from inflation. Phys. Rev. D 1997, 56, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Sloth, M.S. Adiabatic CMB perturbations in pre-big bang string cosmology. Nucl. Phys. B 2002, 626, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Lyth, D.H.; Wands, D. Generating the curvature perturbation without an inflaton. Phys. Lett. B 2002, 524, 5–14. [Google Scholar] [CrossRef]
- Moroi, T.; Takahashi, T. Effects of cosmological moduli fields on cosmic microwave background. Phys. Lett. B 2001, 522, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Simone, A.D.; Riotto, A. Cosmological Perturbations from the Standard Model Higgs. J. Cosmol. Astropartic. Phys. 2013, 2013, 014. [Google Scholar] [CrossRef] [Green Version]
- Simone, A.D.; Perrier, H.; Riotto, A. Non-Gaussianities from the Standard Model Higgs. J. Cosmol. Astropartic. Phys. 2013, 2013, 037. [Google Scholar] [CrossRef]
- Choi, K.; Huang, Q. Can the standard model Higgs boson seed the formation of structures in our Universe? Phys. Rev. D 2013, 87, 043501. [Google Scholar] [CrossRef] [Green Version]
- Kunimitsu, T.; Yokoyama, J. Higgs condensation as an unwanted curvaton. Phys. Rev. D 2012, 86, 083541. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Figueroa, D.G.; Lerner, R.N. Curvaton Decay by Resonant Production of the Standard Model Higgs. J. Cosmol. Astropartic. Phys. 2013, 2013, 040. [Google Scholar] [CrossRef]
- Enqvist, K.; Lerner, R.N.; Takahashi, T. The minimal curvaton-higgs model. J. Cosmol. Astropartic. Phys. 2014, 2014, 006. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gruzinov, A.; Zaldarriaga, M. A new mechanism for generating density perturbations from inflation. Phys. Rev. D 2004, 69, 023505. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Wang, Y.; Xianyu, Z.Z. A Cosmological Higgs Collider. J. High Energy Phys. 2020, 2020, 011. [Google Scholar] [CrossRef] [Green Version]
- Kainulainen, K.; Nurmi, S.; Tenkanen, T.; Tuominen, K.; Vaskonen, V. Isocurvature Constraints on Portal Couplings. J. Cosmol. Astropartic. Phys. 2016, 2016, 022. [Google Scholar] [CrossRef]
- Enqvist, K.; Meriniemi, T.; Nurmi, S. Generation of the Higgs Condensate and Its Decay after Inflation. J. Cosmol. Astropartic. Phys. 2013, 2013, 057. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Nurmi, S.; Rusak, S. Non-Abelian dynamics in the resonant decay of the Higgs after inflation. J. Cosmol. Astropartic. Phys. 2014, 2014, 064. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Nurmi, S.; Rusak, S.; Weir, D. Lattice Calculation of the Decay of Primordial Higgs Condensate. J. Cosmol. Astropartic. Phys. 2016, 2016, 057. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, D.G.; Garcia-Bellido, J.; Torrenti, F. Decay of the standard model Higgs field after inflation. Phys. Rev. D 2015, 92, 083511. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, D.G.; Byrnes, C.T. The Standard Model Higgs as the origin of the hot Big Bang. Phys. Lett. B 2017, 767, 272–277. [Google Scholar] [CrossRef]
- Figueroa, D.G. A gravitational wave background from the decay of the standard model Higgs after inflation. J. High Energy Phys. 2014, 2014, 145. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, D.G.; García-Bellido, J.; Torrentí, F. Gravitational wave production from the decay of the standard model Higgs field after inflation. Phys. Rev. D 2016, 93, 103521. [Google Scholar] [CrossRef] [Green Version]
- Ema, Y.; Jinno, R.; Mukaida, K.; Nakayama, K. Violent Preheating in Inflation with Nonminimal Coupling. J. Cosmol. Astropartic. Phys. 2017, 2017, 045. [Google Scholar] [CrossRef] [Green Version]
- Sfakianakis, E.I.; van de Vis, J. Preheating after Higgs Inflation: Self-Resonance and Gauge boson production. Phys. Rev. D 2019, 99, 083519. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Jinno, R.; Kamada, K.; Park, S.C.; Starobinsky, A.A.; Yokoyama, J. On the violent preheating in the mixed Higgs-R2 inflationary model. Phys. Lett. B 2019, 791, 36–42. [Google Scholar] [CrossRef]
- Hamada, Y.; Kawana, K.; Scherlis, A. On Preheating in Higgs Inflation. arXiv 2020, arXiv:2007.04701. [Google Scholar]
- Kumar, S.; Sundrum, R. Heavy-Lifting of Gauge Theories by Cosmic Inflation. J. High Energy Phys. 2018, 2018, 011. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.A.; Fan, J.; Lozanov, K.D.; Reece, M. Cosmological dynamics of Higgs potential fine tuning. Phys. Rev. D 2019, 99, 035008. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Reece, M.; Wang, Y. An Inflationary Probe of Cosmic Higgs Switching. arXiv 2019, arXiv:1905.05764. [Google Scholar]
- Silverstein, E. TASI/PiTP/ISS lectures on moduli and microphysics. Prog. String Theory 2005. [Google Scholar] [CrossRef]
- Douglas, M.R.; Kachru, S. Flux compactification. Rev. Mod. Phys. 2007, 79, 733–796. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dubovsky, S.; Senatore, L.; Villadoro, G. (No)Eternal Inflation and Precision Higgs Physics. J. High Energy Phys. 2008, 2008, 075. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M.; Espinosa, J.R. Axionic landscape for Higgs coupling near-criticality. Phys. Rev. D 2018, 97, 035025. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J. Accessibility Measure for Eternal Inflation: Dynamical Criticality and Higgs Metastability. arXiv 2019, arXiv:1912.06706. [Google Scholar]
- Shaposhnikov, M.; Wetterich, C. Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 2010, 683, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; Knochel, A.K.; Weigand, T. A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations. J. High Energy Phys. 2012, 2012, 093. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; Knochel, A.K.; Weigand, T. The Higgs mass from a String-Theoretic Perspective. Nucl. Phys. B 2013, 874, 1–35. [Google Scholar] [CrossRef]
- Espinosa, J.; Giudice, G.; Riotto, A. Cosmological implications of the Higgs mass measurement. J. Cosmol. Astropartic. Phys. 2008, 2008, 002. [Google Scholar] [CrossRef] [Green Version]
- Elias-Miro, J.; Espinosa, J.R.; Giudice, G.F.; Isidori, G.; Riotto, A.; Strumia, A. Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 2012, 709, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Kobakhidze, A.; Spencer-Smith, A. Electroweak Vacuum (In)Stability in an Inflationary Universe. Phys. Lett. B 2013, 722, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Fairbairn, M.; Hogan, R. Electroweak Vacuum Stability in light of BICEP2. Phys. Rev. Lett. 2014, 112, 201801. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Meriniemi, T.; Nurmi, S. Higgs Dynamics during Inflation. J. Cosmol. Astropartic. Phys. 2014, 2014, 025. [Google Scholar] [CrossRef]
- Kobakhidze, A.; Spencer-Smith, A. The Higgs vacuum is unstable. arXiv 2014, arXiv:1404.4709. [Google Scholar]
- Hook, A.; Kearney, J.; Shakya, B.; Zurek, K.M. Probable or Improbable Universe? Correlating Electroweak Vacuum Instability with the Scale of Inflation. J. High Energy Phys. 2015, 2015, 061. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.R.; Giudice, G.F.; Morgante, E.; Riotto, A.; Senatore, L.; Strumia, A.; Tetradis, N. The cosmological Higgstory of the vacuum instability. J. High Energy Phys. 2015, 201. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Matsui, H. Higgs vacuum metastability in primordial inflation, preheating, and reheating. Phys. Rev. D 2016, 94, 103509. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Karciauskas, M.; Lebedev, O.; Rusak, S.; Zatta, M. Postinflationary vacuum instability and Higgs-inflaton couplings. J. Cosmol. Astropartic. Phys. 2016, 2016, 025. [Google Scholar] [CrossRef]
- Grobov, A.; Konoplich, R.; Rubin, S. Cosmological implications of Higgs field fluctuations during inflation. Ann. Phys. 2016, 528, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Franciolini, G.; Giudice, G.F.; Racco, D.; Riotto, A. Implications of the detection of primordial gravitational waves for the Standard Model. J. Cosmol. Astropartic. Phys. 2019, 2019, 022. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Hertzberg, M.P. Eternal Inflation and Reheating in the Presence of the Standard Model Higgs. arXiv 2019, arXiv:1910.04664. [Google Scholar] [CrossRef]
- Markkanen, T.; Rajantie, A.; Stopyra, S. Cosmological Aspects of Higgs Vacuum Metastability. Front. Astron. Space Sci. 2018, 5, 40. [Google Scholar] [CrossRef]
- Herranen, M.; Markkanen, T.; Nurmi, S.; Rajantie, A. Spacetime curvature and the Higgs stability during inflation. Phys. Rev. Lett. 2014, 113, 211102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, C.; Lebedev, O.; Zatta, M. Higgs–inflaton coupling from reheating and the metastable Universe. Phys. Lett. B 2016, 753, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Ema, Y.; Mukaida, K.; Nakayama, K. Fate of Electroweak Vacuum during Preheating. J. Cosmol. Astropartic. Phys. 2016, 2016, 043. [Google Scholar] [CrossRef]
- Herranen, M.; Markkanen, T.; Nurmi, S.; Rajantie, A. Spacetime curvature and Higgs stability after inflation. Phys. Rev. Lett. 2015, 115, 241301. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, D.G.; Rajantie, A.; Torrenti, F. Higgs field-curvature coupling and postinflationary vacuum instability. Phys. Rev. D 2018, 98, 023532. [Google Scholar] [CrossRef] [Green Version]
- Kearney, J.; Yoo, H.; Zurek, K.M. Is a Higgs Vacuum Instability Fatal for High-Scale Inflation? Phys. Rev. D 2015, 91, 123537. [Google Scholar] [CrossRef] [Green Version]
- East, W.E.; Kearney, J.; Shakya, B.; Yoo, H.; Zurek, K.M. Spacetime Dynamics of a Higgs Vacuum Instability During Inflation. Phys. Rev. D 2017, 95, 02352. [Google Scholar] [CrossRef] [Green Version]
- Burda, P.; Gregory, R.; Moss, I. Gravity and the stability of the Higgs vacuum. Phys. Rev. Lett. 2015, 115, 071303. [Google Scholar] [CrossRef] [Green Version]
- Burda, P.; Gregory, R.; Moss, I. The fate of the Higgs vacuum. J. High Energy Phys. 2016, 2016, 025. [Google Scholar] [CrossRef]
- Espinosa, J.; Racco, D.; Riotto, A. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter. Phys. Rev. Lett. 2018, 120, 121301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, J.R.; Racco, D.; Riotto, A. Primordial Black Holes from Higgs Vacuum Instability: Avoiding Fine-tuning through an Ultraviolet Safe Mechanism. Eur. Phys. J. C 2018, 78, 806. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, J.R.; Racco, D.; Riotto, A. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. J. Cosmol. Astropartic. Phys. 2018, 2018, 012. [Google Scholar] [CrossRef] [Green Version]
- Passaglia, S.; Hu, W.; Motohashi, H. Primordial black holes as dark matter through Higgs field criticality. Phys. Rev. D 2020, 101, 123523. [Google Scholar] [CrossRef]
- Hook, A.; Huang, J.; Racco, D. Searches for other vacua. Part II. A new Higgstory at the cosmological collider. J. High Energy Phys. 2020, 2020, 105. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.; Rubio, J.; Shaposhnikov, M. Living beyond the edge: Higgs inflation and vacuum metastability. Phys. Rev. D 2015, 92, 083512. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, O.; Westphal, A. Metastable Electroweak Vacuum: Implications for Inflation. Phys. Lett. B 2013, 719, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Hertzberg, M.P.; Jain, M. Explanation for why the Early Universe was Stable and Dominated by the Standard Model. arXiv 2019, arXiv:1911.04648. [Google Scholar]
- Ema, Y.; Mukaida, K.; Nakayama, K. Electroweak Vacuum Stabilized by Moduli during/after Inflation. Phys. Lett. B 2016, 761, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Pi, S.; Sasaki, M. Quintessence Saves Higgs Instability. Phys. Lett. B 2019, 791, 314. [Google Scholar] [CrossRef]
- Gong, J.O.; Kitajima, N. Cosmological stochastic Higgs field stabilization. Phys. Rev. D 2017, 96, 063521. [Google Scholar] [CrossRef] [Green Version]
- Hertzberg, M.P. A Correlation Between the Higgs Mass and Dark Matter. Adv. High Energy Phys. 2017, 2017, 6295927. [Google Scholar] [CrossRef] [Green Version]
- Hamada, Y.; Kawai, H.; Oda, K.Y.; Park, S.C. Higgs Inflation is still alive after the results from BICEP2. Phys. Rev. Lett. 2014, 112, 241301. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.; Shaposhnikov, M. Higgs inflation at the critical point. Phys. Lett. B 2014, 734, 249–254. [Google Scholar] [CrossRef]
- Hamada, Y.; Kawai, H.; Oda, K.Y.; Park, S.C. Higgs inflation from Standard Model criticality. Phys. Rev. D 2015, 91, 053008. [Google Scholar] [CrossRef] [Green Version]
- Ezquiaga, J.M.; Garcia-Bellido, J.; Morales, E.R. Primordial Black Hole production in Critical Higgs Inflation. Phys. Lett. B 2018, 776, 345–349. [Google Scholar] [CrossRef]
- Bezrukov, F.; Pauly, M.; Rubio, J. On the robustness of the primordial power spectrum in renormalized Higgs inflation. J. Cosmol. Astropartic. Phys. 2018, 2018, 040. [Google Scholar] [CrossRef] [Green Version]
- Rasanen, S.; Tomberg, E. Planck scale black hole dark matter from Higgs inflation. J. Cosmol. Astropartic. Phys. 2019, 2019, 038. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, V.; Rubakov, V.; Shaposhnikov, M. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- Cohen, A.G.; Kaplan, D.; Nelson, A. Spontaneous baryogenesis at the weak phase transition. Phys. Lett. B 1991, 263, 86–92. [Google Scholar] [CrossRef]
- Turok, N.; Zadrozny, J. Dynamical generation of baryons at the electroweak transition. Phys. Rev. Lett. 1990, 65, 2331–2334. [Google Scholar] [CrossRef] [PubMed]
- Farrar, G.R.; Shaposhnikov, M. Baryon asymmetry of the universe in the standard electroweak theory. Phys. Rev. D 1994, 50, 774. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M. Is electroweak baryogenesis dead? Phil. Trans. R. Soc. Lond. A 2018, 376, 20170116. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, E.; Halstead, E.; Poltis, R.; Stojkovic, D. Dark energy, the electroweak vacua and collider phenomenology. Phys. Rev. D 2009, 79, 103003. [Google Scholar] [CrossRef] [Green Version]
- Grojean, C.; Servant, G. Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond. Phys. Rev. D 2007, 75, 043507. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Marcianò, A.; Pasechnik, R. Probing Trans-electroweak First Order Phase Transitions from Gravitational Waves. Physics 2019, 1, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Lewicki, M.; No, J.M. Gravitational waves from first-order cosmological phase transitions: Lifetime of the sound wave source. arXiv arXiv:2003.07360, 2020.
- Baym, G.; Bodeker, D.; McLerran, L.D. Magnetic fields produced by phase transition bubbles in the electroweak phase transition. Phys. Rev. D 1996, 53, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, E. TASI lectures on cosmological observables and string theory. New Front. Fields Strings 2017, 545–606. [Google Scholar] [CrossRef] [Green Version]
- Kane, G.; Kumar, P.; Lu, R.; Zheng, B. Higgs Mass Prediction for Realistic String/M Theory Vacua. Phys. Rev. D 2012, 85, 075026. [Google Scholar] [CrossRef] [Green Version]
- Kane, G.; Sinha, K.; Watson, S. Cosmological Moduli and the Post-Inflationary Universe: A Critical Review. Int. J. Mod. Phys. D 2015, 24, 1530022. [Google Scholar] [CrossRef] [Green Version]
- Allahverdi, R.; Amin, M.A.; Berlin, A.; Bernal, N.; Byrnes, C.T.; Delos, M.S.; Erickcek, A.L.; Escudero, M.; Figueroa, D.G.; Freese, K.; et al. The First Three Seconds: A Review of Possible Expansion Histories of the Early Universe. arXiv 2020, arXiv:2006.16182. [Google Scholar]
- Hardy, E. Higgs portal dark matter in non-standard cosmological histories. J. High Energy Phys. 2018, 2018, 043. [Google Scholar] [CrossRef] [Green Version]
- Bernal, N.; Cosme, C.; Tenkanen, T. Phenomenology of Self-Interacting Dark Matter in a Matter-Dominated Universe. Eur. Phys. J. C 2019, 79, 99. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.D.; Liu, X.; Maloney, A.; McAllister, L.; Silverstein, E. Beauty is attractive: Moduli trapping at enhanced symmetry points. J. High Energy Phys. 2004, 2004, 030. [Google Scholar] [CrossRef]
- Watson, S. Moduli stabilization with the string Higgs effect. Phys. Rev. D 2004, 70, 066005. [Google Scholar] [CrossRef] [Green Version]
- Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J. String Axiverse. Phys. Rev. D 2010, 81, 123530. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, E.; Westphal, A. Monodromy in the CMB: Gravity Waves and String Inflation. Phys. Rev. D 2008, 78, 106003. [Google Scholar] [CrossRef] [Green Version]
- McAllister, L.; Silverstein, E.; Westphal, A. Gravity Waves and Linear Inflation from Axion Monodromy. Phys. Rev. D 2010, 82, 046003. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Kaplan, D.E.; Rajendran, S. Cosmological Relaxation of the Electroweak Scale. Phys. Rev. Lett. 2015, 115, 221801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giudice, G.; Kehagias, A.; Riotto, A. The Selfish Higgs. J. High Energy Phys. 2019, 2019, 199. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Westphal, A. A Goldilocks Higgs. Phys. Lett. B 2020, 808, 135616. [Google Scholar] [CrossRef]
- Geller, M.; Hochberg, Y.; Kuflik, E. Inflating to the Weak Scale. Phys. Rev. Lett. 2019, 122, 191802. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Kaplan, D.E.; Rajendran, S. Relaxation of the Cosmological Constant. Phys. Rev. D 2019, 100, 015048. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horn, B. The Higgs Field and Early Universe Cosmology: A (Brief) Review. Physics 2020, 2, 503-520. https://doi.org/10.3390/physics2030028
Horn B. The Higgs Field and Early Universe Cosmology: A (Brief) Review. Physics. 2020; 2(3):503-520. https://doi.org/10.3390/physics2030028
Chicago/Turabian StyleHorn, Bart. 2020. "The Higgs Field and Early Universe Cosmology: A (Brief) Review" Physics 2, no. 3: 503-520. https://doi.org/10.3390/physics2030028
APA StyleHorn, B. (2020). The Higgs Field and Early Universe Cosmology: A (Brief) Review. Physics, 2(3), 503-520. https://doi.org/10.3390/physics2030028