Study on the Anti-Photocorrosion Mechanism of Novel Self-Assembled Spherical Cu2O/FePO4 Z-Scheme Heterojunctions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagent
2.2. Synthesis of the Samples
2.2.1. Synthesis of the Raw Cu2O
2.2.2. Synthesis of the Cu2O/FePO4 Composite
2.3. Characterization Techniques
2.4. Photocatalytic Degradation Experiments
3. Results and Discussion
3.1. Characterizations
3.2. Photocatalytic Mechanism and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cu2O/FePO4 |
MB | methylene blue |
CR | Congo red |
TC | tetracycline |
References
- Kou, T.; Wang, Y.; Zhang, C.; Sun, J.; Zhang, Z. Adsorption behavior of methyl orange onto nanoporous core–shell Cu@Cu2O nanocomposite. Chem. Eng. J. 2013, 223, 76–83. [Google Scholar] [CrossRef]
- Jiang, D.; Xue, J.; Wu, L.; Zhou, W.; Zhang, Y.; Li, X. Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes: Effects of CuO morphology. Appl. Catal. B Environ. 2017, 211, 199–204. [Google Scholar] [CrossRef]
- Huang, C.; Long, Z.; Miyauchi, M.; Qiu, X. A facile one-pot synthesis of Cu–Cu2O concave cube hybrid architectures. CrystEngComm 2014, 16, 4967–4972. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Liao, B.; Gao, J.; Weng, P.; He, L.; Zhang, Y.; Liu, Q.; Zhou, Z. Semiconductor Effect from Pd(II) Porphyrin Metal to Its Ligand in Photocatalytic N-Dealkylation. ChemSusChem 2024, 18, e202401381. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-J.; Li, C.-L.; Zhao, M.; Zheng, Z.; Wei, L.-F.; Chen, F.-H.; Li, X.-L. Photocatalytic degradation of butyric acid over Cu2O/Bi2WO6 composites for simultaneous production of alkanes and hydrogen gas under UV irradiation. Int. J. Hydrogen Energy 2017, 42, 7917–7929. [Google Scholar] [CrossRef]
- Zhang, F.; Dong, G.; Wang, M.; Zeng, Y.; Wang, C. Efficient removal of methyl orange using Cu2O as a dual function catalyst. Appl. Surf. Sci. 2018, 444, 559–568. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Razanamahandry, L.C.; Bashir, A.; Ikpo, C.O.; Nwanya, S.C.; Botha, S.; Ntwampe, S.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. J. Hazard. Mater. 2019, 375, 281–289. [Google Scholar] [CrossRef]
- Kwon, Y.; Soon, A.; Han, H.; Lee, H. Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. J. Mater. Chem. A 2014, 3, 156–162. [Google Scholar] [CrossRef]
- Toe, C.Y.; Zheng, Z.; Wu, H.; Scott, J.; Amal, R.; Ng, Y.H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem. Int. Edit. 2018, 57, 13613–13617. [Google Scholar] [CrossRef]
- Xiong, L.; Xiao, H.; Chen, S.; Chen, Z.; Yi, X.; Wen, S.; Zheng, G.; Ding, Y.; Yu, H. Fast and simplified synthesis of cuprous oxide nanoparticles: Annealing studies and photocatalytic activity. RSC Adv. 2014, 4, 62115–62122. [Google Scholar] [CrossRef]
- Xu, W.; Jia, J.; Wang, T.; Li, C.; He, B.; Zong, J.; Wang, Y.; Fan, H.J.; Xu, H.; Feng, Y.; et al. Continuous tuning of Au–Cu2O janus nanostructures for efficient charge separation. Angew. Chem. 2020, 132, 22430–22435. [Google Scholar] [CrossRef]
- Lu, B.; Liu, A.; Wu, H.; Shen, Q.; Zhao, T.; Wang, J. Hollow Au–Cu2O core–shell nanoparticles with geometry-dependent optical properties as efficient plasmonic photocatalysts under visible LIGHT. Langmuir 2016, 32, 3085–3094. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Yu, X.; Liu, Z.; Wei, Y.; Zhang, J.; Zhao, N.; Yu, Z.; Yao, B. Boosting principles for the photocatalytic performance of Cr-doped Cu2O crystallites and mechanisms of photocatalytic oxidation for levofloxacin. Appl. Surf. Sci. 2022, 576, 151842. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Yang, F.; Wang, K.; Zhang, J.; Zhao, N.; Chen, L.; Niu, J. Synthesis of Co-doped Cu2O Particles and Evaluation of their Photocatalytic Activity in the Degradation of Norfloxacin. ChemistrySelect 2022, 7, e202203682. [Google Scholar] [CrossRef]
- Nie, J.; Yu, X.; Liu, Z.; Zhang, J.; Ma, Y.; Chen, Y.; Ji, Q.; Zhao, N.; Chang, Z. Energy band reconstruction mechanism of Cl-doped Cu2O and photocatalytic degradation pathway for levofloxacin. J. Clean. Prod. 2022, 363, 132593. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Y.; Xie, B.; Ni, Z.; Xia, S. Br doping promotes the transform of Cu2O (100) to Cu2O (111) and facilitates efficient photocatalytic degradation of tetracycline. Mol. Catal. 2023, 548, 113431. [Google Scholar] [CrossRef]
- Bai, W.; Wu, M.; Du, X.; Gong, W.; Ding, Y.; Song, C.; Liu, L. Synergistic effect of multiple-phase rGO/CuO/Cu2O heterostructures for boosting photocatalytic activity and durability. Appl. Surf. Sci. 2021, 544, 148607. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M.H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2011, 134, 1261–1267. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, J.; Liu, M.; Jing, D.; Guo, L. Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: Efficient charge separation by crystal facet engineering. Chem. Commun. 2014, 50, 192–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, Y.; Li, Y.; Yuan, Y. Shape-dependent synthesis and photocatalytic degradation by Cu2O nanocrystals: Kinetics and photocatalytic mechanism. J. Colloid Interface Sci. 2023, 651, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhang, C.; Gao, G.; Cui, D. Facile synthesis of hollow Cu2O octahedral and spherical nanocrystals and their morphology-dependent photocatalytic properties. Nanoscale Res. Lett. 2012, 7, 276. [Google Scholar] [CrossRef]
- Tang, H.; Liu, X.; Xiao, M.; Huang, Z.; Tan, X. Effect of particle size and morphology on surface thermodynamics and photocatalytic thermodynamics of nano-Cu2O. J. Environ. Chem. Eng. 2017, 5, 4447–4453. [Google Scholar] [CrossRef]
- Rabbani, A.W.; Naz, G.; Berdimurodov, E.; Lal, B.; Sailauovna, A.B.; Bandegharaei, A.H. Visible-light-driven photocatalytic properties of copper(I) oxide (Cu2O) and its graphene-based NANOCOMPOSITES. Baghdad Sci. J. 2023, 20, 1064. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Liu, M.-M.; Chen, J.-L.; Fang, S.-M.; Zhou, P.-P. Recent advances in Cu2O-based composites for photocatalysis: A review. Dalton Trans. 2021, 50, 4091–4111. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Liu, Z.; Wang, K. Fabrication of p–n Cu2O/CaWO4 heterojunctions for the efficient degradation of tetracycline and doxycycline. Appl. Surf. Sci. 2024, 665, 160285. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, C.; Zhou, H.; Duan, X.; Wang, S. Enhanced solar light driven activity of p-n heterojunction for water oxidation induced by deposition of Cu2O on Bi2O3 microplates. Sustain. Mater. Technol. 2019, 19, e00088. [Google Scholar] [CrossRef]
- Sun, K.; Zhao, X.; Zhang, Y.; Wu, D.; Zhou, X.; Xie, F.; Tang, Z.; Wang, X. Enhanced photocarrier separation in novel Z-scheme Cu2ZnSnS4/Cu2O heterojunction for excellent photocatalyst hydrogen generation. Mater. Chem. Phys. 2020, 251, 123172. [Google Scholar] [CrossRef]
- Bi, Z.-X.; Guo, R.-T.; Hu, X.; Wang, J.; Chen, X.; Pan, W.-G. Fabrication of a concave cubic Z-scheme ZnIn2S4/Cu2O heterojunction with superior light-driven CO2 reduction Performance. Energy Fuels 2023, 37, 6036–6048. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S.-Y.; Shi, Z.; Zhao, Z.L.; Liu, Q.; Gao, J.-C.; Liang, T.; Zou, Z.; Li, C.M. A multi-component Cu2O@FePO4 core–cage structure to jointly promote fast electron transfer toward the highly sensitive in situ detection of nitric oxide. Nanoscale 2019, 11, 4471–4477. [Google Scholar] [CrossRef]
- Lou, S.; Wang, W.; Wang, L.; Zhou, S. In-situ oxidation synthesis of Cu2O/Ag/AgCl microcubes with enhanced visible-light photocatalytic activity. J. Alloys Compd. 2019, 781, 508–514. [Google Scholar] [CrossRef]
- Beshkar, F.; Al-Nayili, A.; Amiri, O.; Salavati-Niasari, M.; Mousavi-Kamazani, M. Visible light-induced degradation of amoxicillin antibiotic by novel CuI/FePO4 p-n heterojunction photocatalyst and photodegradation mechanism. J. Alloys Compd. 2022, 892, 162176. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Lv, H.; Kong, L.; Ji, Z.; Shen, X. Graphene oxide-FePO4 nanocomposite: Synthesis, characterization and photocatalytic properties as a Fenton-like catalyst. Ceram. Int. 2018, 44, 7240–7244. [Google Scholar] [CrossRef]
- Altaee, H.; Alshamsi, H.A. Selective oxidation of benzyl alcohol by reduced graphene oxide supported platinum nanoparticles. J. Phys. Conf. Ser. 2020, 1664, 012074. [Google Scholar] [CrossRef]
- Mimouni, I.; Yahya, M.; Bouziani, A.; Naciri, Y.; Maarouf, F.-E.; El Belghiti, M.A.; El Azzouzi, M. Iron phosphate for photocatalytic removal of Ibuprofen from aqueous media under sun-like irradiation. J. Photochem. Photobiol. A Chem. 2022, 433, 114170. [Google Scholar] [CrossRef]
- Tuo, X.-J.; Ye, Q.-L.; Wang, J.-L.; Chang, Y.; Zha, F. Study on Photocatalytic Properties of g-C3N4/FePO4 Nanocomposites Under Visible Light. Arab. J. Sci. Eng. 2018, 43, 3541–3546. [Google Scholar] [CrossRef]
- Atuchin, V.; Subanakov, A.; Aleksandrovsky, A.; Bazarov, B.; Bazarova, J.; Dorzhieva, S.; Gavrilova, T.; Krylov, A.; Molokeev, M.; Oreshonkov, A.; et al. Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 2017, 28, 1309–1315. [Google Scholar] [CrossRef]
- Atuchin, V.; Isaenko, L.; Kesler, V.; Lin, Z.; Molokeev, M.; Yelisseyev, A.; Zhurkov, S. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. J. Solid State Chem. 2012, 187, 159–164. [Google Scholar] [CrossRef]
- Wang, H.; Quan, X.; Xiong, Q.; Yin, L.; Tian, Y.; Zhang, J. Enhanced performance of β-cyclodextrin modified Cu2O nanocomposite for efficient removal of tetracycline and dyes: Synergistic role of adsorption and photocatalysis. Appl. Surf. Sci. 2023, 621, 156735. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Zhang, D.; Pu, X.; Liu, J.; Li, H.; Cai, P. A novel hydrangea-like ZnIn2S4/FePO4 S-scheme heterojunction via internal electric field for boosted photocatalytic H2 evolution. J. Alloys Compd. 2023, 967, 171862. [Google Scholar] [CrossRef]
- Yu, L.; Ba, X.; Qiu, M.; Li, Y.; Shuai, L.; Zhang, W.; Ren, Z.; Yu, Y. Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy 2019, 60, 576–582. [Google Scholar] [CrossRef]
- Liao, H.; Wang, Z. Adsorption removal of amaranth by nanoparticles-composed Cu2O microspheres. J. Alloys Compd. 2018, 769, 1088–1095. [Google Scholar] [CrossRef]
- Shu, J.; Wang, Z.; Huang, Y.; Huang, N.; Ren, C.; Zhang, W. Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. J. Alloys Compd. 2015, 633, 338–346. [Google Scholar] [CrossRef]
- Sehrawat, P.; Rana, S.; Mehta, S.K.; Kansal, S.K. Optimal synthesis of MoS2/Cu2O nanocomposite to enhance photocatalytic performance towards indigo carmine dye degradation. Appl. Surf. Sci. 2022, 604, 154482. [Google Scholar] [CrossRef]
- Liu, Z.; Nie, H.; Kong, B.; Xu, X.; He, F.; Wang, W. Enhanced visible-light photocatalytic activity of BiOBr/BiOCl heterojunctions: A hybrid density functional investigation on the key roles of crystal facet and I-doping. Int. J. Hydrogen Energy 2023, 51, 733–747. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Shi, Y.; Qi, Y.; Huang, D.; Tadé, M.; Wang, S.; Liu, S. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Q.; Li, Y.; Yang, J.; Huang, B.; Liu, X.; Xing, X.; Xiao, S.; Chen, S.; Wang, R. Microspherical LiFePO3.98F0.02/3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclability. Ionics 2020, 27, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, H.; Lu, S.; Yang, Z.; Bin Xu, B.; Xing, L.; Liu, T.X. Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction. Appl. Catal. B: Environ. 2022, 305, 121022. [Google Scholar] [CrossRef]
- Wu, J.; Huang, P.; Fan, H.; Wang, G.; Liu, W. Metal–Organic Framework-Derived p-Cu2O/n-Ce-Fe2O3 Heterojunction Nanorod Photoanode Coupling with a FeOOH Cocatalyst for High-Performance Photoelectrochemical Water Oxidation. ACS Appl. Mater. Interfaces 2020, 12, 30304–30312. [Google Scholar] [CrossRef]
- Teo, J.J.; Chang, Y.; Zeng, H.C. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006, 22, 7369–7377. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, Y.; Zhang, Y.; Hou, R.; Zhang, X.; Xue, C.; Wang, S.; Zhu, B.; Li, N.; Shao, G. Photogenerated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS. Small Methods 2020, 4, 2000214. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO2/CdS Composite Film Photocatalyst. Adv. Mater. 2018, 31, e1802981. [Google Scholar] [CrossRef]
- Wu, P.; Peng, H.; Wu, Y.; Li, L.; Hao, X.; Peng, B.; Meng, G.; Wu, J.; Liu, Z. A Green Strategy to Synthesize Ag/Ag3PO4/Chitosan Composite Photocatalysts and Their Photocatalytic Degradation Performance Under Visible-Light Irradiation. J. Electron. Sci. Technol. 2020, 18, 13. [Google Scholar] [CrossRef]
- Dong, K.; He, J.; Liu, J.; Li, F.; Yu, L.; Zhang, Y.; Zhou, X.; Ma, H. Photocatalytic performance of Cu2O-loaded TiO2/rGO nanoheterojunctions obtained by UV reduction. J. Mater. Sci. 2017, 52, 6754–6766. [Google Scholar] [CrossRef]
- Choi, J.; Oh, H.; Han, S.-W.; Ahn, S.; Noh, J.; Park, J.B. Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Curr. Appl. Phys. 2017, 17, 137–145. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Zeng, X.; Zhang, L.; Yuan, W. Adsorption of methylene blue in water by reduced graphene oxide: Effect of functional groups. Mater. Express 2013, 3, 281–290. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, Y.; Cui, F. Enhanced photocatalytic activity of Cu2O for visible light-driven dye degradation by carbon quantum dots. Environ. Sci. Pollut. R. 2022, 29, 8613–8622. [Google Scholar] [CrossRef] [PubMed]
- Alorabi, A.Q.; Hassan, M.S.; Algethami, J.S.; Baghdadi, N.E. Synthesis and characterization of Ag-AgVO3/Cu2O heterostructure with improved visible-light photocatalytic performance. Sci. Progress. 2021, 4, 00368504211050300. [Google Scholar] [CrossRef]
- Surikanti, G.R.; Bajaj, P.; Sunkara, M.V. g-C3N4-mediated synthesis of Cu2O To obtain porous composites with improved visible light photocatalytic degradation of organic dyes. ACS. Omega. 2019, 4, 17301–17316. [Google Scholar] [CrossRef]
- Tian, L.; Rui, Y.; Sun, K.; Cui, W.; An, W. Surface decoration of ZnWO4 nanorods with Cu2O nanoparticles to build heterostructure with enhanced photocatalysis. Nanomater. 2018, 8, 33. [Google Scholar] [CrossRef]
- Yu, X.; Zheng, X.; Wei, Y.; Wang, J.; Zhao, N.; Yang, Q.; Yu, Z.; Niu, J. Preparation of novel Cu/Cu2O composite thin films by pulse deposition method and their enhanced photocatalytic performance for methylene blue. J. Electrochem. Soc. 2022, 169, 072505. [Google Scholar] [CrossRef]
- Norouzi, A.; Nezamzadeh-Ejhieh, A. Investigation of the simultaneous interactions of experimental variables and mechanism pathway in the photodegradation of methylene blue by binary ZnO/Cu2O photocatalyst. Mater. Res. Bull. 2023, 164, 112237. [Google Scholar] [CrossRef]
Samples | Specific Surface Area (m2/g) | Pore Volume (mL/g) | Pore Diameter (nm) |
---|---|---|---|
Cu2O | 5.1826 | 0.0255 | 19.6812 |
FePO4 | 70.4664 | 0.7064 | 40.0985 |
CF0.5 | 9.1060 | 0.0172 | 7.5555 |
CF | 23.0821 | 0.0777 | 13.4650 |
CF1.5 | 17.3974 | 0.0348 | 8.0012 |
CF2 | 12.6882 | 0.0210 | 6.6203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhao, X.; Qian, H.; Chen, L.; Wu, B.; Yang, X.; Zou, H.; Hu, Y.; Chen, F.; Liao, B.; et al. Study on the Anti-Photocorrosion Mechanism of Novel Self-Assembled Spherical Cu2O/FePO4 Z-Scheme Heterojunctions. Reactions 2025, 6, 24. https://doi.org/10.3390/reactions6020024
Zhang K, Zhao X, Qian H, Chen L, Wu B, Yang X, Zou H, Hu Y, Chen F, Liao B, et al. Study on the Anti-Photocorrosion Mechanism of Novel Self-Assembled Spherical Cu2O/FePO4 Z-Scheme Heterojunctions. Reactions. 2025; 6(2):24. https://doi.org/10.3390/reactions6020024
Chicago/Turabian StyleZhang, Kuo, Xiufei Zhao, Hang Qian, Lihong Chen, Biyu Wu, Xiao Yang, Haonan Zou, Yujiao Hu, Feng Chen, Borong Liao, and et al. 2025. "Study on the Anti-Photocorrosion Mechanism of Novel Self-Assembled Spherical Cu2O/FePO4 Z-Scheme Heterojunctions" Reactions 6, no. 2: 24. https://doi.org/10.3390/reactions6020024
APA StyleZhang, K., Zhao, X., Qian, H., Chen, L., Wu, B., Yang, X., Zou, H., Hu, Y., Chen, F., Liao, B., Zhou, H., Zhang, L., Ma, T., & Zhang, Y. (2025). Study on the Anti-Photocorrosion Mechanism of Novel Self-Assembled Spherical Cu2O/FePO4 Z-Scheme Heterojunctions. Reactions, 6(2), 24. https://doi.org/10.3390/reactions6020024