Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space
Abstract
:1. Introduction
2. Wigner Formulation of Bosonic Field Theory
3. Computer Simulation of Thermal Field States
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NHC | Nosé–Hoover chain |
References
- Sen, S.; Gupta, K.S.; Coey, J.M.D. Mesoscopic structure formation in condensed matter due to vacuum fluctuations. Phys. Rev. B 2015, 92, 155115. [Google Scholar] [CrossRef]
- Sen, S.; Gupta, K.S. Observable consequences of zero-point energy. Mod. Phys. Lett. A 2017, 32, 1750217. [Google Scholar] [CrossRef]
- Canaguier-Durand, A.; Devaux, E.; George, J.; Pang, Y.; Hutchison, J.A.; Schwartz, T.; Genet, C.; Wilhelms, N.; Lehn, J.-M.; Ebbesen, T.W. Thermodynamics of Molecules Strongly Coupled to the Vacuum Field. Angew. Chem. Int. Ed. 2015, 52, 10533–10536. [Google Scholar] [CrossRef]
- Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T.W. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 2015, 6, 5981. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, J.A.; Liscio, A.; Schwartz, T.; Canaguier-Durand, A.; Genet, C.; Palermo, V.; Samorí, P.; Ebbesen, T.W. Tuning the Work-Function Via Strong Coupling. Adv. Mater. 2013, 25, 2481–2485. [Google Scholar] [CrossRef] [PubMed]
- Orgiu, E.; George, J.; Hutchison, J.A.; Devaux, E.; Dayen, J.F.; Doudin, B.; Stellacci, F.; Genet, C.; Schachenmayer, J.; Genes, C.; et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 2013, 14, 1123. [Google Scholar] [CrossRef]
- Huang, K.; Low, H.-B.; Tung, R.-S. Scalar field cosmology: I. Asymptotic freedom and the initial-value problem. Class. Quantum Gravity 2012, 29, 155014. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Low, H.-B.; Tung, R.-S. Scalar field cosmology II: Superfluidity, quantum turbulence, and inflation. Int. J. Mod. Phys. A 2012, 27, 1250154. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Xiong, C.; Zhao, X. Scalar-field theory of dark matter. Int. J. Mod. Phys. A 2014, 29, 1450074. [Google Scholar] [CrossRef]
- Huang, K. A Superfluid Universe; World Scientific: Singapore, 2016. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. Is there an æther? Nature 1951, 168, 906–907. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Is there an æther? Nature 1952, 169, 702. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. Aether as a superfluid state of particle-antiparticle pairs. Found. Phys. 1976, 6, 65–70. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models. Found. Phys. 1976, 6, 717–726. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sudarshan, E.C.G. The superfluid as a source of all interactions. Found. Phys. 1978, 8, 823–831. [Google Scholar] [CrossRef]
- Eastham, P.R.; Littlewood, P.B. Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity. Phys. Rev. B 2001, 64, 235101. [Google Scholar] [CrossRef] [Green Version]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Le Bellac, M. Quantum and Statistical Field Theory; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Ai, W.-Y. Correspondence between thermal and quantum vacuum transitions around horizons. J. High Energy Phys. 2019, 2019, 164. [Google Scholar] [CrossRef]
- Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N. On the Catalysis of the Electroweak Vacuum Decay by Black Holes at High Temperature. Eur. Phys. J. C 2018, 78, 328. [Google Scholar] [CrossRef]
- Gorbunov, D.; Levkov, D.; Panin, A. Fatal youth of the Universe: Black hole threat for the electroweak vacuum during preheating. J. Cosmol. Astropart. Phys. 2017, 10, 016. [Google Scholar] [CrossRef] [Green Version]
- Terc, H.; Ribeiro, S.; Pezzutto, M.; Omar, Y. Quantum thermal machines driven by vacuum forces. Phys. Rev. E 2017, 95, 022135. [Google Scholar] [CrossRef] [Green Version]
- Mukaida, K.; Yamada, M. False Vacuum Decay Catalyzed by Black Holes. Phys. Rev. D 2017, 96, 103514. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; American Institute of Physics: Woodbury, NY, USA, 1995. [Google Scholar]
- Das, A. Finite Temperature Field Theory; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1997. [Google Scholar] [CrossRef]
- Tononi, A. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction. Condens. Matter 2019, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Chiquillo, E. Low-dimensional self-bound quantum Rabi-coupled bosonic droplets. Phys. Rev. A 2019, 99, 051601. [Google Scholar] [CrossRef] [Green Version]
- Chiquillo, E. Equation of state of the one- and three-dimensional Bose-Bose gases. Phys. Rev. A 2018, 97, 063605. [Google Scholar] [CrossRef] [Green Version]
- Tononi, A.; Cappellaro, A.; Salasnich, L. Condensation and superfluidity of dilute Bose gases with finite-range interaction. New J. Phys. 2018, 20, 125007. [Google Scholar] [CrossRef]
- Cappellaro, A.; Salasnich, L. Finite-range corrections to the thermodynamics of the one-dimensional Bose gas. Phys. Rev. A 2017, 96, 063610. [Google Scholar] [CrossRef] [Green Version]
- Cappellaro, A.; Salasnich, L. Thermal field theory of bosonic gases with finite-range effective interaction. Phys. Rev. A 2017, 95, 033627. [Google Scholar] [CrossRef] [Green Version]
- Rivas, A.; Martin-Delgado, M.A. Topological Heat Transport and Symmetry-Protected Boson Currents. Sci. Rep. 2017, 7, 6350. [Google Scholar] [CrossRef]
- Wang, J.-S.; Agarwalla, B.K.; Thingna, H.L.J. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 2014, 9, 673–697. [Google Scholar] [CrossRef] [Green Version]
- Braasch, W.F., Jr.; Friedman, O.D.; Rimberg, A.J.; Miles, P.B. Wigner current for open quantum systems. Phys. Rev. A 2019, 100, 012124. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I.; Varró, S.; Ádám, P.; Biró, T.S.; Barnaföldi, G.G.; Lévai, P. Relativistic Wigner functions. EPJ Web Conf. 2014, 78, 01001. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I. Quantum fluctuations of geometry in a hot Universe. Class. Quantum Gravity 2015, 32, 215015. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. The Wigner functional of the electromagnetic field. Opt. Commun. 2000, 179, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Mrówczyński, S.; Müller, B. Wigner functional approach to quantum field dynamics. Phys. Rev. D 1994, 50, 7542–7552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, S.R. Foundations of Electrodynamics; North Holland Publishing Company: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Weinbub, J.; Ferry, D.K. Recent advances in Wigner function approaches. Appl. Phys. Rev. 2018, 5, 041104. [Google Scholar] [CrossRef] [Green Version]
- Ballentine, L. Quantum Mechanics: A Modern Development; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1998. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Tobias, D.J.; Martyna, G.J.; Klein, M.L.J. Molecular Dynamics Simulations of a Protein in the Canonical Ensemble. Phys. Chem. 1993, 97, 12959–12966. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution Functions in Physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Von Lindenfels, D.; Gräb, O.; Schmiegelow, C.T.; Kaushal, V.; Schulz, J.; Mitchison, M.T.; Goold, J.; Schmidt-Kaler, F.; Poschinger, U.G. Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Phys. Rev. Lett. 2019, 123, 080602. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Choo, K.; Balachandran, V.; Poletti, D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy 2019, 21, 228. [Google Scholar] [CrossRef] [Green Version]
- Robert-de-Saint-Vincent, M.; Pedri, P.; BLaburthe-Tolra, B. Dissipative cooling of spin chains by a bath of dipolar particles. New J. Phys. 2018, 20, 073037. [Google Scholar] [CrossRef] [Green Version]
- McCaul, G.M.G.; Lorenz, C.D.; Kantorovich, L. Driving spin-boson models from equilibrium using exact quantum dynamics. Phys. Rev. B 2018, 97, 224310. [Google Scholar] [CrossRef] [Green Version]
- Lambert, N.; Ahmed, S.; Cirio, M.; Nori, F. Modelling the ultra-strongly coupled spin-boson model with unphysical modes. Nat. Commun. 2019, 10, 3721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saryal, S.; Friedman, H.M.; Segal, D.; Agarwalla, B.K. Thermodynamic uncertainty relation in thermal transport. Phys. Rev. E 2019, 100, 042101. [Google Scholar] [CrossRef] [Green Version]
- Segal, D. Current fluctuations in quantum absorption refrigerators. Phys. Rev. E 2018, 97, 052145. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, M.; Dvira Segal, D. Coherence and decoherence in quantum absorption refrigerators. Phys. Rev. E 2018, 98, 012117. [Google Scholar] [CrossRef] [Green Version]
- Mitchison, M.T. Quantum thermal absorption machines: Refrigerators, engines and clocks. Contemp. Phys. 2019, 60, 164–187. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Kato, M.; Kato, T.; Saito, K. Heat transport via a local two-state system near thermal equilibrium. New J. Phys. 2018, 20, 093014. [Google Scholar] [CrossRef]
- Liu, J.; Hsieh, C.-Y.; Segal, D.; Hanna, G. Heat transfer statistics in mixed quantum-classical systems. J. Chem. Phys. 2018, 149, 224104. [Google Scholar] [CrossRef]
- Goldstein, H. Classical Mechanics; Addison-Wesley: New York, NY, USA, 1980. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Perseus Books Publishing, L.L.C.: Reading, MA, USA, 1995. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Ramond, P. Field Theory: A Modern Primer; The Benjamin/Cummings Pub. Co.: Reading, MA, USA, 1981. [Google Scholar]
- Altland, A.; Simons, B.D. Condensed Matter Field Theory; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Ferrario, M. Non-Hamiltonian equations of motion with a conserved energy. Phys. Rev. E 2001, 64, 056125. [Google Scholar]
- Sergi, A. Non-Hamiltonian Commutators in Quantum Mechanics. Phys. Rev. E 2005, 72, 066125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, A. Deterministic constant-temperature dynamics for dissipative quantum systems. J. Phys. A Math. Theor. 2007, 40, F347–F354. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths. Symmetry 2018, 10, 518. [Google Scholar]
- Sergi, A.; Petruccione, F. Nosé–Hoover dynamics in quantum phase space. J. Phys. A 2008, 41, 355304. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergi, A.; Grimaudo, R.; Hanna, G.; Messina, A. Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. Physics 2019, 1, 402-411. https://doi.org/10.3390/physics1030029
Sergi A, Grimaudo R, Hanna G, Messina A. Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. Physics. 2019; 1(3):402-411. https://doi.org/10.3390/physics1030029
Chicago/Turabian StyleSergi, Alessandro, Roberto Grimaudo, Gabriel Hanna, and Antonino Messina. 2019. "Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space" Physics 1, no. 3: 402-411. https://doi.org/10.3390/physics1030029
APA StyleSergi, A., Grimaudo, R., Hanna, G., & Messina, A. (2019). Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. Physics, 1(3), 402-411. https://doi.org/10.3390/physics1030029