Integrating Empirical and Participatory Approaches for Soil Erosion Assessment: A Comparative Study of USLE and AHP in Upland Central Vietnam
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Materials
2.3. Methods
2.3.1. Universal Soil Loss Equation
- R factor:
- LS factor:
- K factor:
- C factor:
- P factor:
- Soil erosion rate classification using the USLE:
2.3.2. Analytical Hierarchy Process
- Selection of participants
- Selection of the criteria
- Construction of pairwise comparison matrices according to the relative importance of each criterion
- Validation of the prioritized level
- Scoring for impacts of criteria on soil erosion and soil erosion classification
3. Results
3.1. The Input Factors of USLE
- R factor:
- LS factor:
- K factor:
- C factor:
- P factor:
3.2. Community Perspectives on the Importance of Soil Erosion Factors
- The importance of the influenced factor to soil erosion
- The score of influenced factors
3.3. Soil Erosion Situation in Nam Dong District
4. Discussion
4.1. Soil Erosion Assessment Using USLE and AHP
4.2. Limitations and Potential Integration of AHP and USLE for Soil Erosion Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- den Biggelaar, C.; Lal, R.; Wiebe, K.; Eswaran, H.; Breneman, V.; Reich, P. The Global Impact of Soil Erosion on Productivity. In Advances in Agronomy; Donald, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 49–95. [Google Scholar]
- Descroix, L.; González Barrios, J.L.; Viramontes, D.; Poulenard, J.; Anaya, E.; Esteves, M.; Estrada, J. Gully and Sheet Erosion on Subtropical Mountain Slopes: Their Respective Roles and the Scale Effect. Catena 2008, 72, 325–339. [Google Scholar] [CrossRef]
- Pandey, S.; Kumar, P.; Zlatic, M.; Nautiyal, R.; Panwar, V.P. Recent Advances in Assessment of Soil Erosion Vulnerability in a Watershed. Int. Soil Water Conserv. Res. 2021, 9, 305–318. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Gong, Y.W.; Li, Y.H.; Hong, Q.; Xu, L.; Liu, R.M. A Comparison of WEPP and SWAT for Modeling Soil Erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agric. Water Manag. 2009, 96, 1435–1442. [Google Scholar] [CrossRef]
- Medjani, F.; Derradji, T.; Zahi, F.; Djidel, M.; Labar, S.; Bouchagoura, L. Assessment of Soil Erosion by Universal Soil Loss Equation Model Based on Geographic Information System Data: A Case Study of the Mafragh Watershed, North-Eastern Algeria. Sci. Afr. 2023, 21, e01782. [Google Scholar] [CrossRef]
- Ge, Y.; Zhao, L.; Chen, J.; Li, X.; Li, H.; Wang, Z.; Ren, Y. Study on Soil Erosion Driving Forces by Using (R)USLE Framework and Machine Learning: A Case Study in Southwest China. Land 2023, 12, 639. [Google Scholar] [CrossRef]
- Epple, L.; Kaiser, A.; Schindewolf, M.; Bienert, A.; Lenz, J.; Eltner, A. A Review on the Possibilities and Challenges of Today’s Soil and Soil Surface Assessment Techniques in the Context of Process-Based Soil Erosion Models. Remote. Sens. 2022, 14, 2468. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Pham, T.G.; Degener, J.; Kappas, M. Integrated Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Erosion Estimation in A Sap Basin: Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 99–110. [Google Scholar] [CrossRef]
- Gemechu, Y.O. Communitys Perception on Soil Erosion and Their Participation in Soil Conservation Practices: A Case Study of Alaltu Watershed of Najo District, Ethiopia. J. Soil Sci. Environ. Manag. 2017, 8, 17–24. [Google Scholar] [CrossRef][Green Version]
- Jemberu, W.; Baartman, J.E.M.; Fleskens, L.; Ritsema, C.J. Participatory Assessment of Soil Erosion Severity and Performance of Mitigation Measures Using Stakeholder Workshops in Koga Catchment, Ethiopia. J. Environ. Manag. 2018, 207, 230–242. [Google Scholar] [CrossRef]
- Yin, S.; Zhu, Z.; Wang, L.; Liu, B.; Xie, Y.; Wang, G.; Li, Y. Regional Soil Erosion Assessment Based on a Sample Survey and Geostatistics. Hydrol. Earth Syst. Sci. 2018, 22, 1695–1712. [Google Scholar] [CrossRef]
- Hayatzadeh, M.; Moosavi, V.; Aliramaee, R. Assessment and Prioritization of Soil Erosion Triggering Factors Using Analytical Hierarchy Process and Taguchi Method. Int. J. Sediment Res. 2023, 38, 396–404. [Google Scholar] [CrossRef]
- Alam, N.M.; Jana, C.; Mandal, D.; Meena, S.K.; Shrimali, S.S.; Mandal, U.; Mitra, S.; Kar, G. Applying Analytic Hierarchy Process for Identifying Best Management Practices in Erosion Risk Areas of Northwestern Himalayas. Land 2022, 11, 832. [Google Scholar] [CrossRef]
- Kabo-bah, K.J.; Guoan, T.; Yang, X.; Na, J.; Xiong, L. Erosion Potential Mapping Using Analytical Hierarchy Process (AHP) and Fractal Dimension. Heliyon 2021, 7, e07125. [Google Scholar] [CrossRef]
- Meteorological Observation Center of Thua Thien Hue, Da Nang, and Quang Nam provinces. Daily Rainfall Data at Meteorological Stations of Thua Thien Hue Province, Da Nang City and Quang Nam Province, 2023; Meteorological Observation Center of Thua Thien Hue, Da Nang, and Quang Nam: Da Nang, Vietnam, 2023. [Google Scholar]
- United States Geological Survey Digital Elevation—Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. Available online: https://earthexplorer.usgs.gov/ (accessed on 28 May 2024).
- National Institute of Agricultural Planning and Projection. Soil Map of Thua Thien Hue Province; National Institute of Agricultural Planning and Projection: Hanoi, Vietnam, 2005.
- People’s Committee of Nam Dong District. Land Use Map of Nam Dong District of Year 2023; People’s Committee of Nam Dong District: Nam Dong, Vietnam, 2023.
- United States Geological Survey. The Landsat 8 Image: LC08_L1TP_125049_20230404_20230412_02_T1. Available online: https://earthexplorer.usgs.gov/scene/metadata/full/5e81f14f59432a27/LC81250492023094LGN00/ (accessed on 28 May 2024).
- Davis, N.N.; Badger, J.; Hahmann, A.N.; Hansen, B.O.; Mortensen, N.G.; Kelly, M.; Larsén, X.G.; Olsen, B.T.; Floors, R.; Lizcano, G.; et al. The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application. Bull. Am. Meteorol. Soc. 2023, 104, E1507–E1525. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. In Agriculture Handbook No. 537; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- El-Swaify, S.A.; Dangler, E.W.; Armstrong, C.L. Soil Erosion by Water in the Tropics; Hawaii Institute of Tropical Agriculture and Human Resources: Manoa Valley, HI, USA, 1982; ISSN 0271-9916. [Google Scholar]
- Morgan, R. Soil Erosion and Conservation, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2005; ISBN 978-1-405-11781-4. [Google Scholar]
- Ha, N.T. Determine the Factors That Cause Erosion and the Ability to Forecast Erosion on Slope Land. Ph.D. Thesis, Thuy Loi University, Hanoi, Vietnam, 1996; 187p. Available online: http://luanan.nlv.gov.vn/luanan?a=d&d=TTkGGSfAIrCC1996.1.2 (accessed on 28 December 2024).
- Chinh, T.M. Determining the Appropriate Quantitative Model for Typical Agricultural Farming System on Sloping Land. Ph.D. Thesis, Vietnam Academy for Water Resources, Hanoi, Vietnam, 2021; 182p. Available online: https://vawr.org.vn/Upload/Daotao/NCS/2021/tvla_ncstran-minh-chinh.pdf (accessed on 14 January 2025).
- Moore, D.I.; Wilson, P.J. Length Slope Factor for the Revised Universal Soil Loss Equation: Simplified Method of Solution. J. Soil Water Conserv. 1992, 47, 423–428. [Google Scholar] [CrossRef]
- Siêm, N.T.; Phiên, T. Hilly and Mountainous Soils of Vietnam: Degradation and Restoration; Agricultural Publishing House: Hanoi, Vietnam, 1999. [Google Scholar]
- Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Marcato Junior, J.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving Cover and Management Factor (C-Factor) Estimation Using Remote Sensing Approaches for Tropical Regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Ayalew, D.A.; Deumlich, D.; Šarapatka, B.; Doktor, D. Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction Using Spaceborne Earth Observation Data. Remote. Sens. 2020, 12, 1136. [Google Scholar] [CrossRef]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the Effect of Support Practices (P-Factor) on the Reduction of Soil Erosion by Water at European Scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Meledje, N.E.H.; Kouassi, K.L.; N’Go, Y.A. Quantification of Water Related Soil Erosion in the Transboundary Basin of the Bia (West Africa). Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 107–112. [Google Scholar] [CrossRef]
- Pradeep, G.S.; Krishnan, M.V.N.; Vijith, H. Identification of Critical Soil Erosion Prone Areas and Annual Average Soil Loss in an Upland Agricultural Watershed of Western Ghats, Using Analytical Hierarchy Process (AHP) and RUSLE Techniques. Arab. J. Geosci. 2015, 8, 3697–3711. [Google Scholar] [CrossRef]
- Satty, R. The Analytic Hierarchy Process—What It Is and How It Is Used. Mathl Model. 1987, 3–5, 161–176. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making: An Introduction to the Analytic Hierarchy Process (AHP) Using Super Decisions V2; SpringerBriefs in Operations Research; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-33860-6. [Google Scholar]
- Saaty, T. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision Making Series); McGraw-Hill: New York, NY, USA, 1980; ISBN 978-0070543713. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K. A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef]
- Nearing, M.A. Why Soil Erosion Models Over-Predict Small Soil Losses and under-Predict Large Soil Losses. Catena 1998, 32, 15–22. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J.; Bazzoffi, P.; Van Rompaey, A.; Verstraeten, G. Predicting Catchment Sediment Yield in Mediterranean Environments: The Importance of Sediment Sources and Connectivity in Italian Drainage Basins. Earth Surf. Process Landf. 2006, 31, 1017–1034. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Event Soil Loss, Runoff and the Universal Soil Loss Equation Family of Models: A Review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Karydas, C.G.; Panagos, P.; Gitas, I.Z. A Classification of Water Erosion Models According to Their Geospatial Characteristics. Int. J. Digit. Earth 2014, 7, 229–250. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A Meta-Analysis of Soil Erosion Rates across the World. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Nearing, M.A.; Yin, S.; Borrelli, P.; Polyakov, V.O. Rainfall Erosivity: An Historical Review. Catena 2017, 157, 357–362. [Google Scholar] [CrossRef]
- Le, T.T.; Van Phan, S.; Nguyen, D.T.; Hoang, H.T.; Vu, L.T.; Le, T.A.; Nguyen, T.T. Ethnic Minority Women’s Empowerment in Agriculture in the Central Region of Viet Nam. PLoS ONE 2023, 18, e0287115. [Google Scholar] [CrossRef]
- Mushtaq, F.; Farooq, M.; Tirkey, A.S.; Sheikh, B.A. Analytic Hierarchy Process (AHP) Based Soil Erosion Susceptibility Mapping in Northwestern Himalayas: A Case Study of Central Kashmir Province. Conservation 2023, 3, 32–52. [Google Scholar] [CrossRef]
- Yadav, M.; Vaishya, R.C. GIS-Based Assessment of Soil Loss Using AHP with RUSLE Model: A Case Study of Kaushambi-Prayagraj Watershed in the Ganga Basin, U.P. (India). Water Air Soil. Pollut. 2023, 234, 426. [Google Scholar] [CrossRef]
- Das, B.; Bordoloi, R.; Thungon, L.T.; Paul, A.; Pandey, P.K.; Mishra, M.; Tripathi, O.P. An Integrated Approach of GIS, RUSLE and AHP to Model Soil Erosion in West Kameng Watershed, Arunachal Pradesh. J. Earth Syst. Sci. 2020, 129, 94. [Google Scholar] [CrossRef]
Data | Sources | Mapping Method |
---|---|---|
Rainfall | Data from 9 meteorological monitoring stations [16] | Inverse Distance Weighting (resolution at 30 m) |
Elevation | Digital Elevation Model (DEM), resolution at 30 m [17] | Original data, resolution at 30 m |
Slope | Calculate from DEM via ArcGIS 10.3, resolution at 30 m | |
Aspect | Calculate from DEM via ArcGIS 10.3, resolution at 30 m | |
Soil texture | Soil map of Thua Thien Hue province [18] | Convert from Mapinfo format (Tab) to ESRI format (Shp) |
Soil depth | ||
Land use type | Land use map of Nam Dong district [19] | Convert from MicroStation (dgn) to ESRI format (Shp) |
Land surface cover | Landsat 8 imagery [20] | Used to calculate NDVI |
Windspeed | Global Wind Speed Atlas [21] | Resampled from original data (resolution 250 m) into raster dataset (resolution 30 m) |
Land Use Types | Slope (Degrees) | ||||
---|---|---|---|---|---|
0–5 | 5–8 | 8–10 | 10–15 | >15 | |
Natural forest, Unused Land | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Plantation forest, perennial trees | 0.55 | 0.60 | 0.80 | 0.90 | 1.00 |
Annual crops | 0.27 | 0.30 | 0.40 | 0.45 | 0.50 |
Soil Erosion Levels | Soil Erosion Rate (ton/ha/year) | Surface Soil Loss (mm/year) |
---|---|---|
Slight soil erosion | 0–10 | 0–0.8 |
Moderate soil erosion | 10–75 | 0.8–6.25 |
Severe soil erosion | 75–150 | 6.25–12.5 |
Extreme soil erosion | >150 | >12.5 |
Participant Code | Gender | Age | Profession | Background |
---|---|---|---|---|
001 | Male | 45 | Local government staff | Natural resources management |
002 | Female | 36 | Researcher | Soil and Land Management |
003 | Female | 37 | Women Union staff | Agricultural production |
004 | Male | 60 | Farmer | Agricultural production |
005 | Male | 48 | Researcher | Soil and Land management |
006 | Male | 45 | Local government staff | Agriculture Department |
007 | Male | 46 | Farmer | Agricultural production |
008 | Male | 60 | Community leader | Agricultural production |
009 | Female | 42 | Agricultural Scientific | Soil and crop sciences |
Numeric Scale | Response Alternatives of Participants |
---|---|
9; 1/9 | Criterion i is extremely more/less important than criterion j |
7; 1/7 | Criterion i is strongly more/less important than criterion j |
5; 1/5 | Criterion i is more/less important than criterion j |
3; 1/3 | Criterion i is slightly more/less important than criterion j |
1 | Criterion i is equally important as criterion j |
8;6;4;2;1/8;1/6;1/4;1/2 | These are intermediate values |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Soil Erosion Classes | |
---|---|
1–3 | Slight soil erosion |
3–5 | Moderate soil erosion |
5–7 | Severe soil erosion |
7–9 | Extreme soil erosion |
Rainfall | Wind Speed | Soil Texture | Soil Depth | Land Use Types | Land Surface Cover | Elevation | Slope | Aspect | Weight | |
---|---|---|---|---|---|---|---|---|---|---|
Rainfall | 1.00 | 2.50 | 1.66 | 5.00 | 2.05 | 2.13 | 1.31 | 0.34 | 0.84 | 14.3 |
Wind speed | 0.40 | 1.00 | 0.90 | 1.47 | 1.41 | 0.90 | 1.00 | 0.25 | 2.00 | 8.5 |
Soil texture | 0.60 | 1.12 | 1.00 | 2.17 | 2.17 | 1.41 | 2.00 | 0.33 | 0.65 | 10.2 |
Soil depth | 0.20 | 0.68 | 0.46 | 1.00 | 1.36 | 0.20 | 0.81 | 0.27 | 0.61 | 5.2 |
Land use types | 0.49 | 0.71 | 0.46 | 0.74 | 1.00 | 1.32 | 0.80 | 0.25 | 0.67 | 6.2 |
Land surface cover | 0.47 | 1.12 | 0.71 | 5.00 | 0.76 | 1.00 | 2.00 | 0.20 | 2.00 | 10.6 |
Elevation | 0.76 | 1.00 | 0.50 | 1.23 | 1.25 | 0.50 | 1.00 | 0.32 | 0.87 | 7.2 |
Slope | 2.98 | 4.01 | 3.01 | 3.68 | 4.01 | 5.00 | 3.15 | 1.00 | 2.91 | 28.7 |
Aspect | 1.18 | 0.50 | 1.53 | 1.64 | 1.49 | 0.50 | 1.15 | 0.34 | 1.00 | 9.1 |
Consistency Index: 0.06 < 0.1 (The pairwise comparison result is accepted) |
Soil Erosion Classification | Area (Hectare) | |
---|---|---|
USLE | AHP | |
Slight soil erosion | 1963.17 | 0 |
Moderate soil erosion | 3459.69 | 3554.64 |
Severe soil erosion | 2925.90 | 18,140.58 |
Extreme soil erosion | 13,648.14 | 301.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, T.T.; Tran, C.T.M.; Pham, T.H.; Linh, N.H.K.; Pham, T.G. Integrating Empirical and Participatory Approaches for Soil Erosion Assessment: A Comparative Study of USLE and AHP in Upland Central Vietnam. GeoHazards 2025, 6, 43. https://doi.org/10.3390/geohazards6030043
Duc TT, Tran CTM, Pham TH, Linh NHK, Pham TG. Integrating Empirical and Participatory Approaches for Soil Erosion Assessment: A Comparative Study of USLE and AHP in Upland Central Vietnam. GeoHazards. 2025; 6(3):43. https://doi.org/10.3390/geohazards6030043
Chicago/Turabian StyleDuc, Tran Thanh, Chau Thi Minh Tran, Ty Huu Pham, Nguyen Hoang Khanh Linh, and Tung Gia Pham. 2025. "Integrating Empirical and Participatory Approaches for Soil Erosion Assessment: A Comparative Study of USLE and AHP in Upland Central Vietnam" GeoHazards 6, no. 3: 43. https://doi.org/10.3390/geohazards6030043
APA StyleDuc, T. T., Tran, C. T. M., Pham, T. H., Linh, N. H. K., & Pham, T. G. (2025). Integrating Empirical and Participatory Approaches for Soil Erosion Assessment: A Comparative Study of USLE and AHP in Upland Central Vietnam. GeoHazards, 6(3), 43. https://doi.org/10.3390/geohazards6030043