Kerlinic Acid Preserves the Furan Moiety in Regio- and Diastereoselective Oxidations Giving Beta-Lactones and Oxirane Derivatives
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation of Kerlinic Acid (1)
2.4. Kerlinic Acid (1)
2.5. Kerlinic Acid Acetate (1a)
2.6. Kerlinic Acid Benzoate (1b)
2.7. Kerlinic Acid Methyl Ester (1c)
2.8. General Procedure for the Regioselective Oxidation with MCPBA
2.9. Salviaolide (2)
2.10. Salviaolide Acetate (2a)
2.11. Salviaolide Benzoate (2b)
2.12. Kerlinic Acid Methyl Ester Epoxide (3)
2.13. Kernolide (4)
2.14. Kernolide Epoxide (5)
2.15. Conformational Analysis
2.16. Single-Crystal X-Ray Diffraction Analysis of 3
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, H.; Vu, M.D.; Liu, X.-W. Recent advances in reagent-controlled stereoselective/stereospecific glycosylation. Carbohydr. Res. 2018, 473, 7281. [Google Scholar] [CrossRef] [PubMed]
- Satoh, H.; Manabe, S. Design of chemical glycosyl donors: Does changing ring conformation influence selectivity/reactivity? Chem. Soc. Rev. 2013, 42, 4297–4309. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, G.; Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 2011, 50, 2450–2494. [Google Scholar] [CrossRef]
- Sawano, T.; Yamamoto, H. Regio- and enantioselective substrate-directed epoxidation. Eur. J. Org. Chem. 2020, 2020, 2369–2378. [Google Scholar] [CrossRef]
- Zheng, C.H.M.; Nadeau, B.E.; Trajano, H.L.; Schafer, L.L. Exploiting natural complexity for substrate controlled regioselectivity and stereoselectivity in tantalum catalysed hydroaminoalkylation. Green Chem. 2024, 26, 9729–9736. [Google Scholar] [CrossRef]
- Hoveyda, A.H.; Evans, D.A.; Fu, G.C. Substrate-directable chemical reactions. Chem. Rev. 1993, 93, 1307–1370. [Google Scholar] [CrossRef]
- Breit, B.; Schmidt, Y. Directed reactions of organocopper reagents. Chem. Rev. 2008, 108, 2928–2951. [Google Scholar] [CrossRef]
- Bhadra, S.; Yamamoto, H. Substrate directed asymmetric reactions. Chem. Rev. 2018, 118, 3391–3446. [Google Scholar] [CrossRef]
- Sawano, T.; Yamamoto, H. Substrate directed catalytic selective chemical reactions. J. Org. Chem. 2018, 83, 4889–4904. [Google Scholar] [CrossRef]
- Brill, Z.G.; Condakes, M.L.; Ting, C.P.; Maimone, T.J. Navigating the chiral pool in the total synthesis of complex terpene natural products. Chem. Rev. 2017, 117, 11753–11795. [Google Scholar] [CrossRef] [PubMed]
- Stout, C.N.; Renata, H. Reinvigorating the chiral pool: Chemoenzymatic approaches to complex peptides and terpenoids. Acc. Chem. Res. 2021, 54, 1143–1156. [Google Scholar] [CrossRef]
- Tobal, I.E.; Roncero, A.M.; Moro, R.F.; Díez, D.; Marcos, I.S. Diterpene acids as starting materials for the synthesis of biologically active compounds. In Chiral Building Blocks in Asymmetric Synthesis: Synthesis and Applications; Wojaczyńska, E., Wojaczyński, J., Eds.; Wiley-VCH: Weinheim, Germany, 2022; pp. 267–291. [Google Scholar] [CrossRef]
- de Sousa, I.P.; Sousa-Teixeira, M.V.; Jacometti-Cardoso-Furtado, N.A. An overview of biotransformation and toxicity of diterpenes. Molecules 2018, 23, 1387. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Javed, S.A.; Bratty, M.A.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, H. Total syntheses of clerodane diterpenoids—A review. Nat. Prod. Commun. 2019, 14, 1–17. [Google Scholar] [CrossRef]
- Acquaviva, R.; Malfa, G.A.; Loizzo, M.R.; Xiao, J.; Bianchi, S.; Tundis, R. Advances on natural abietane, labdane and clerodane diterpenes as anti-cancer agents: Sources and mechanisms of action. Molecules 2022, 27, 4791. [Google Scholar] [CrossRef]
- Maleki, S.; Akaberi, T.; Emami, S.A.; Akaberi, M. Diterpenes of Scutellaria spp.: Phytochemistry and pharmacology. Phytochemistry 2022, 201, 113285. [Google Scholar] [CrossRef]
- Rodríguez-Hahn, L.; García, A.; Esquivel, B.; Cárdenas, J. Structure of kerlinic acid from Salvia keerlii. Chemical correlation with melissodoric Acid. Can. J. Chem. 1987, 65, 2687–2690. [Google Scholar] [CrossRef]
- Bao, J.; Tian, H.; Yang, P.; Deng, J.; Gui, J. Modular synthesis of functionalized butenolides by oxidative furan fragmentation. Eur. J. Org. Chem. 2020, 2020, 339–347. [Google Scholar] [CrossRef]
- Ide, R.M.; Costa, M.; Imamura, P.M. Synthesis of ent-16-hydroxycleroda-4(18),13-dien-15,16-olide and ent-cleroda-4(18),13-dien-15,16-olide from (+)-hardwickiic acid. J. Braz. Chem. Soc. 2006, 17, 417–420. [Google Scholar] [CrossRef]
- Choudhary, M.I.; Mohammad, M.Y.; Musharraf, S.G.; Onajobi, I.; Mohammad, A.; Anis, I.; Shah, M.R.; Atta-ur-Rahman. Biotransformation of clerodane diterpenoids by Rhizopus stolonifer and antibacterial activity of resulting metabolites. Phytochemistry 2013, 90, 56–61. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, X.; Wang, S.; Wang, L. Atmospheric oxidation of furan and methyl-substituted furans initiated by hydroxyl radicals. J. Phys. Chem. A 2017, 121, 9306–9319. [Google Scholar] [CrossRef]
- Badovskaya, L.A.; Povarova, L.V. Oxidation of furans (Review). Chem. Heterocycl. Compd. 2009, 45, 1023–1034. [Google Scholar] [CrossRef]
- Talavera-Alemán, A.; Gómez-Hurtado, M.A.; del Río, R.E.; Marrot, J.; Thomassigny, C.; Greck, C. Epoxy lactones by photooxidative rearrangement of 6β-acetoxyvouacapane. Tetrahedron Lett. 2017, 58, 2901–2903. [Google Scholar] [CrossRef]
- Gui, J.; Deng, J. Alkyne-forming furan fragmentation: A general method to convert furans into alkynoic acids. Synlett 2019, 30, 642–646. [Google Scholar] [CrossRef]
- Imamura, P.M.; Costa, M. Synthesis of 16,18-dihydroxycleroda-3,13Z-dien-16,15-olide, (+)-16-hydroxycleroda-3,13Z-dien-16,15-olide, and (−)-hydroxyhalima-5(10),13-dien-16,15-olide from (+)-hardwickiic acid. J. Nat. Prod. 2000, 63, 1623–1625. [Google Scholar] [CrossRef]
- Iqbal, J.; Husain, A.; Gupta, A. Sensitized photooxygenation of Tinosponone, a clerodane diterpene from Tinospora cordifolia. Acta Chim. Slov. 2005, 52, 455–459. [Google Scholar]
- Uchuskin, M.G.; Trushkov, I.V.; Makarov, A.S. Furan oxidation reactions in the total synthesis of natural products. Synthesis 2018, 50, 3059–3086. [Google Scholar] [CrossRef]
- Podgorski, M.N.; Keto, A.B.; Coleman, T.; Bruning, J.B.; De Voss, J.J.; Krenske, E.H.; Bell, S.G. The oxidation of oxygen and sulfur-containing heterocycles by cytochrome P450 enzymes. Chem. Eur. J. 2023, 29, e202301371. [Google Scholar] [CrossRef]
- Zoumpouli, G.A.; Zhang, Z.; Wenk, J.; Prasse, C. Aqueous ozonation of furans: Kinetics and transformation mechanisms leading to the formation of α,β-unsaturated dicarbonyl compounds. Water Res. 2021, 203, 117487. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Wang, L. Gas-phase ozonolysis of furans, methylfurans, and dimethylfurans in the atmosphere. Phys. Chem. Chem. Phys. 2018, 20, 24735–24743. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yang, C.; Zhou, Z.; Haeffner, F.; Dersjant, A.; Dulock, N.; Dong, Q.; He, D.; Jin, J.; Zhao, Y.; et al. Electrochemically triggered chain reactions for the conversion of furan derivatives. Angew. Chem. Int. Ed. 2021, 60, 7534–7539. [Google Scholar] [CrossRef]
- Martínez-Casares, R.M.; Hernández-Vázquez, L.; Mandujano, A.; Sánchez-Pérez, L.; Pérez-Gutiérrez, S.; Pérez-Ramos, J. Anti-inflammatory and cytotoxic activities of clerodane-type diterpenes. Molecules 2023, 28, 4744. [Google Scholar] [CrossRef]
- Li, R.; Morris-Natschkeb, S.L.; Lee, K.H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 2016, 33, 1166–1226. [Google Scholar] [CrossRef]
- Iroegbu, A.O.; Sadiku, E.R.; Ray, S.S.; Hamam, Y. Sustainable chemicals: A brief survey of the furans. Chem. Afr. 2020, 3, 481–496. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Akih-Kumgeh, B. Recent trends in the production, combustion and modeling of furan-based fuels. Energies 2018, 11, 512. [Google Scholar] [CrossRef]
- Saeid, H.; Al-sayed, H.; Bader, M. A review on biological and medicinal significance of furan. AJMAS 2023, 6, 44–58. [Google Scholar] [CrossRef]
- Batool, Z.; Xu, D.; Zhang, X.; Li, X.; Li, Y.; Chen, Z.; Li, B.; Li, L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit. Rev. Food Sci. Nutr. 2020, 61, 395–406. [Google Scholar] [CrossRef]
- Kang, Y.B.; Gade, L.H. Triflic acid catalyzed oxidative lactonization and diacetoxylation of alkenes using peroxyacids as oxidants. J. Org. Chem. 2012, 77, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Sawano, T.; Yamamoto, H. Enantioselective epoxidation of β,γ-unsaturated carboxylic acids by a cooperative binuclear titanium complex. ACS Catal. 2019, 9, 3384–3388. [Google Scholar] [CrossRef]
- Besse, P.; Veschambre, H. Chemical and biological synthesis of chiral epoxides. Tetrahedron 1994, 50, 8885–8927. [Google Scholar] [CrossRef]
- Katsuki, T.; Martin, V.S. Asymmetric epoxidation of allylic alcohols: The Katsuki-Sharpless epoxidation reaction. In Organic Reactions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 1–299. [Google Scholar] [CrossRef]
- Adam, W.; Zhang, A. Chiral-auxiliary-controlled diastereoselective epoxidations. Synlett 2005, 7, 1047–1072. [Google Scholar] [CrossRef]
- Xia, Q.H.; Ge, H.Q.; Ye, C.P.; Liu, Z.M.; Su, K.X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem. Rev. 2005, 105, 1603–1662. [Google Scholar] [CrossRef] [PubMed]
- Wong, O.A.; Shi, Y. Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. Chem. Rev. 2008, 108, 3958–3987. [Google Scholar] [CrossRef]
- Wang, C.; Yamamoto, H. Asymmetric epoxidation using hydrogen peroxide as oxidant. Chem. Asian J. 2015, 10, 2056–2068. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Jiang, D. β-Lactone derivatives and their anticancer activities: A short review. Curr. Top. Med. Chem. 2021, 21, 1645–1656. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, P. Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorg. Chem. 2022, 125, 105862. [Google Scholar] [CrossRef]
- da Silva, A.R.; dos Santos, D.A.; Paixão, M.W.; Corrêa, A.G. Stereoselective multicomponent reactions in the synthesis or transformations of epoxides and aziridines. Molecules 2019, 24, 630. [Google Scholar] [CrossRef]
- Meninno, S.; Lattanzi, A. Epoxides: Small rings to play with under asymmetric organocatalysis. ACS Org. Inorg. Au 2022, 2, 289–305. [Google Scholar] [CrossRef]
- Sartori, S.K.; Nogueira-Diaz, M.A.; Diaz-Muñoz, G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 2021, 84, 132001. [Google Scholar] [CrossRef]
- Talavera-Alemán, A.; Gómez-Hurtado, M.A.; Rodríguez-García, G.; Ochoa-Zarzosa, A.; Thomassigny, C.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; del Río, R.E. Preparation and cytotoxic evaluation of vouacapane oxidation products. Heterocycles 2020, 100, 207–224. [Google Scholar] [CrossRef]
- Villagómez-Guzmán, A.K.; Hernández-Padilla, L.; Rodríguez-García, G.; Cortés-García, C.J.; Campos-García, J.; del Río, R.E.; Thomassigny, C.; Gómez-Hurtado, M.A. High stereoselective semisynthesis of kauroxane and beyeroxane compounds. J. Mol. Struct. 2024, 1306, 137904. [Google Scholar] [CrossRef]
- Greenlee, A.J.; Wendell, C.I.; Cencer, M.M.; Laffoon, S.D.; Moore, J.S. Kinetic and thermodynamic control in dynamic covalent synthesis. Trends Chem. 2020, 2, 1043–1051. [Google Scholar] [CrossRef]
- Davies, S.G.; Whitham, G.H. Stereoselectivity in the epoxidation of βγ-unsaturated carboxylic acids. J. Chem. Soc. Perkin Trans. 1 1977, 572–575. [Google Scholar] [CrossRef]
- Ikegami, S.; Katsuki, T.; Yamaguchi, M. Asymmetric epoxidation of homoallylic alcohols using zirconium tetrapropoxide, dicyclohexyltartramide, and t-butyl hydroperoxide system. Chem. Lett. 1987, 16, 83–84. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Yamamoto, H. Vanadium-catalyzed enantioselective desymmetrization of meso secondary allylic alcohols and homoallylic alcohols. Angew. Chem. Int. Ed. Engl. 2008, 47, 7520–7522. [Google Scholar] [CrossRef]
- Kamata, K.; Hirano, T.; Kuzuya, S.; Mizuno, N. Hydrogen-bond-assisted epoxidation of homoallylic and allylic alcohols with hydrogen peroxide catalyzed by selenium-containing dinuclear peroxotungstate. J. Am. Chem. Soc. 2009, 131, 6997–7004. [Google Scholar] [CrossRef]
- McCombs, J.R.; Michel, B.W.; Sigman, M.S. Catalyst-controlled Wacker-type oxidation of homoallylic alcohols in the absence of protecting groups. J. Org. Chem. 2011, 76, 3609–3613. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yamamoto, H. Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide. J. Am. Chem. Soc. 2014, 136, 1222–1225. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Su, S.; Wang, C. Molybdenum-catalyzed hydroxyl-directed anti-dihydroxylation of allylic and homoallylic alcohols. ACS Catal. 2018, 8, 6820–6826. [Google Scholar] [CrossRef]
- Arreaga-González, H.M.; Pardo-Novoa, J.C.; del Río, R.E.; Rodríguez-García, G.; Torres-Valencia, J.M.; Manríquez-Torres, J.J.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; Gómez-Hurtado, M.A. Methodology for the absolute configuration determination of epoxythymols using the constituents of Ageratina glabrata. J. Nat. Prod. 2017, 81, 63–71. [Google Scholar] [CrossRef]
- Jouanneau, M.; Vellalath, S.; Kang, G.; Romo, D. Natural product derivatization with β-lactones, β-lactams and epoxides toward ‘infinite’ binders. Tetrahedron 2019, 75, 3348–3354. [Google Scholar] [CrossRef]
- Branco, P.D.; Yablonski, G.; Marin, G.B.; Constales, D. The switching point between kinetic and thermodynamic control. Comput. Chem. Eng. 2019, 125, 606–611. [Google Scholar] [CrossRef]
- Lin, K.C. Understanding product optimization: Kinetic versus thermodynamic control. J. Chem. Educ. 1988, 65, 857. [Google Scholar] [CrossRef]
- Karplus, M. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 1963, 85, 2870–2871. [Google Scholar] [CrossRef]
- Penchev, P.M.; Coll, J.; Nicolova, K.; Iliev, I.N.; Bozov, P.I. Minor diterpenoids from Scutellaria galericulata. Phytochem. Lett. 2016, 15, 103–107. [Google Scholar] [CrossRef]
- Rodriguez-Hernandez, D.; Oliveros-Bastidas, A.; Alonso-Amelot, M.E.; Calcagno-Pissarelli, M.P. Two new labdane diterpenoids from the foliar exudates of Blakiella bartsiifolia. Phytochem. Lett. 2017, 20, 269–273. [Google Scholar] [CrossRef]
- Bukowska, A.; Bukowski, W. Reactivity of some carboxylic acids in reactions with some epoxides in the presence chromium (III) ethanoate. Org. Proc. Res. Dev. 2002, 6, 234–237. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Z.; Chang, W.; Zhao, W.; Wang, H.; Chen, H.; Dai, H.; Lv, F. New azaphilones from the marine-derived fungus Penicillium sclerotiorum E23Y-1A with their anti-inflammatory and antitumor activities. Mar. Drugs 2023, 21, 75. [Google Scholar] [CrossRef]
- Fu, Y.-Y.; Hu, K.; Hou, S.-Y.; Yan, B.-C.; Li, X.-N.; Yang, X.-Z.; Sun, H.-D.; Puno, P.-T. 8,14-seco-ent-Kaurane diterpenoids from Isodon glutinosus: Enol-enol tautomerism and antitumor activity. Org. Chem. Front. 2025, 12, 4247–4254. [Google Scholar] [CrossRef]
- Bedolla-García, B.Y.; Zamudio-Ruiz, S.; Cornejo-Tenorio, G. Flora del Bajío y de Regiones Adyacentes, Fascículo 241, Familia Lamiaceae II (Género Salvia); Instituto de Ecología, A.C. Centro Regional del Bajío: Pátzcuaro, Mexico, 2024. [Google Scholar] [CrossRef]
- Olvera-Mendoza, E.I.; Bedolla-García, B.Y.; Lara-Cabrera, S.I. Taxonomic revision of Salvia subgenus Calosphace section Scorodoniae (Lamiaceae), endemic to Mexico. Acta Bot. Mex. 2017, 118, 7–39. [Google Scholar] [CrossRef]
H | 1b | 2 | 2a | 2b | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|
1 | 1.66 (m) | 1.76 (m) | 1.57 (m) | 1.65 (m) | 2.00 (m) 1.84 (m) | 1.75 (m) 1.65 (m) | 1.81 (m) 1.59 (m) |
2 | 2.34 (m) 1.74 (m) | 1.80 (m) 1.62 (m) | 1.77 (m) | 1.80 (m) | 1.86 (m) 1.35 (m) | 2.28 (m) | 1.82 (m) 1.51 (m) |
3 | 5.63 (brs) | 4.00 (brt; 3.0) | 3.98 (dd; 3.6, 2.2) | 3.99 (dd; 3.6, 2.7) | 2.93 (brd; 5.0) | 5.66 (brs) | 3.06 (brd; 4.8) |
6 | 5.06 (dd; 11.6, 4.6) | 3.72 (dd; 9.3, 7.2) | 4.87 (dd; 11.0, 5.5) | 5.11 (dd; 10.8, 5.4) | 3.68 (m) | 4.90 (dd; 9.0, 3.2) | 4.93 (dd; 9.1, 2.8) |
7 | 2.42 (m) 1.91 (m) | 1.55 (m) | 1.80 (m) | 2.00 (m) 1.87 (m) | 1.57 (m) 1.43 (m) | 2.31 (m) 1.94 (m) | 2.33 (m) 1.92 (m) |
8 | 1.94 (m) | 1.63 (m) | 1.70 (m) | 1.79 (m) | 1.71 (m) | 1.79 (m) | 1.76 (m) |
10 | 1.78 (m) | 2.20 (m) | 2.33 (m) | 2.38 (m) | 1.60 (m) | 1.77 (m) | 1.98 (m) |
11 | 2.28 (m) 2.10 (m) | 2.10 (m) 1.80 (m) | 2.15 (m) 1.80 (m) | 2.17 (m) 1.83 (m) | 2.10 (m) 1.93 (m) | 2.30 (m) | 2.13 (m) 1.93 (m) |
12 | 2.33 (m) 1.75 (m) | 2.23 (m) | 2.25 (m) | 2.32 (m) | 2.28 (m) 2.08 (m) | 2.01 (m) 1.80 (m) | 1.84 (m) 1.51 (m) |
14 | 6.27 (dd; 1.9, 0.9) | 6.24 (dd; 1.8, 0.9) | 6.25 (dd; 1.7, 0.9) | 6.27 (dd; 1.7, 0.9) | 6.22 (brs) | 6.26 (brs) | 6.24 (brs) |
15 | 7.36 (brt; 1.7) | 7.34 (brt; 1.7) | 7.35 (brt; 1.7) | 7.36 (brt; 1.7) | 7.33 (brt; 1.7) | 7.36 (brt; 1.7) | 7.35 (brt; 1.7) |
16 | 7.23 (brs) | 7.19 (brs) | 7.20 (td; 1.7, 0.9) | 7.22 (brs) | 7.17 (brs) | 7.20 (brs) | 7.20 (brs) |
17 | 0.90 (d; 6.5) | 0.90 (d; 6.7) | 0.88 (d; 6.3) | 0.92 (d; 6.3) | 0.82 (d; 6.7) | 0.91 (d; 6.9) | 0.88 (d; 6.7) |
18 | 1.67 (s) | 1.83 (s) | 1.57 (s) | 1.56 (s) | 1.47 (s) | 1.82 (s) | 1.45 (s) |
20 | 0.85 (s) | 0.95 (s) | 0.97 (s) | 1.03 (s) | 0.56 (s) | 0.90 (s) | 0.86 (s) |
3′, 7′ | 8.08 (d; 7.4) | 8.05 (d; 7.4) | |||||
4′, 6′ | 7.41 (t; 7.4) | 7.46 (t; 7.4) | |||||
5′ | 7.54 (t; 7.4) | 7.58 (t; 7.4) | |||||
OH-6 | 3.12 (d; 12.0) | ||||||
OAc | 2.10 (s) | ||||||
OMe | 3.77 (s) |
Position | 1b | 2 | 2a | 2b | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|
1 | 38.6 | 38.1 | 36.5 | 36.5 | 38.5 | 37.8 | 37.7 |
2 | 17.8 | 16.9 | 16.7 | 16.7 | 16.2 | 17.5 | 17.5 |
3 | 128.1 | 73.2 | 73.0 | 73.1 | 63.0 | 127.9 | 60.7 |
4 | 135.9 | 80.8 | 80.0 | 80.1 | 63.4 | 131.1 | 59.7 |
5 | 53.3 | 66.8 | 64.4 | 64.5 | 54.0 | 62.3 | 62.8 |
6 | 77.0 | 69.8 | 71.9 | 72.2 | 73.9 | 72.7 | 72.0 |
7 | 33.9 | 36.6 | 33.0 | 33.0 | 38.3 | 34.1 | 33.8 |
8 | 34.9 | 34.5 | 33.8 | 33.9 | 35.1 | 33.9 | 33.6 |
9 | 38.8 | 38.8 | 38.7 | 38.7 | 38.1 | 37.6 | 37.3 |
10 | 48.5 | 36.8 | 37.1 | 37.1 | 42.1 | 44.8 | 38.7 |
11 | 26.5 | 24.0 | 24.1 | 24.0 | 23.1 | 26.8 | 23.3 |
12 | 17.9 | 18.1 | 17.8 | 17.9 | 17.6 | 18.8 | 17.6 |
13 | 125.2 | 125.2 | 125.0 | 125.0 | 125.2 | 125.1 | 125.0 |
14 | 111.0 | 111.0 | 110.9 | 110.9 | 111.0 | 110.9 | 110.9 |
15 | 143.0 | 143.0 | 142.8 | 142.9 | 142.9 | 143.0 | 143.0 |
16 | 138.6 | 138.6 | 138.5 | 138.5 | 138.5 | 138.6 | 138.6 |
17 | 15.6 | 15.4 | 15.1 | 15.2 | 15.7 | 16.3 | 16.0 |
18 | 22.7 | 17.8 | 18.5 | 18.4 | 22.8 | 18.4 | 18.0 |
19 | 179.0 | 172.1 | 170.0 | 170.6 | 176.3 | 174.7 | 174.2 |
20 | 16.1 | 15.9 | 15.7 | 15.8 | 15.5 | 15.8 | 15.6 |
1′ | 166.0 | 165.2 | |||||
2′ | 130.7 | 129.6 | |||||
3′, 7′ | 129.9 | 129.8 | |||||
4′, 6′ | 128.5 | 128.6 | |||||
5′ | 133.2 | 133.5 | |||||
OAc | 170.5 21.6 | ||||||
OMe | 51.9 |
Entry | Temperature (°C) | Time (h) | Yield (%) |
---|---|---|---|
1 a | 25 | 1 | |
2 b | 25 | 1 | 4 |
3 b | −3 | 4.5 | 24 |
4 b | −3 | 21 | 27 |
5 b | −50 | 0.3 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Guzmán, E.E.; Oliveros-Ortiz, A.J.; Talavera-Alemán, A.; Calderón-Oropeza, M.A.; Rodríguez-García, G.; Bedolla-García, B.Y.; Gómez-Hurtado, M.A.; Cerda-García-Rojas, C.M.; Marrot, J.; Thomassigny, C.; et al. Kerlinic Acid Preserves the Furan Moiety in Regio- and Diastereoselective Oxidations Giving Beta-Lactones and Oxirane Derivatives. Reactions 2025, 6, 47. https://doi.org/10.3390/reactions6030047
Soto-Guzmán EE, Oliveros-Ortiz AJ, Talavera-Alemán A, Calderón-Oropeza MA, Rodríguez-García G, Bedolla-García BY, Gómez-Hurtado MA, Cerda-García-Rojas CM, Marrot J, Thomassigny C, et al. Kerlinic Acid Preserves the Furan Moiety in Regio- and Diastereoselective Oxidations Giving Beta-Lactones and Oxirane Derivatives. Reactions. 2025; 6(3):47. https://doi.org/10.3390/reactions6030047
Chicago/Turabian StyleSoto-Guzmán, Eva E., Antonio J. Oliveros-Ortiz, Armando Talavera-Alemán, Mónica A. Calderón-Oropeza, Gabriela Rodríguez-García, Brenda Y. Bedolla-García, Mario A. Gómez-Hurtado, Carlos M. Cerda-García-Rojas, Jérôme Marrot, Christine Thomassigny, and et al. 2025. "Kerlinic Acid Preserves the Furan Moiety in Regio- and Diastereoselective Oxidations Giving Beta-Lactones and Oxirane Derivatives" Reactions 6, no. 3: 47. https://doi.org/10.3390/reactions6030047
APA StyleSoto-Guzmán, E. E., Oliveros-Ortiz, A. J., Talavera-Alemán, A., Calderón-Oropeza, M. A., Rodríguez-García, G., Bedolla-García, B. Y., Gómez-Hurtado, M. A., Cerda-García-Rojas, C. M., Marrot, J., Thomassigny, C., & Río, R. E. d. (2025). Kerlinic Acid Preserves the Furan Moiety in Regio- and Diastereoselective Oxidations Giving Beta-Lactones and Oxirane Derivatives. Reactions, 6(3), 47. https://doi.org/10.3390/reactions6030047