Magnetic Field in Nuclear Collisions at Ultra High Energies
Abstract
1. Introduction
2. Definitions and Notations
2.1. Models for Magnetic Field
2.2. Beam Characteristics
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
CODATA | Committee on Data for Science and Technology |
FCC | Integrated project of the Future Circular Collider |
FCC–hh | Work mode of the FCC with proton and nuclear beams |
HE–LHC | Project of the future high-energy hadron collider based on the present Large Hadron Collider |
HIJING | Heavy-Ion Jet INteraction Generator |
HSD | Hadron String Dynamics |
QCD | Quantum chromodynamics |
QED | Quantum electrodynamics |
UrQMD | Ultra relativistic Quantum Molecular Dynamics |
References
- Minakata, H.; Müller, B. Disoriented chiral condensate and strong electromagnetic field. Phys. Lett. B 1996, 377, 135–139. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Warringa, H.J. Chiral magnetic conductivity. Phys. Rev. D 2009, 80, 034028. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The effects of topological charge change in heavy ion collisions: “Event by event and violation”. Nucl. Phys. A 2008, 803, 227–253. [Google Scholar] [CrossRef]
- Kharzeev, D. Can gluons trace baryon number? Phys. Lett. B 1996, 378, 238–246. [Google Scholar] [CrossRef]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of particle physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Okorokov, V.A. Estimation of -odd correlators in heavy ion collisions at RHIC energies 62.4 – 200 GeV. arXiv 2009, arXiv:0908.2522. [Google Scholar]
- Okorokov, V.A. Dependence of the charge asymmetry parameters on the initial energy in heavy ion collisions. Yad. Fiz. Inzhin. 2013, 4, 805. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. Future Circular Collider Study. Volume 4: The High Energy LHC (HE–LHC) Conceptual Design Report; Zimmermann, F., Benedikt, M., Capeans, M., Cerutti, F., Goddard, B., Gutleber, J., Jiménez, J.M., Mangano, M., Mertens, V., Osborne, J., et al., Eds.; CERN Accelerator Reports CERN-ACC-2018-0059; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. Future Circular Collider Study. Volume 3: The Hadron Collider (FCC–hh) Conceptual Design Report; Benedikt, M., Capeans, M., Cerutti, F., Goddard, B., Gutleber, J., Jiménez, J.M., Mangano, M., Mertens, V., Osborne, J., Otto, T., et al., Eds.; CERN Accelerator Reports CERN-ACC-2018-0058; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Aichelin, J.; Angerami, A.; Apolinario, L.; Arleo, F.; Armesto, N.; Arnaldi, R.; Arslandok, M.; Azzi, P.; Bailhache, R.; Bass, S.A.; et al. Future Physics Opportunities for High-Density QCD at the LHC with Heavy-Ion and Proton Beams. Report from Working Group 5 on the Physics of the HL–LHC, and Perspectivies at the HE–LHC; Citron, Z., Dainese, A., Grosse-Oetringhaus, J.F., Jowett, J.M., Lee, Y.-J., Wiedemann, U.A., Winn, M., Eds.; CERN Report CERN–LPCC–2018–07; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Valentin, L. Subatomic Physics: Nuclei and Particles; Hermann: Paris, France, 1982. [Google Scholar]
- Mukhin, K.N. Experimental Nuclear Physics; Mir: Moscow, Russia, 1987. [Google Scholar]
- Sarkisyan, E.K.G.; Sakharov, A.S. On Similarities of Bulk Observables in Nuclear and Particle Collisions; CERN Report CERN-PH-TH-2004-213; CERN: Geneva, Switzerland, 2004. [Google Scholar]
- Sarkisyan, E.K.G.; Sakharov, A.S. Multihadron production features in different reactions. AIP Conf. Proc. 2006, 828, 35–41. [Google Scholar]
- Sarkisyan, E.K.G.; Sakharov, A.S. Relating multihadron production in hadronic and nuclear collisions. Eur. Phys. J. C 2010, 70, 533–541. [Google Scholar] [CrossRef]
- Sarkisyan, E.K.G.; Mishra, A.N.; Sahoo, R.; Sakharov, A.S. Multihadron production dynamics exploring the energy balance in hadronic and nuclear collisions. Phys. Rev. D 2016, 93, 054046. [Google Scholar] [CrossRef]
- Tuchin, K. Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 2013, 490495. [Google Scholar] [CrossRef]
- Huang, X.G. Electromagnetic fields and anomalous transports in heavy-ion collisions—A pedagogical review. Rep. Prog. Phys. 2016, 79, 076302. [Google Scholar] [CrossRef] [PubMed]
- Paquet, J.-F. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions. J. Phys. Conf. Ser. 2017, 832, 012035. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, C.-B.; Cai, X.; Feng, S.-Q. A systematic study of magnetic field in relativistic heavy-ion collisions in the RHIC and LHC energy regions. Adv. High Energy Phys. 2014, 2014, 193039. [Google Scholar] [CrossRef]
- Skokov, V.V.; Illarionov, A.Y.; Toneev, V.D. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 2009, 24, 5925–5932. [Google Scholar] [CrossRef]
- Deng, W.-T.; Huang, X.-G. Event-by-event generation of electromagnetic fields in heavyion collisions. Phys. Rev. D 2012, 85, 044907. [Google Scholar]
- Voronyuk, V.; Toneev, V.D.; Cassing, W.; Bratkovskaya, E.L.; Konchakovski, V.P.; Voloshin, S.A. Electromagnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 2011, 83, 054911. [Google Scholar] [CrossRef]
- Petrov, V.A.; Okorokov, V.A. The size seems to matter or where lies the “asymptopia”? Int. J. Mod. Phys. A 2018, 33, 1850077. [Google Scholar] [CrossRef]
- Okorokov, V.; Parfenov, P. Particle correlators and possible local parity violation in nuclear collisions. J. Phys. Conf. Ser. 2016, 668, 012129. [Google Scholar] [CrossRef]
- Okorokov, V.; Parfenov, P. Charge-dependent azimuthal correlations of secondary particles in heavy ion collisions. J. Phys. Conf. Ser. 2016, 675, 022021. [Google Scholar] [CrossRef]
- Okorokov, V.A. Chiral effects in nucleus–nucleus collisions: Experimental review. Phys. At. Nucl. 2017, 80, 1133–1140. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Liao, J.; Voloshin, S.A.; Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report. Prog. Part. Nucl. Phys. 2016, 88, 1–28. [Google Scholar] [CrossRef]
- Grasso, D.; Rubinstein, H.R. Magnetic fields in the early Universe. Phys. Rep. 2001, 348, 163–266. [Google Scholar] [CrossRef]
- Bruce, R.; d’Enterria, D.; de Roeck, A.; Drewes, M.; Farrar, G.R.; Giammanco, A.; Gould, O.; Hajer, J.; Harland-Lang, L.; Heisig, J.; et al. New physics searches with heavy-ion collisions at the LHC. arXiv 2018, arXiv:1812.07688. [Google Scholar]
- Okorokov, V.A. Geometry and space-time extent of pion emission region at FCC energies. Adv. High Energy Phys. 2016, 2016, 5972709. [Google Scholar] [CrossRef]
- Liu, Y.; Zahed, I. Pion condensation by rotation in a vagnetic field. Phys. Rev. Lett. 2018, 120, 032001. [Google Scholar] [CrossRef] [PubMed]
- Ambjorn, J.; Olesen, P. W-condensate formation in high energy collisions. Phys. Lett. B 1991, 257, 201–206. [Google Scholar] [CrossRef]
Parameter | Incoming Particle | ||||||
---|---|---|---|---|---|---|---|
, TeV | 13.50 | 6.750 | 6.075 | 6.750 | 6.231 | 5.651 | 5.322 |
50.00 | 25.00 | 22.50 | 25.00 | 23.08 | 20.93 | 19.71 | |
10.31 | 9.576 | 9.472 | 9.576 | 9.492 | 9.396 | 9.341 | |
11.51 | 10.82 | 10.77 | 10.82 | 10.58 | 10.73 | 10.70 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okorokov, V.A. Magnetic Field in Nuclear Collisions at Ultra High Energies. Physics 2019, 1, 183-193. https://doi.org/10.3390/physics1020017
Okorokov VA. Magnetic Field in Nuclear Collisions at Ultra High Energies. Physics. 2019; 1(2):183-193. https://doi.org/10.3390/physics1020017
Chicago/Turabian StyleOkorokov, Vitalii A. 2019. "Magnetic Field in Nuclear Collisions at Ultra High Energies" Physics 1, no. 2: 183-193. https://doi.org/10.3390/physics1020017
APA StyleOkorokov, V. A. (2019). Magnetic Field in Nuclear Collisions at Ultra High Energies. Physics, 1(2), 183-193. https://doi.org/10.3390/physics1020017