Seismic Performances of Masonry Educational Buildings during the 2023 Türkiye (Kahramanmaraş) Earthquakes
Abstract
:1. Introduction
2. 6 February 2023 Kahramanmaraş Destructive Earthquakes
3. Educational Buildings in Rural Areas and Observed Damage
4. Classification of the Damage in Educational Buildings in the Earthquake Region
5. Structural Analysis for the Reference School Building
5.1. Estimation of the Seismic Capacity of the Building
5.2. Seismic Analysis for the Existing Case
5.3. Seismic Retrofitting Methodology
6. Conclusions and Discussion
- Corner connections on walls should be well-made and carefully made. It is important to observe the appropriate constructive rules and take care not to deviate from the plan’s symmetrical wall layout. One of the damage reduction measures resulting from the recent earthquakes will be the demolition of old masonry buildings, regardless of their level of damage, along with renovation using projects that provide optimum design principles specific to each rural location. Furthermore, inadequate oversight and subpar construction are other elements that may contribute to the extent of damage.
- In newly built masonry buildings, earthquake-resistant building design principles should be applied with sensitivity.
- In such structures, the rigidity of the structure should be increased by using bond beams in both horizontal and vertical directions.
- Load-bearing walls should be designed to be symmetrical and in sufficient quantity.
- Interlocking should be maximized by using the necessary connection members at the corner points.
- High-strength mortars should be used as binding mortars.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latifi, R.; Hadzima-Nyarko, M.; Radu, D.; Rouhi, R. A brief overview on crack patterns, repair and strengthening of historical masonry structures. Materials 2023, 16, 1882. [Google Scholar] [CrossRef]
- Hadzima-Nyarko, M.; Pavić, G.; Lešić, M. Seismic vulnerability of old confined masonry buildings in Osijek, Croatia. Earthq. Struct. 2016, 11, 629–648. [Google Scholar] [CrossRef]
- Işık, M.F.; Işık, E.; Harirchian, E. Application of IOS/Android rapid evaluation of post-earthquake damages in masonry buildings. Gazi J. Eng. Sci. 2021, 7, 36–50. [Google Scholar] [CrossRef]
- Milani, G. Lesson learned after the Emilia-Romagna, Italy, 20–29 May 2012 earthquakes: A limit analysis insight on three masonry churches. Eng. Fail. Anal. 2013, 34, 761–778. [Google Scholar] [CrossRef]
- Preciado, A.; Ramirez-Gaytan, A.; Santos, J.C.; Rodriguez, O. Seismic vulnerability assessment and reduction at a territorial scale on masonry and adobe housing by rapid vulnerability indicators: The case of Tlajomulco, Mexico. Int. J. Dis. Risk Reduct. 2020, 44, 101425. [Google Scholar] [CrossRef]
- Grillanda, N.; Chiozzi, A.; Milani, G.; Tralli, A. Collapse behavior of masonry domes under seismic loads: An adaptive NURBS kinematic limit analysis approach. Eng. Struct. 2019, 200, 109517. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Advanced numerical insights into failure analysis and strengthening of monumental masonry churches under seismic actions. Eng. Fail. Anal. 2019, 103, 410–430. [Google Scholar] [CrossRef]
- Abbati, S.; D’Altri, A.M.; Ottonelli, D.; Castellazzi, G.; Cattari, S.; Miranda, S.; Lagomarsino, S. Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses. Comput. Struct. 2019, 213, 51–71. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Seismic response and damage patterns of masonry churches: Seven case studies in Ferrara, Italy. Eng. Struct. 2018, 177, 809–835. [Google Scholar] [CrossRef]
- Miranda, E.; Brzev, S.; Bijelic, N.; Arbanas, Ž.; Bartolac, M.; Jagodnik, V.; Lazarević, D.; Mihalić Arbanas, S.; Zlatović, S.; Acosta, A.; et al. Petrinja, Croatia December 29, 2020, Mw 6.4 Earthquake Joint Reconnaissance Report (JRR); ETH Zurich: Zurich, Switzerland, 2021. [Google Scholar]
- Preciado, A.; Peña, F.; Fonseca, F.C.; Silva, C. Damage description and schematic crack propagation in Colonial Churches and old masonry buildings by the 2017 Puebla-Morelos earthquakes (Mw = 8.2 and 7.1). Eng. Fail. Anal. 2022, 141, 106706. [Google Scholar] [CrossRef]
- Idris, Y.; Cummins, P.; Rusydy, I.; Muksin, U.; Syamsidik; Habibie, M.Y.; Meilianda, E. Post-earthquake damage assessment after the 6.5 mw earthquake on December, 7th 2016 in Pidie Jaya, Indonesia. J. Earthq. Eng. 2022, 26, 409–426. [Google Scholar] [CrossRef]
- Caglar, N.; Vural, I.; Kirtel, O.; Saribiyik, A.; Sumer, Y. Structural damages observed in buildings after the January 24, 2020 Elazığ-Sivrice earthquake in Türkiye. Case Stud. Constr. Mater. 2023, 18, e01886. [Google Scholar] [CrossRef]
- Isik, E.; Aydin, M.C.; Buyuksarac, A. 24 January 2020 Sivrice (Elazig) earthquake damages and determination of earthquake parameters in the region. Earthq. Struct. 2020, 19, 145–156. [Google Scholar] [CrossRef]
- Gusella, L.; Adams, B.J.; Bitelli, G.; Huyck, C.K.; Mognol, A. Object-oriented image understanding and post-earthquake damage assessment for the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 225–238. [Google Scholar] [CrossRef]
- Tabrizikahou, A.; Hadzima-Nyarko, M.; Kuczma, M.; Lozančić, S. Application of shape memory alloys in retrofitting of masonry and heritage structures based on their vulnerability revealed in the Bam 2003 earthquake. Materials 2021, 14, 4480. [Google Scholar] [CrossRef] [PubMed]
- Shakya, M.; Kawan, C.K.; Gaire, A.K.; Duwal, S. Post-earthquake damage assessment of traditional masonry buildings: A case study of Bhaktapur municipality following 2015 Gorkha (Nepal) earthquake. Eng. Fail. Anal. 2021, 123, 105277. [Google Scholar] [CrossRef]
- Bilgin, H.; Shkodrani, N.; Hysenlliu, M.; Ozmen, H.B.; Isik, E.; Harirchian, E. Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes. Eng. Fail. Anal. 2022, 131, 105824. [Google Scholar] [CrossRef]
- Sezen, H.; Whittaker, A.S. Seismic performance of industrial facilities affected by the 1999 Turkey earthquake. J. Perform. Constr. Facil. 2006, 20, 28–36. [Google Scholar] [CrossRef]
- Yamazaki, F.; Liu, W. Remote sensing technologies for post-earthquake damage assessment: A case study on the 2016 Kumamoto earthquake. In Proceedings of the 6th Asia Conference on Earthquake Engineering, Cebu City, Philippines, 22–24 September 2016. [Google Scholar]
- Villalobos, E.; Sim, C.; Smith-Pardo, J.P.; Rojas, P.; Pujol, S.; Kreger, M.E. The 16 April 2016 Ecuador earthquake damage assessment survey. Earthq. Spectra 2018, 34, 1201–1217. [Google Scholar] [CrossRef]
- Smyrou, E.; Tasiopoulou, P.; Bal, İ.E.; Gazetas, G. Ground motions versus geotechnical and structural damage in the February 2011 Christchurch earthquake. Seismol. Res. Lett. 2011, 82, 882–892. [Google Scholar] [CrossRef]
- Formisano, A.; Marzo, A. Simplified and refined methods for seismic vulnerability assessment and retrofitting of an Italian cultural heritage masonry building. Comput. Struct. 2017, 180, 13–26. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Earthquake-induced damage assessment and partial failure mechanisms of an Italian Medieval castle. Eng. Fail. Anal. 2019, 99, 292–309. [Google Scholar] [CrossRef]
- Preciado, A.; Santos, J.C.; Silva, C.; Ramírez-Gaytán, A.; Falcon, J.M. Seismic damage and retrofitting identification in unreinforced masonry Churches and bell towers by the september 19, 2017 (Mw = 7.1) Puebla-Morelos earthquake. Eng. Fail. Anal. 2020, 118, 104924. [Google Scholar] [CrossRef]
- Ademović, N.; Toholj, M.; Radonić, D.; Casarin, F.; Komesar, S.; Ugarković, K. Post-earthquake assessment and strengthening of a cultural-heritage residential masonry building after the 2020 Zagreb Earthquake. Buildings 2022, 2, 2024. [Google Scholar] [CrossRef]
- Lulić, L.; Ožić, K.; Kišiček, T.; Hafner, I.; Stepinac, M. Post-earthquake damage assessment—Case study of the educational building after the Zagreb earthquake. Sustainability 2021, 13, 6353. [Google Scholar] [CrossRef]
- Bothara, J.K.; Guragain, R.; Dixit, A. Protection of Educational Buildings against Earthquakes: A Manual for Designers and Builders; National Society for Earthquake Technology-Nepal (NSET): Lalitpur Metropolitan City, Nepal, 2002. [Google Scholar]
- Paudyal, Y.R.; Bhandary, N.P.; Yatabe, R. Preliminary damage survey of school buildings and proposed plan for reconstruction of school buildings after 2015 Gorkha earthquake in Nepal. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Proença, J.M.; Oliveira, C.S. Vulnerability assessment in educational buildings–inference of earthquake risk. A methodology based on school damage in the July 9, 1998, Faial Earthquake in the Azores. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008; pp. 12–17. [Google Scholar]
- Alcocer, S.M.; Murià-Vila, D.; Fernández-Sola, L.R.; Ordaz, M.; Arce, J.C. Observed damage in public school buildings during the 2017 Mexico earthquakes. Earthq. Spectra 2020, 36, 110–129. [Google Scholar] [CrossRef]
- Shaheen, M.A. Earthquake effects on educational institutions and libraries of Azad Kashmir: An appraisal. Libr. Rev. 2008, 57, 449–456. [Google Scholar] [CrossRef]
- İnce, O. Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) Earthquakes on 6 February 2023. Eng. Fail. Anal. 2024, 156, 107799. [Google Scholar] [CrossRef]
- Ivanov, M.L.; Chow, W.K. Structural damage observed in reinforced concrete buildings in Adiyaman during the 2023 Turkiye Kahramanmaras Earthquakes. Structures 2023, 58, 105578. [Google Scholar] [CrossRef]
- Işık, E.; Avcil, F.; Büyüksaraç, A.; İzol, R.; Arslan, M.H.; Aksoylu, C.; Harirchian, E.; Eyisüren, O.; Arkan, E.; Güngür, M.; et al. Structural damages in masonry buildings in Adıyaman during the Kahramanmaraş (Turkiye) earthquakes (Mw 7.7 and Mw 7.6) on 06 February 2023. Eng. Fail. Anal. 2023, 151, 107405. [Google Scholar] [CrossRef]
- Işık, E.; Avcil, F.; Arkan, E.; Büyüksaraç, A.; İzol, R.; Topalan, M. Structural damage evaluation of mosques and minarets in Adıyaman due to the 06 February 2023 Kahramanmaraş Earthquakes. Eng. Fail. Anal. 2023, 151, 107345. [Google Scholar] [CrossRef]
- Işık, E. Structural failures of adobe buildings during the February 2023 Kahramanmaraş (Türkiye) earthquakes. Appl. Sci. 2023, 13, 8937. [Google Scholar] [CrossRef]
- Avcil, F. Investigation of precast reinforced concrete structures during the 6 February 2023 Türkiye Earthquakes. Sustainability 2023, 15, 14846. [Google Scholar] [CrossRef]
- Avcil, F.; Işık, E.; İzol, R.; Büyüksaraç, A.; Arkan, E.; Arslan, M.H.; Aksoylu, C.; Eyisüren, O.; Harirchian, E. Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Nat. Hazards 2023, 120, 2953–2991. [Google Scholar] [CrossRef]
- Zengin, B.; Aydin, F. The effect of material quality on buildings moderately and heavily damaged by the Kahramanmaraş Earthquakes. Appl. Sci. 2023, 13, 10668. [Google Scholar] [CrossRef]
- Karasin, I.B. Comparative analysis of the 2023 Pazarcık and Elbistan Earthquakes in Diyarbakır. Buildings 2023, 13, 2474. [Google Scholar] [CrossRef]
- Karataş, L.; Bayhan, B. Damage assessment and restoration proposal following the 2023 Türkiye earthquakes: UNESCO World Heritage Site Diyarbakır City Walls, Türkiye. Herit. Sci. 2023, 11, 228. [Google Scholar] [CrossRef]
- Erkek, H.; Yetkin, M. Assessment of the performance of a historic minaret during the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6). Structures 2023, 58, 105620. [Google Scholar] [CrossRef]
- Altunsu, E.; Güneş, O.; Öztürk, S.; Sorosh, S.; Sarı, A.; Beeson, S.T. Investigating the structural damage in Hatay province after Kahramanmaraş-Türkiye earthquake sequences. Eng. Fail. Anal. 2023, 157, 107857. [Google Scholar] [CrossRef]
- Işık, E.; Shendkar, M.R.; Avcil, F.; Büyüksaraç, A.; Deshpande, S.S. A study on the determination of damage levels in reinforced concrete structures during the Kahramanmaraş Earthquake on February 06, 2023. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2023; Volume 405, p. 04029. [Google Scholar] [CrossRef]
- Kahya, V.; Genç, A.F.; Sunca, F.; Roudane, B.; Altunişik, A.C.; Yilmaz, S.; Günaydin, M.; Dok, G.; Kirtel, O.; Demir, A.; et al. Evaluation of earthquake-related damages on masonry structures due to the 6 February 2023 Kahramanmaraş-Türkiye earthquakes: A case study for Hatay Governorship Building. Eng. Fail. Anal. 2024, 156, 107855. [Google Scholar] [CrossRef]
- Onat, O.; Deniz, F.; Özmen, A.; Özdemir, E.; Sayın, E. Performance evaluation and damage assessment of historical Yusuf Ziya Pasha Mosque after February 6, 2023 Kahramanmaras earthquakes. Structures 2023, 58, 105415. [Google Scholar] [CrossRef]
- Alkan, H.; Büyüksaraç, A.; Bektaş, Ö. Investigation of earthquake sequence and stress transfer in the Eastern Anatolia Fault Zone by Coulomb stress analysis. Turk. J. Earth Sci. 2024, in press. [CrossRef]
- Available online: https://tadas.afad.gov.tr/event-detail/17966 (accessed on 6 June 2023).
- Available online: https://tadas.afad.gov.tr/event-detail/17969 (accessed on 6 June 2023).
- T.C. Cumhurbaşkanlığı. 2023 Kahramanmaraş ve Hatay Deprem Raporları. 2023. Available online: https://www.sbb.gov.tr/2023-kahramanmaras-ve-hatay-depremleri-raporu/ (accessed on 8 June 2023).
- Cumhurbaşkanlığı, T.C. 06 Şubat 2023 Kahramanmaraş Depremleri Asrın Felaketi; Cumhurbaşkanliği İletişim Başkanliği Yayinlari: Ankara, Türkiye, 2023; ISBN 978-625-7377-39-3. [Google Scholar]
- Bayülke, N. Yığma yapıların deprem davranışı ve güvenliği. In Proceedings of the 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Ankara, Türkiye, 11–14 October 2011; pp. 23–36. [Google Scholar]
- Çırak, İ.F. Yığma yapılarda oluşan hasarlar, nedenleri ve öneriler. SDU Int. Techn. Sci. 2011, 3, 55–60. [Google Scholar]
- Arkan, E.; Işık, E.; Harirchian, E.; Topçubaşı, M.; Avcil, F. Architectural characteristics and determination seismic risk priorities of traditional masonry structures: A case study for Bitlis (Eastern Türkiye). Buildings 2023, 13, 1042. [Google Scholar] [CrossRef]
- Ademovic, N.; Hrasnica, M.; Oliveira, D.V. Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina. Eng. Struct. 2013, 50, 13–29. [Google Scholar] [CrossRef]
- Savalle, N.; Lourenço, P.B.; Breul, P. Vulnerability of masonry structures to settlement loading: A numerical DEM investigation. Acad. J. Civ. Eng. 2023, 41, 31–44. [Google Scholar]
- Angelillo, M.; Lourenço, P.B.; Milani, G. Masonry behaviour and modelling. In Mechanics of Masonry Structures; Springer: Vienna, Austria, 2014; pp. 1–26. [Google Scholar]
- Vlachakis, G.; Vlachaki, E.; Lourenço, P.B. Learning from failure: Damage and failure of masonry structures, after the 2017 Lesvos earthquake (Greece). Eng. Fail. Anal. 2020, 117, 104803. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Nguyen, H.T.; Gharechelou, S.; Nguyen, L.V. Earthquake damage visualization (EDV) technique for the rapid detection of earthquake-induced damages using SAR data. Sensors 2017, 17, 235. [Google Scholar] [CrossRef]
- Zanini, M.A.; Hofer, L.; Faleschini, F. Reversible ground motion-to-intensity conversion equations based on the EMS-98 scale. Eng. Struct. 2019, 180, 310–320. [Google Scholar] [CrossRef]
- Grunthal, G. European Macroseismic Scale 1998; Conseil de L’Europe, Cahiers du Centre Europeen de Geodynamique et de Seismologie: Luxembourg, 1998; Volume 15. [Google Scholar]
- Grünthal, G.; Levret, A. L’Echelle Macrosismique Européenne European Macroseismic Scale 1998: (EMS-98); Conseil de L’Europe, Cahiers du Centre Europeen de Geodynamique et de Seismologie: Luxembourg, 2001. [Google Scholar]
- Lagomarsino, S.; Penna, A.; Galasco, A.; Cattari, S. TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng. Struct. 2013, 56, 1787–1799. [Google Scholar] [CrossRef]
- Lourenço, P.; Marques, R. Design of masonry structures (General rules): Highlights of the new European masonry code. In Brick and Block Masonry-From Historical to Sustainable Masonry, Proceedings of the 17th International Brick/Block Masonry Conference, Kraków, Poland, 5–8 July 2020; CRC Press: Boca Raton, FL, USA, 2020; p. 3. [Google Scholar]
- Lourenco, P.; Mendes, N.; Marques, R. Earthquake design and assessment of masonry structures: Review and applications. In Trends in Civil and Structural Engineering Computing; Topping, B.H.V., Neves, L.F.C., Barros, R.C., Eds.; Saxe-Coburg Publications: Stirling, UK, 2010; Chapter 4. [Google Scholar] [CrossRef]
- EC8-3; Eurocode 8. Design Provisions for Earthquake Resistance of Structures. Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- Kržan, M.; Gostič, S.; Cattari, S.; Bosiljkov, V. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bull. Earthq. Eng. 2015, 13, 203–236. [Google Scholar] [CrossRef]
- EN 1996-1; European Masonry Design Code. Design of Masonry Structures. Part 1: General Rules for Reinforced and Unreinforced Masonry Structures. European Standards Organizations: Brussels, Belgium, 2005.
- Lourenço, P.B.; Oliveira, D.V.; Roca, P.; Orduña, A. Dry joint stone masonry walls subjected to in-plane combined loading. J. Struct. Eng. 2005, 131, 1665–1673. [Google Scholar] [CrossRef]
- Tomaževič, M. Earthquake-Resistant Design of Masonry Buildings; Imperial College Press: London, UK, 1999; 268p. [Google Scholar]
- Costa, A.A.; Penna, A.; Magenes, G. Seismic performance of autoclaved aerated concrete (AAC) masonry: From experimental testing of the in-plane capacity of walls to building response simulation. J. Earthq. Eng. 2011, 15, 1–31. [Google Scholar] [CrossRef]
- EN 1998-1; European Seismic Design Code. Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. European Standards Organizations: Brussels, Belgium, 2004.
- Deng, M.; Zhang, Y.; Li, Q. Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests. Eng. Struct. 2018, 160, 535–545. [Google Scholar] [CrossRef]
- Salsavilca, J.; Yacila, J.; Tarque, N.; Camata, G. Experimental and analytical bond behaviour of masonry strengthened with steel reinforced grout (SRG). Constr. Build. Mater. 2020, 238, 117635. [Google Scholar] [CrossRef]
- Mahmoud, K.M.; Sallam, E.A.; Ibrahim, H.M.H. Behavior of partially strengthened reinforced concrete columns from two or three sides of the perimeter. Case Stud. Constr. Mater. 2022, 17, e01180. [Google Scholar] [CrossRef]
- Babatunde, S.A. Review of strengthening techniques for masonry using fiber reinforced polymers. Compos. Struct. 2017, 161, 246–255. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Singh, Y.; Das, S. Out-of-plane flexural strengthening of URM wallettes using basalt fibre reinforced polymer composite. Constr. Build. Mater. 2019, 216, 272–295. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Singh, Y.; Das, S. Out-of-plane flexural behaviour of masonry wallettes strengthened using FRP composites and externally bonded grids: Comparative study. Compos. Part B Eng. 2019, 176, 107302. [Google Scholar] [CrossRef]
- Kišiček, T.; Stepinac, M.; Renić, T.; Hafner, I.; Lulić, L. Strengthening of masonry walls with FRP or TRM. Građevinar 2020, 72, 937–953. [Google Scholar] [CrossRef]
- Piccolo, A.P.; Longobardi, G.; Formisano, A. Seismic vulnerability and consolidation by FRP/FRCM systems of a masonry school building in the district of Naples. Buildings 2022, 12, 2040. [Google Scholar] [CrossRef]
- ElGawady, M.A.; Lestuzzi, P.; Badoux, M. Retrofitting of masonry walls using shotcrete. In 2006 NZSEE Conference; NZSEE: Christchurch, New Zealand, 2006; Volume 45. [Google Scholar]
- Tiwari, K.; Pradhan, S.; Guragain, R.; Shrestha, H. Multiple analytical approaches on seismic retrofit design of unreinforced masonry buildings in Nepal. In Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan, 13–18 September 2020. [Google Scholar]
- Kadam, S.B.; Singh, Y.; Bing, L. Seismic fragility reduction of an unreinforced masonry school building through retrofit using ferrocement overlay. Earthq. Eng. Eng. Vib. 2020, 19, 397–412. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Singh, Y. Seismic safety evaluation methodology for masonry building and retrofitting using splint and bandage technique with wire mesh. Front. Struct. Civ. Eng. 2022, 16, 478–505. [Google Scholar] [CrossRef]
- Thermou, G.E.; Elnashai, A.S. Seismic retrofit schemes for RC structures and local–global consequences. Prog. Struct. Eng. Mater. 2006, 8, 1–15. [Google Scholar] [CrossRef]
- Thermou, G.E.; Pantazopoulou, S.J.; Elnashai, A.S. Upgrading of RC Structures for a target response shape. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 June 2004. [Google Scholar]
- Ademovic, N.; Oliveira, D.V.; Lourenço, P.B. Seismic evaluation and strengthening of an existing masonry building in Sarajevo, B&H. Buildings 2019, 9, 30. [Google Scholar] [CrossRef]
- Brzev, S.; Begaliev, U. Practical Seismic Design and Construction Manual for Retrofitting Schools in the Kyrgyz Republic; World Bank Group: Washington, DC, USA, 2018; pp. 1–251. Available online: http://documents.worldbank.org/curated/en/505451593451983935/Practical-Seismic-Design-and-Construction-Manual-for-Retrofitting-Schools-in-The-Kyrgyz-Republic (accessed on 15 December 2023).
- Bilgin, H.; Leti, M.; Shehu, R.; Özmen, H.B.; Deringol, A.H.; Ormeni, R. Reflections from the 2019 Durrës earthquakes: An earthquake engineering evaluation for masonry typologies. Buildings 2023, 13, 2227. [Google Scholar] [CrossRef]
- Bidaj, A.; Bilgin, H.; Hysenlliu, M.; Premti, I.; Ormeni, R. Performance of URM structures under earthquake shakings: Validation using a template building structure by the 2019 Albanian earthquakes. Res. Eng. Struct. Mater. 2022, 8, 811–834. [Google Scholar] [CrossRef]
- Shkodrani, N.; Bilgin, H. Seismic performance of existing low-rise URM buildings considering the addition of new stories. Struct. Eng. Mech. 2021, 79, 767–777. [Google Scholar] [CrossRef]
- Shkodrani, N.; Bilgin, H.; Hysenlliu, M. Influence of interventions on the seismic performance of URM buildings designed according to pre-modern codes. J. Res. Eng. Struct. Mater. 2021, 7, 315–330. [Google Scholar] [CrossRef]
- Yılmaz, S.; Tama, Y.S.; Bilgin, H. Seismic performance evaluation of unreinforced masonry school buildings in Turkey. J. Vib. Contr. 2013, 19, 2421–2433. [Google Scholar] [CrossRef]
Station | PGA N-S (cm/s2) | PGA E-W (cm/s2) | PGA UD (cm/s2) | Repi (km) |
---|---|---|---|---|
6 February 2023 04:17 Mw = 7.7 (Pazarcık- Kahmaranmaraş) (Depth = 8.6 km) | ||||
4614 Pazarcık/Kahramanmaraş | 2165.62 | 2178.72 | 1951.68 | 31.42 |
0201 Center/Adıyaman | 474.12 | 879.95 | 318.97 | 120.12 |
6 February 2023 13:24 Mw = 7.6 (Elbistan-Kahramanmaraş) (Depth = 7 km) | ||||
4612 Kahramanmaraş/Göksun | 635.45 | 523.21 | 494.91 | 66.68 |
0213 Tut/Adıyaman | 121.30 | 126.62 | 71.35 | 68.73 |
City | Population | Employment | Number of Affected Buildings | Number of Heavily Damaged + Demolished Residences | Number of Moderately Damaged Residences | Number of Slightly Damaged Residences |
---|---|---|---|---|---|---|
Kahramanmaraş | 1,177,436 | 338,000 | 243,153 | 99,326 | 17,887 | 161,137 |
Adıyaman | 812,580 | 122,000 | 120,496 | 56,256 | 18,715 | 72,729 |
Earthquake Zone (Total) | 14,013,196 | 3,841,000 | 2,618,697 | 518,009 | 131,577 | 1,279,727 |
Total percentage of two cities within the earthquake zone (%) | 14 | 12 | 13.8 | 30 | 28 | 18 |
Damage Grade | Number of Buildings |
---|---|
No damage | 59 |
Grade 1 | 27 |
Grade 2 | 5 |
Grade 3 | 12 |
Grade 4 | 14 |
Grade 5 | 7 |
Limit States | Peak Ground Acceleration (PGA (g)) |
---|---|
Damage Limitation (DL) | 0.127 |
Significant Damage (SD) | 0.201 |
Near Collapse (NC) | 0.299 |
Limit States | Peak Ground Acceleration (PGA (g)) |
---|---|
DL | 0.189 |
SD | 0.323 |
NC | 0.411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işık, E.; Bilgin, H.; Avcil, F.; İzol, R.; Arkan, E.; Büyüksaraç, A.; Harirchian, E.; Hysenlliu, M. Seismic Performances of Masonry Educational Buildings during the 2023 Türkiye (Kahramanmaraş) Earthquakes. GeoHazards 2024, 5, 700-731. https://doi.org/10.3390/geohazards5030036
Işık E, Bilgin H, Avcil F, İzol R, Arkan E, Büyüksaraç A, Harirchian E, Hysenlliu M. Seismic Performances of Masonry Educational Buildings during the 2023 Türkiye (Kahramanmaraş) Earthquakes. GeoHazards. 2024; 5(3):700-731. https://doi.org/10.3390/geohazards5030036
Chicago/Turabian StyleIşık, Ercan, Hüseyin Bilgin, Fatih Avcil, Rabia İzol, Enes Arkan, Aydın Büyüksaraç, Ehsan Harirchian, and Marjo Hysenlliu. 2024. "Seismic Performances of Masonry Educational Buildings during the 2023 Türkiye (Kahramanmaraş) Earthquakes" GeoHazards 5, no. 3: 700-731. https://doi.org/10.3390/geohazards5030036
APA StyleIşık, E., Bilgin, H., Avcil, F., İzol, R., Arkan, E., Büyüksaraç, A., Harirchian, E., & Hysenlliu, M. (2024). Seismic Performances of Masonry Educational Buildings during the 2023 Türkiye (Kahramanmaraş) Earthquakes. GeoHazards, 5(3), 700-731. https://doi.org/10.3390/geohazards5030036