Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space
Abstract
1. Introduction
2. Wigner Formulation of Bosonic Field Theory
3. Computer Simulation of Thermal Field States
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NHC | Nosé–Hoover chain |
References
- Sen, S.; Gupta, K.S.; Coey, J.M.D. Mesoscopic structure formation in condensed matter due to vacuum fluctuations. Phys. Rev. B 2015, 92, 155115. [Google Scholar] [CrossRef]
- Sen, S.; Gupta, K.S. Observable consequences of zero-point energy. Mod. Phys. Lett. A 2017, 32, 1750217. [Google Scholar] [CrossRef]
- Canaguier-Durand, A.; Devaux, E.; George, J.; Pang, Y.; Hutchison, J.A.; Schwartz, T.; Genet, C.; Wilhelms, N.; Lehn, J.-M.; Ebbesen, T.W. Thermodynamics of Molecules Strongly Coupled to the Vacuum Field. Angew. Chem. Int. Ed. 2015, 52, 10533–10536. [Google Scholar] [CrossRef]
- Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T.W. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 2015, 6, 5981. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, J.A.; Liscio, A.; Schwartz, T.; Canaguier-Durand, A.; Genet, C.; Palermo, V.; Samorí, P.; Ebbesen, T.W. Tuning the Work-Function Via Strong Coupling. Adv. Mater. 2013, 25, 2481–2485. [Google Scholar] [CrossRef] [PubMed]
- Orgiu, E.; George, J.; Hutchison, J.A.; Devaux, E.; Dayen, J.F.; Doudin, B.; Stellacci, F.; Genet, C.; Schachenmayer, J.; Genes, C.; et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 2013, 14, 1123. [Google Scholar] [CrossRef]
- Huang, K.; Low, H.-B.; Tung, R.-S. Scalar field cosmology: I. Asymptotic freedom and the initial-value problem. Class. Quantum Gravity 2012, 29, 155014. [Google Scholar] [CrossRef]
- Huang, K.; Low, H.-B.; Tung, R.-S. Scalar field cosmology II: Superfluidity, quantum turbulence, and inflation. Int. J. Mod. Phys. A 2012, 27, 1250154. [Google Scholar] [CrossRef]
- Huang, K.; Xiong, C.; Zhao, X. Scalar-field theory of dark matter. Int. J. Mod. Phys. A 2014, 29, 1450074. [Google Scholar] [CrossRef]
- Huang, K. A Superfluid Universe; World Scientific: Singapore, 2016. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Is there an æther? Nature 1951, 168, 906–907. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Is there an æther? Nature 1952, 169, 702. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. Aether as a superfluid state of particle-antiparticle pairs. Found. Phys. 1976, 6, 65–70. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models. Found. Phys. 1976, 6, 717–726. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sudarshan, E.C.G. The superfluid as a source of all interactions. Found. Phys. 1978, 8, 823–831. [Google Scholar] [CrossRef]
- Eastham, P.R.; Littlewood, P.B. Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity. Phys. Rev. B 2001, 64, 235101. [Google Scholar] [CrossRef]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Le Bellac, M. Quantum and Statistical Field Theory; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Ai, W.-Y. Correspondence between thermal and quantum vacuum transitions around horizons. J. High Energy Phys. 2019, 2019, 164. [Google Scholar] [CrossRef]
- Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N. On the Catalysis of the Electroweak Vacuum Decay by Black Holes at High Temperature. Eur. Phys. J. C 2018, 78, 328. [Google Scholar] [CrossRef]
- Gorbunov, D.; Levkov, D.; Panin, A. Fatal youth of the Universe: Black hole threat for the electroweak vacuum during preheating. J. Cosmol. Astropart. Phys. 2017, 10, 016. [Google Scholar] [CrossRef]
- Terc, H.; Ribeiro, S.; Pezzutto, M.; Omar, Y. Quantum thermal machines driven by vacuum forces. Phys. Rev. E 2017, 95, 022135. [Google Scholar] [CrossRef]
- Mukaida, K.; Yamada, M. False Vacuum Decay Catalyzed by Black Holes. Phys. Rev. D 2017, 96, 103514. [Google Scholar] [CrossRef]
- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; American Institute of Physics: Woodbury, NY, USA, 1995. [Google Scholar]
- Das, A. Finite Temperature Field Theory; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1997. [Google Scholar] [CrossRef]
- Tononi, A. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction. Condens. Matter 2019, 4, 20. [Google Scholar] [CrossRef]
- Chiquillo, E. Low-dimensional self-bound quantum Rabi-coupled bosonic droplets. Phys. Rev. A 2019, 99, 051601. [Google Scholar] [CrossRef]
- Chiquillo, E. Equation of state of the one- and three-dimensional Bose-Bose gases. Phys. Rev. A 2018, 97, 063605. [Google Scholar] [CrossRef]
- Tononi, A.; Cappellaro, A.; Salasnich, L. Condensation and superfluidity of dilute Bose gases with finite-range interaction. New J. Phys. 2018, 20, 125007. [Google Scholar] [CrossRef]
- Cappellaro, A.; Salasnich, L. Finite-range corrections to the thermodynamics of the one-dimensional Bose gas. Phys. Rev. A 2017, 96, 063610. [Google Scholar] [CrossRef]
- Cappellaro, A.; Salasnich, L. Thermal field theory of bosonic gases with finite-range effective interaction. Phys. Rev. A 2017, 95, 033627. [Google Scholar] [CrossRef]
- Rivas, A.; Martin-Delgado, M.A. Topological Heat Transport and Symmetry-Protected Boson Currents. Sci. Rep. 2017, 7, 6350. [Google Scholar] [CrossRef]
- Wang, J.-S.; Agarwalla, B.K.; Thingna, H.L.J. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 2014, 9, 673–697. [Google Scholar] [CrossRef]
- Braasch, W.F., Jr.; Friedman, O.D.; Rimberg, A.J.; Miles, P.B. Wigner current for open quantum systems. Phys. Rev. A 2019, 100, 012124. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Varró, S.; Ádám, P.; Biró, T.S.; Barnaföldi, G.G.; Lévai, P. Relativistic Wigner functions. EPJ Web Conf. 2014, 78, 01001. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Quantum fluctuations of geometry in a hot Universe. Class. Quantum Gravity 2015, 32, 215015. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. The Wigner functional of the electromagnetic field. Opt. Commun. 2000, 179, 237–246. [Google Scholar] [CrossRef]
- Mrówczyński, S.; Müller, B. Wigner functional approach to quantum field dynamics. Phys. Rev. D 1994, 50, 7542–7552. [Google Scholar] [CrossRef] [PubMed]
- De Groot, S.R. Foundations of Electrodynamics; North Holland Publishing Company: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Weinbub, J.; Ferry, D.K. Recent advances in Wigner function approaches. Appl. Phys. Rev. 2018, 5, 041104. [Google Scholar] [CrossRef]
- Ballentine, L. Quantum Mechanics: A Modern Development; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1998. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Tobias, D.J.; Martyna, G.J.; Klein, M.L.J. Molecular Dynamics Simulations of a Protein in the Canonical Ensemble. Phys. Chem. 1993, 97, 12959–12966. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution Functions in Physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Von Lindenfels, D.; Gräb, O.; Schmiegelow, C.T.; Kaushal, V.; Schulz, J.; Mitchison, M.T.; Goold, J.; Schmidt-Kaler, F.; Poschinger, U.G. Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Phys. Rev. Lett. 2019, 123, 080602. [Google Scholar] [CrossRef]
- Xu, X.; Choo, K.; Balachandran, V.; Poletti, D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy 2019, 21, 228. [Google Scholar] [CrossRef]
- Robert-de-Saint-Vincent, M.; Pedri, P.; BLaburthe-Tolra, B. Dissipative cooling of spin chains by a bath of dipolar particles. New J. Phys. 2018, 20, 073037. [Google Scholar] [CrossRef]
- McCaul, G.M.G.; Lorenz, C.D.; Kantorovich, L. Driving spin-boson models from equilibrium using exact quantum dynamics. Phys. Rev. B 2018, 97, 224310. [Google Scholar] [CrossRef]
- Lambert, N.; Ahmed, S.; Cirio, M.; Nori, F. Modelling the ultra-strongly coupled spin-boson model with unphysical modes. Nat. Commun. 2019, 10, 3721. [Google Scholar] [CrossRef] [PubMed]
- Saryal, S.; Friedman, H.M.; Segal, D.; Agarwalla, B.K. Thermodynamic uncertainty relation in thermal transport. Phys. Rev. E 2019, 100, 042101. [Google Scholar] [CrossRef]
- Segal, D. Current fluctuations in quantum absorption refrigerators. Phys. Rev. E 2018, 97, 052145. [Google Scholar] [CrossRef]
- Kilgour, M.; Dvira Segal, D. Coherence and decoherence in quantum absorption refrigerators. Phys. Rev. E 2018, 98, 012117. [Google Scholar] [CrossRef]
- Mitchison, M.T. Quantum thermal absorption machines: Refrigerators, engines and clocks. Contemp. Phys. 2019, 60, 164–187. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kato, M.; Kato, T.; Saito, K. Heat transport via a local two-state system near thermal equilibrium. New J. Phys. 2018, 20, 093014. [Google Scholar] [CrossRef]
- Liu, J.; Hsieh, C.-Y.; Segal, D.; Hanna, G. Heat transfer statistics in mixed quantum-classical systems. J. Chem. Phys. 2018, 149, 224104. [Google Scholar] [CrossRef]
- Goldstein, H. Classical Mechanics; Addison-Wesley: New York, NY, USA, 1980. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Perseus Books Publishing, L.L.C.: Reading, MA, USA, 1995. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Ramond, P. Field Theory: A Modern Primer; The Benjamin/Cummings Pub. Co.: Reading, MA, USA, 1981. [Google Scholar]
- Altland, A.; Simons, B.D. Condensed Matter Field Theory; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Sergi, A.; Ferrario, M. Non-Hamiltonian equations of motion with a conserved energy. Phys. Rev. E 2001, 64, 056125. [Google Scholar]
- Sergi, A. Non-Hamiltonian Commutators in Quantum Mechanics. Phys. Rev. E 2005, 72, 066125. [Google Scholar] [CrossRef] [PubMed]
- Sergi, A. Deterministic constant-temperature dynamics for dissipative quantum systems. J. Phys. A Math. Theor. 2007, 40, F347–F354. [Google Scholar] [CrossRef]
- Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths. Symmetry 2018, 10, 518. [Google Scholar]
- Sergi, A.; Petruccione, F. Nosé–Hoover dynamics in quantum phase space. J. Phys. A 2008, 41, 355304. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergi, A.; Grimaudo, R.; Hanna, G.; Messina, A. Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. Physics 2019, 1, 402-411. https://doi.org/10.3390/physics1030029
Sergi A, Grimaudo R, Hanna G, Messina A. Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. Physics. 2019; 1(3):402-411. https://doi.org/10.3390/physics1030029
Chicago/Turabian StyleSergi, Alessandro, Roberto Grimaudo, Gabriel Hanna, and Antonino Messina. 2019. "Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space" Physics 1, no. 3: 402-411. https://doi.org/10.3390/physics1030029
APA StyleSergi, A., Grimaudo, R., Hanna, G., & Messina, A. (2019). Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space. Physics, 1(3), 402-411. https://doi.org/10.3390/physics1030029