Influence of the 2020 Seismic Hazard Update on Residential Losses in Greater Montreal, Canada
Abstract
:1. Introduction
2. Hazard, Exposure and Fragility Models
2.1. Site Condition Model
2.2. Seismic Hazard Models
2.3. Exposure Model
2.4. Fragility and Loss Models
3. Comparison of Damage and Losses Calculated with SHM5 and SHM6
3.1. Damage Distribution
3.2. Economic Losses
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosset, P.; Chouinard, L.; Nollet, M.J. Consequences on Residential Buildings in Greater Montreal for a Repeat of the 1732 M5.8 Montreal Earthquake. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021. CSCE 2021, online, 26–29 May 2021; Lecture Notes in Civil Engineering. Springer: Singapore, 2023; Volume 240, pp. 667–679. [Google Scholar] [CrossRef]
- Hobbs, T.E.; Journeay, J.M.; Rao, A.S.; Kolaj, M.; Martins, L.; LeSueur, P.; Simionato, M.; Silva, V.; Pagani, M.; Johnson, K.; et al. A national seismic risk model for Canada: Methodology and scientific basis. Earthq. Spectra 2023, 39, 1410–1434. [Google Scholar] [CrossRef]
- Hobbs, T.E.; Van Ulden, J.; Rotheram, D.; Chow, W.; LeSueur, P.; Journeay, J.M.; Ulmi, M.; Ulmi, D.; Fok, A.; Van de Valk, J.; et al. RiskProfiler. Geological Survey of Canada. 2022. Available online: www.RiskProfiler.ca (accessed on 19 September 2023).
- AIR Study of Impact and the Insurance and Economic Cost of a Major Earthquake in British Columbia and Ontario/Quebec. Commissioned by the Insurance Bureau of Canada. 2013. Available online: https://docslib.org/doc/9800294/study-of-impact-and-the-insurance-and-economic-cost-of-a-major-earthquake-in-british-columbia-and-ontario-qu%C3%A9bec (accessed on 20 June 2023).
- Yu, K.; Rosset, P.; Chouinard, L. Seismic Vulnerability Assessment for Montreal. Georisk 2016, 10, 164–178. [Google Scholar] [CrossRef]
- Adams, J.; Allen, T.; Halchuk, S.; Kolaj, M. Canada’s 6th Generation Seismic Hazard Model, as Prepared for the 2020 National Building Code of Canada. In Proceedings of the 12th Canadian Conference on Earthquake Engineering, Vancouver, BC, Canada, 17–20 June 2019; Available online: https://www.caee.ca/12CCEEpdf/192-Mkvp-139.pdf (accessed on 21 October 2023).
- Kolaj, M.; Halchuk, S.; Adams, J.; Allen, T. Sixth Generation Seismic Hazard Model of Canada: Input files to produce values proposed for the 2020 National Building Code of Canada. In Geological Survey of Canada; Open File 8630; Natural Resources Canada: Ottawa, ON, Canada, 2020; 15p. [Google Scholar] [CrossRef]
- Kolaj, M.; Adams, J.; Halchuk, S. The 6th Generation Seismic Hazard Model of Canada. In Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan, 13–18 September 2020; pp. 1–12. Available online: https://publications.gc.ca/collections/collection_2021/rncan-nrcan/m183-2/M183-2-8629-eng.pdf (accessed on 21 October 2023).
- Federal Emergency Management Agency. Hazus Earthquake Model Technical Manual Hazus 5.1; FEMA Publication; Department of Homeland Security and Federal Emergency Management Agency: Washington, DC, USA, 2022. Available online: https://www.fema.gov/sites/default/files/documents/fema_hazus-earthquake-model-technical-manual-5-1.pdf (accessed on 21 October 2023).
- Tantala, M.W.; Nordenson, G.J.P.; Deodatis, G.; Jacob, K. Earthquake loss estimation for the New-York city metropolitan region. Soil Dyn. Earthq. Eng. 2008, 28, 812–835. [Google Scholar] [CrossRef]
- Field, E.H.; Seligson, H.A.; Gupta, N.; Gupta, V.; Jordan, T.H.; Campbell, K.W. Loss estimates for a Puente Hills blind-thrust earthquake in Los Angeles, California. Earthq. Spectra 2005, 21, 329–338. [Google Scholar] [CrossRef]
- Moffatt, S.F.; Cova, T.J. Parcel-scale earthquake loss estimation with HAZUS: A case study in salt Lake County, Utah. Cartogr. Geogr. Inf. Sci. 2010, 37, 17–29. [Google Scholar] [CrossRef]
- Chen, R.; Jaiswal, K.S.; Bausch, D.; Seligson, H.; Wills, C.J. Annualized earthquake loss estimates for California and their sensitivity to site amplification. Seismol. Res. Lett. 2016, 87, 1363–1372. [Google Scholar] [CrossRef]
- Kircher, C.A.; Whitman, R.V.; William, T. HAZUS Earthquake Loss Estimation Methods. Natural Hazards Review 2006, 7, 45–59. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency. Hazus®99 Estimated Annualized Earthquake Losses for the United States; FEMA 366; Federal Emergency Management Agency Mitigation Directorate: Washington, DC, USA, 2002.
- Federal Emergency Management Agency. Hazus®MH Estimated Annualized Earthquake Losses for the United States; FEMA 366; Federal Emergency Management Agency: Washington, DC, USA, 2008.
- Federal Emergency Management Agency. FEMA-P366 Estimated Annualized Earthquake Losses for the United States; FEMA report; Federal Emergency Management Agency: Washington, DC, USA, 2017.
- Bendito, A.; Rozelle, J.; Bausch, D. Assessing Potential Earthquake Loss in Mérida State, Venezuela Using Hazus. Int. J. Disaster Risk Sci. 2014, 5, 176–191. [Google Scholar] [CrossRef]
- Felsenstein, D.; Elbaum, E.; Levi, T.; Calvo, R. Post-processing HAZUS earthquake damage and loss assessments for individual buildings. Nat. Hazards 2021, 105, 21–45. [Google Scholar] [CrossRef]
- Levi, T.; Bausch, D.; Katz, O.; Rozelle, J.; Salamon, A. Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes. Nat. Hazards 2015, 75, 365–388. [Google Scholar] [CrossRef]
- Ansal, A.; Akinci, A.; Cultrera, G.; Erdik, M.; Pessina, V.; Tönük, G.; Ameri, G. Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey). Soil Dyn. Earthq. Eng. 2009, 29, 699–709. [Google Scholar] [CrossRef]
- Firuzi, E.; Ansari, A.; Amini Hosseini, K.; Rashidabadi, M. Probabilistic earthquake loss model for residential buildings in Tehran, Iran to quantify annualized earthquake loss. Bull. Earthq. Eng. 2019, 17, 2383–2406. [Google Scholar] [CrossRef]
- Ulmi, M.; Wagner, C.L.; Wojtarowicz, M.; Bancroft, J.L. Hazus-MH 2.1 Canada, User and Technical Manual: Earthquake Module; Natural Resources Canada: Ottawa, ON, Canada, 2014. [Google Scholar]
- Ploeger, S.K.; Atkinson, G.M.; Samson, C. Applying the HAZUS-MH software tool to assess seismic risk in downtown Ottawa, Canada. Nat. Hazards 2010, 53, 1–20. [Google Scholar] [CrossRef]
- Rosset, P.; Bour-Belvaux, M.; Chouinard, L. Microzonation models for Montreal with respect to Vs30. Bull. Earthq. Eng. 2015, 13, 2225–2239. [Google Scholar] [CrossRef]
- Rosset, P.; Takahashi, A.; Chouinard, L. Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources. Geosciences 2023, 13, 256. [Google Scholar] [CrossRef]
- Rosset, P.; Bent, A.; Halchuk, S.; Chouinard, L. Positive correlation of DYFI intensity data and microzonation in site classes for Ottawa, Quebec City and the metropolitan area of Montreal. Seismol. Res. Lett. 2022, 93, 3468–3480. [Google Scholar] [CrossRef]
- National Building Code of Canada; National Research Council of Canada; Canadian Commission on Building and Fire Codes: Ottawa, ON, Canada, 2015; Volume 1, 708p; Volume 2, 696p.
- Halchuk, S.C.; Adams, J.E.; Kolaj, M.; Allen, T.I. Deaggregation of NBCC 2015 Seismic Hazard for Selected Canadian Cities. In Proceedings of the Extended Abstract for the 12th Canadian Conference on Earthquake Engineering, Vancouver, BC, Canada, 17–20 June 2019; 9p. Available online: https://seismescanada.rncan.gc.ca/hazard-alea/2019_12CCEE/12CCEE_Halchuk_etal_Deaggregation_192-DMsa-149.pdf (accessed on 21 October 2023).
- Allen, T.I.; Halchuk, S.; Adams, J.; Rogers, G.C. Canada’s 5th Generation Seismic Hazard Model: 2015 Hazard Values and Future Updates. In Proceedings of the 6th World Conference on Earthquake Engineering, Santiago Chile, 9–13 January 2017; 12p. Available online: http://www.wcee.nicee.org/wcee/article/16WCEE/WCEE2017-3494.pdf (accessed on 21 October 2023).
- Allen, T.I.; Halchuk, S.; Adams, J.; Weatherill, G.A. Forensic PSHA: Benchmarking Canada’s Fifth Generation seismic hazard model using the OpenQuake-engine. Earthq. Spectra 2020, 36 (Suppl. 1), 91–111. [Google Scholar] [CrossRef]
- Long, X. Estimation of the Annualized Earthquake Loss (AEL) for Residential Buildings in the Greater Montreal area using HAZUS and OpenQuake. Master’ Thesis, McGill University, Montreal, QC, Canada, 2023. 123p. Available online: https://escholarship.mcgill.ca/downloads/z029pb041?locale=en (accessed on 10 October 2023).
- Rosset, P.; Nollet, M.-J.; Chouinard, L. Annualized Residential Earthquake Losses in the Greater Montreal Area. In Proceedings of the Canadian Conference Earthquake Engineering, Vancouver, BC, Canada, 25–30 June 2023; Paper 228. Available online: https://az659834.vo.msecnd.net/eventsaircancprod/production-venuewest-public/8963cb098a3c4b7f9bb28565dfb34aa3 (accessed on 13 October 2023).
Value (in Million CAD) | Occupancy Types | Total | ||
---|---|---|---|---|
RES1 (Single Family Houses) | RES2 (Mobile House) | RES3A-3F (Multiplex) | ||
Building | 125,941 | 427 | 70,136 | 196,504 |
Content | 67,222 | 241 | 31,567 | 99,030 |
Total | 193,163 | 668 | 101,703 | 295,534 |
Value (in Million CAD) | Construction Types | Total | ||||
---|---|---|---|---|---|---|
Wood | Steel | Concrete | Masonry | Mobile House | ||
Building | 169,164 | 1286 | 11,008 | 13,996 | 1050 | 196,504 |
Content | 86,457 | 522 | 5427 | 6130 | 495 | 99,030 |
Total | 255,621 | 1808 | 16,435 | 20,126 | 1545 | 295,534 |
Hazard Model | Residential Building Losses (in Million CAD) | |||
---|---|---|---|---|
Structural | Non-Structural | Contents | Total | |
SHM5 | 298.0 | 3507.6 | 1924.9 | 5730.5 |
SHM6 | 667.3 | 5386.2 | 2695.0 | 8748.5 |
Variation | +124% | +54% | +40% | +53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosset, P.; Long, X.; Chouinard, L. Influence of the 2020 Seismic Hazard Update on Residential Losses in Greater Montreal, Canada. GeoHazards 2023, 4, 406-420. https://doi.org/10.3390/geohazards4040023
Rosset P, Long X, Chouinard L. Influence of the 2020 Seismic Hazard Update on Residential Losses in Greater Montreal, Canada. GeoHazards. 2023; 4(4):406-420. https://doi.org/10.3390/geohazards4040023
Chicago/Turabian StyleRosset, Philippe, Xuejiao Long, and Luc Chouinard. 2023. "Influence of the 2020 Seismic Hazard Update on Residential Losses in Greater Montreal, Canada" GeoHazards 4, no. 4: 406-420. https://doi.org/10.3390/geohazards4040023
APA StyleRosset, P., Long, X., & Chouinard, L. (2023). Influence of the 2020 Seismic Hazard Update on Residential Losses in Greater Montreal, Canada. GeoHazards, 4(4), 406-420. https://doi.org/10.3390/geohazards4040023