The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase
Abstract
:1. Introduction
2. Computational Details
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovacs, J.A. Synthetic Analogues of Cysteinate-Ligated Non-Heme Iron and Non-Corrinoid Cobalt Enzymes. Chem. Rev. 2004, 104, 825–848. [Google Scholar] [CrossRef] [PubMed]
- Makris, T.M.; Davydov, R.; Denisov, I.G.; Hoffman, B.M.; Sligar, S.G. Mechanistic Enzymology of Oxygen Activation by the Cytochrome P450. Drug Metab. Rev. 2002, 34, 691–708. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 Enzymes: Their Structure, Reactivity, and Selectivity-Modeled by QM/MM Calculations. Chem. Rev. 2010, 110, 949–1017. [Google Scholar] [CrossRef]
- Kovacs, J.A.; Brines, L.M. Understanding How the Thiolate Sulfur Contributes to the Function of the Non-Heme Iron Enzyme Superoxide Reductase. Acc. Chem. Res. 2007, 40, 501–509. [Google Scholar] [CrossRef]
- Kovacs, J.A. How Iron Activates O2. Science 2003, 299, 1024–1025. [Google Scholar] [CrossRef]
- Jenney, F.E.; Verhagen, M.F.J.M., Jr.; Cui, X.; Adams, M.W.W. Anaerobic Microbes: Oxygen Detoxification without Superoxide Dismutase. Science 1999, 286, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Mathé, C.; Mattioli, T.A.; Horner, O.; Lombard, M.; Latour, J.-M.; Fontecave, M.; Nivière, V. Identification of Iron (III) Peroxo Species in the Active Site of the Superoxide Reductase SOR from Desulfoarculus baarsii. J. Am. Chem. Soc. 2002, 124, 4966–4967. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, D., Jr. Microbial Detoxification of Superoxide: The Non-Heme Iron Reductive Paradigm for Combating Oxidative Stress. Acc. Chem. Res. 2004, 37, 902–908. [Google Scholar] [CrossRef]
- Ogliaro, F.; de Visser, S.P.; Cohen, S.; Sharma, P.K.; Shaik, S. Searching for the Second Oxidant in the Catalytic Cycle of Cytochrome P450: A Theoretical Investigation of the Iron(III)-Hydroperoxo Species and Its Epoxidation Pathways. J. Am. Chem. Soc. 2002, 124, 2806–2817. [Google Scholar] [CrossRef]
- Liu, Y.; Denisov, I.G.; Grinkova, Y.V.; Sligar, S.G.; Kincaid, J.R. P450 CYP17A1 Variant with a Disordered Proton Shuttle Assembly Retains Peroxo-Mediated Lyase Efficiency. Chem. A Eur. J. 2020, 26, 16846–16852. [Google Scholar] [CrossRef]
- Yeh, A.P.; Hu, Y.; Jenney, F.E., Jr.; Adams, M.W.W.; Rees, D.C. Structures of the Superoxide Reductase from Pyrococcus furiosus in the Oxidized and Reduced States. Biochemistry 2000, 39, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Surawatanawong, P.; Tye, J.W.; Hall, M.B. Density Functional Theory Applied to a Difference in Pathways Taken by the Enzymes Cytochrome P450 and Superoxide Reductase: Spin States of Ferric Hydroperoxo Intermediates and Hydrogen Bonds from Water. Inorg. Chem. 2010, 49, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Altarsha, M.; Benighaus, T.; Kumar, D.; Thiel, W. How is the Reactivity of Cytochrome P450 can be Affected by Thr252X Mutation? A QM/MM Study for X = Serine, Valine, Alanine, Glycine. J. Am. Chem. Soc. 2009, 131, 4755–4763. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, M.; Sligar, S.G.; Li, T.H.; Poulos, T.L. Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. Biochemistry 1998, 37, 9211–9219. [Google Scholar] [CrossRef] [PubMed]
- Taraphder, S.; Hummer, G. Protein Side-Chain Motion and Hydration in Proton-Transfer Pathways. Results for Cytochrome P450cam. J. Am. Chem. Soc. 2003, 125, 3931–3940. [Google Scholar] [CrossRef]
- Kamachi, T.; Yoshizawa, K. A Theoretical Study on the Mechanism of Camphor Hydroxylation by Compound I of Cytochrome P450. J. Am. Chem. Soc. 2003, 125, 4652–4661. [Google Scholar] [CrossRef]
- Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A.M.; Shelley, A.; Maves, S.; Benson, S.D.; Sweet, R.M.; Ringe, D.; Petsko, G.A.; et al. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science 2000, 287, 1615–1622. [Google Scholar] [CrossRef]
- Guallar, V.; Friesner, R.A. Cytochrome P450CAM Enzymatic Catalysis Cycle: A Quantum Mechanics/Molecular Mechanics Study. J. Am. Chem. Soc. 2004, 126, 8501–8508. [Google Scholar] [CrossRef]
- Oprea, T.I.; Hummer, G.; Garcia, A.E. Identification of a Functional Water Channel in Cytochrome P450 Enzymes. Proc. Nat. Acad. Sci. USA 1997, 94, 2133–2138. [Google Scholar] [CrossRef]
- Shaik, S.; Kumar, D.; de Visser, S.P.; Altun, A.; Thiel, W. Theoretical Perspective on the Structure and Mechanism of Cytochrome P450 Enzymes. Chem. Rev. 2005, 105, 2279–2328. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, D.; Thiel, W.; Sason Shaik, S. QM/MM Study of Mechanisms for Compound I Formation in the Catalytic Cycle of Cytochrome P450cam. J. Am. Chem. Soc. 2006, 128, 13204–13215. [Google Scholar] [CrossRef]
- Harris, D.L.; Loew, G.L. Theoretical Investigation of the Proton Assisted Pathway to Formation of Cytochrome P450 Compound I. J. Am. Chem. Soc. 1998, 120, 8941–8948. [Google Scholar] [CrossRef]
- Hata, M.; Hirano, Y.; Hoshino, T.; Nishida, R.; Tsuda, M. Theoretical Study on Compound I Formation in Monooxygenation Mechanism by Cytochrome P450. J. Phys. Chem. B 2004, 108, 11189–11195. [Google Scholar] [CrossRef]
- Bach, R.D.; Dmitrenko, O. The “Somersault” Mechanism for the P-450 Hydroxylation of Hydrocarbons. The Intervention of Transient Inverted Metastable Hydroperoxides. J. Am. Chem. Soc. 2006, 128, 1474–1488. [Google Scholar] [CrossRef]
- Altarsha, M.; Benighaus, T.; Kumar, D.; Thiel, W. Coupling and uncoupling mechanisms in the methoxythreonine mutant of cytochrome P450cam: A quantum echanical/molecular mechanical study. Biol. Inorg. Chem. 2010, 15, 361–372. [Google Scholar] [CrossRef]
- Loida, P.J.; Sligar, S.G.; Paulsen, M.D.; Arnoldn, G.E.; Ornstein, R.L. Stereoselective Hydroxylation of Norcamphor by Cytochrome P450cam: Experimental verification of molecular dynamics simulations. J. Biol. Chem. 1995, 270, 5326–5330. [Google Scholar] [CrossRef]
- Silaghi-Dumitrescu, R.; Silaghi-Dumitrescu, I.; Coulter, E.D.; Kurtz, D.M., Jr. Computational study of the non-heme iron active site in superoxide reductase and its reaction with superoxide. Inorg. Chem. 2003, 42, 446–456. [Google Scholar] [CrossRef]
- Ali Attia, A.A.A.; Cioloboc, D.; Lupan, A.; Silaghi-Dumitrescu, R. Fe-O versus O-O bond cleavage in reactive iron peroxide intermediates of superoxide reductase. J. Biol. Inorg. Chem. 2013, 18, 95–101. [Google Scholar] [CrossRef]
- Ali Attia, A.A.A.; Cioloboc, D.; Lupan, A.; Silaghi-Dumitrescu, R. Multiconfigurational and DFT analyses of the electromeric formulation and UV–vis absorption spectra of the superoxide adduct of ferrous superoxide reductase. J. Inorg. Biochem. 2016, 165, 49–53. [Google Scholar] [CrossRef]
- Romão, C.V.; Matias, P.M.; Sousa, C.M.; Pinho, F.G.; Pinto, A.F.; Teixeira, M.; Bandeiras, T.M. Insights into the Structures of Superoxide Reductases from the Symbionts Ignicoccus hospitalis and Nanoarchaeum equitans. Biochemistry 2018, 57, 5271–5281. [Google Scholar] [CrossRef]
- Yang, T.-C.; McNaughton, R.L.; Clay, M.D.; Francis, E.; Jenney, J.; Krishnan, R.; Kurtz, D.M.; Adams, M.W.W.; Johnson, M.K.; Hoffman, B.M. Comparing the electronic properties of the low-spin cyano-ferric [Fe(N4)(Cys)] active sites of superoxide reductase and p450cam using ENDOR spectroscopy and DFT calculations. J. Am. Chem. Soc. 2006, 128, 16566–16578. [Google Scholar] [CrossRef]
- Silaghi-Dumitrescu, R.; Cioloboc, D. Comparative computational characterization of ferric Cytochrome P450 and Superoxide Reductase binding to cyanide. Stud. UBB Chem. 2016, 61, 45–54. [Google Scholar]
- Spataru, T. The Miracle of Vitamin B12 Biochemistry. Reactions 2024, 5, 20–76. [Google Scholar] [CrossRef]
- Spataru, T. The complete electronic structure and mechanism of the methionine synthase process as determined by the MCSCF method. J. Organomet. Chem. 2021, 942, 181211–181221. [Google Scholar] [CrossRef]
- Spataru, T. The electronic structure and mechanism of the adenosylcobalamin-dependent bio-processes as determined by the MCSCF method. J. Med. Chem. 2021, 11, 595–606. [Google Scholar]
- Spataru, T. The First Step and the Cob(II)alamin Cofactor Inactive Particles Reactivation in the Updated Mechanism of the Methionine Synthase Process. Reactions 2023, 4, 274–285. [Google Scholar] [CrossRef]
- Spataru, T. The Co-N bond cleavage in the adenosylcobalamin cofactor in advance to Glutamete Mutase and Methylmalonyl-Co-A Mutase processes. Chem. J. Mold. 2023, 18, 96–104. [Google Scholar] [CrossRef]
- Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma, T.P.; van Dam, H.J.J.; Wang, D.; Nieplocha, D.; Apra, E.; Windus, T.L.; et al. “NwChem”: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477. [Google Scholar] [CrossRef]
- Bersuker, I.B. Limitations of Density Functional Theory in Application to the Degenerate States. J. Comp. Chem. 1997, 2, 260–267. [Google Scholar] [CrossRef]
- Spataru, T.; Birke, R.L. Carbon-Cobalt Bond Distance and Bond Cleavage in OneElectron Reduced Methylcobalamin: A Failure of the Conventional DFT Method. J. Phys. Chem. A 2006, 110, 8599–8604. [Google Scholar] [CrossRef] [PubMed]
- Bearpark, M.J.; Blancafort, L.; Robb, M.A. The pseudo-Jahn—Teller effect: A CASSCF diagnostic. Mol. Phys. 2002, 100, 1735–1739. [Google Scholar] [CrossRef]
- Katona, G.; Carpentier, P.; Niviere, V.; Amara, P.; Adam, V.; Ohana, J.; Tsanov, N.; Bourgeois, D. Raman-assisted crystallography reveals end-on peroxide intermediates in a non-heme iron enzyme. Science 2007, 316, 449–453. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spataru, T.; Dascalu, L.M.; Moraru, A.; Moraru, M. The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase. Reactions 2024, 5, 778-788. https://doi.org/10.3390/reactions5040039
Spataru T, Dascalu LM, Moraru A, Moraru M. The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase. Reactions. 2024; 5(4):778-788. https://doi.org/10.3390/reactions5040039
Chicago/Turabian StyleSpataru, Tudor, Lisa Maria Dascalu, Andreea Moraru, and Mariana Moraru. 2024. "The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase" Reactions 5, no. 4: 778-788. https://doi.org/10.3390/reactions5040039
APA StyleSpataru, T., Dascalu, L. M., Moraru, A., & Moraru, M. (2024). The Second Protonation in the Bio-Catalytic Cycles of the Enzymes Cytochrome P450 and Superoxide Reductase. Reactions, 5(4), 778-788. https://doi.org/10.3390/reactions5040039