Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1)
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Structural Optimization of the Proposed Compounds 1–36
2.3. Calculation of Molecular Docking and Bond-Free Energy
2.4. Synthesis of Alkyl (2-Ethoxy-2-Hydroxypropanoyl)-L-Tryptophanate
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotelevtsev, Y.; Holmes, M.C.; Burchell, A.; Houston, P.M.; Schmoll, D.; Jamieson, P.; Best, R.; Brown, R.; Edwards, C.R.W.; Seckl, J.R.; et al. 11β-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. USA 1997, 94, 14924–14929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seckl, J.R.; Walker, B.R. 11β-hydroxysteroid dehydrogenase type 1-A tissue-specific amplifier of glucocorticoid action. Endocrinology 2001, 142, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Rask, E.; Walker, B.R.; Söderberg, S.; Livingstone, D.E.W.; Eliasson, M.; Johnson, O.; Andrew, R.; Olsson, T. Tissue-specific changes in peripheral cortisol metabolism in obese women: Increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity. J. Clin. Endocrinol. Metab. 2002, 87, 3330–3336. [Google Scholar] [CrossRef]
- Tomlinson, J.W.; Walker, E.A.; Bujalska, I.J.; Draper, N.; Lavery, G.G.; Cooper, M.S.; Hewison, M.; Stewart, P.M. 11β-Hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response. Endocr. Rev. 2004, 25, 831–866. [Google Scholar] [CrossRef]
- Morton, N.M.; Paterson, J.M.; Masuzaki, H.; Holmes, M.C.; Staels, B.; Fievet, C.; Walker, B.R.; Flier, J.S.; Mullins, J.J.; Seckl, J.R. Novel Adipose Tissue-Mediated Resistance to Diet-Induced Visceral Obesity in 11β-Hydroxysteroid Dehydrogenase Type 1-Deficient Mice. Diabetes 2004, 53, 931–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermanowski-Vosatka, A.; Balkovec, J.M.; Cheng, K.; Chen, H.Y.; Hernandez, M.; Koo, G.C.; Le Grand, C.B.; Li, Z.; Metzger, J.M.; Mundt, S.S.; et al. 11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J. Exp. Med. 2005, 202, 517–527. [Google Scholar] [CrossRef]
- Xiao, H.; Wu, Z.; Li, B.; Shangguan, Y.; Stoltz, J.-F.; Magdalou, J.; Chen, L.; Wang, H. The low-expression programming of 11β-HSD2 mediates osteoporosis susceptibility induced by prenatal caffeine exposure in male offspring rats. Br. J. Pharmacol. 2020, 177, 4683–4700. [Google Scholar] [CrossRef]
- Gregory, S.; Hill, D.; Grey, B.; Ketelbey, W.; Miller, T.; Muniz-Terrera, G.; Ritchie, C.W. 11β-hydroxysteroid dehydrogenase type 1 inhibitor use in human disease-a systematic review and narrative synthesis. Metab. Clin. Exp. 2020, 108, 154246. [Google Scholar] [CrossRef]
- Chuanxin, Z.; Shengzheng, W.; Lei, D.; Duoli, X.; Jin, L.; Fuzeng, R.; Aiping, L.; Ge, Z. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases: A comprehensive guide to their chemical structure diversity in drug development. Eur. J. Med. Chem. 2020, 191, 112134. [Google Scholar] [CrossRef]
- Figaro-Drumond, F.V.; Pereira, S.C.; Menezes, I.C.; von Werne Baes, C.; Coeli-Lacchini, F.B.; Oliveira-Paula, G.H.; Cleare, A.J.; Young, A.H.; Tanus-Santos, J.E.; Juruena, M.F.; et al. Association of 11β-hydroxysteroid dehydrogenase type1 (HSD11b1) gene polymorphisms with outcome of antidepressant therapy and suicide attempts. Behav. Brain Res. 2020, 381, 112343. [Google Scholar] [CrossRef]
- Krause, J.S.; Pérez, J.H.; Reid, A.M.A.; Cheah, J.; Bishop, V.; Wingfield, J.C.; Meddle, S.L. Acute restraint stress does not alter corticosteroid receptors or 11β-hydroxysteroid dehydrogenase gene expression at hypothalamic–pituitary-adrenal axis regulatory sites in captive male white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen. Comp. Endocrinol. 2020, 303, 113701. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.-K.; Chenail, E.; Li, H.-Q.; Ipek, M.; Xiang, J.; Suri, V.; Hahm, S.; Bard, J.; Svenson, K.; Xu, X.; et al. Discovery of HSD-621 as a potential agent for the treatment of type 2 diabetes. ACS Med. Chem. Lett. 2012, 4, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaabani, A.; Keshipour, S.; Shaabani, S.; Mahyari, M. Zinc chloride catalyzed three-component Ugi reaction: Synthesis of N-cyclohexyl-2-(2-hydroxyphenylamino)acetamide derivatives. Tetrahedron Lett. 2012, 53, 1641–1644. [Google Scholar] [CrossRef]
- Kamiński, K.; Wiklik, B.; Obniska, J. Synthesis and anticonvulsant activity of new N-phenyl-2-(4-phenylpiperazin-1-yl)acetamide derivatives. Med. Chem. Res. 2015, 24, 3047–3061. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Li, X.; Yao, Y.; Qi, Y.; Wang, M.; Dai, N.; Wen, Y.; Wan, Y.; Peng, L. Design, synthesis, fungicidal activity and molecular docking studies of novel 2-((2-hydroxyphenyl)methylamino)acetamide derivatives. Bioorg. Med. Chem. 2019, 27, 2572–2578. [Google Scholar] [CrossRef]
- Shao, D.; Zhang, G.-N.; Niu, W.; Li, Z.; Zhu, M.; Wang, J.; Li, D.; Wang, Y. Design, Synthesis, and Cytotoxic Activity of 3-Aryl-N-hydroxy-2-(sulfonamido)propanamides in HepG2, HT-1080, KB, and MCF-7 Cells. Chem. Biodivers. 2019, 16, e1800646. [Google Scholar] [CrossRef]
- Guo, J.; Chen, B.; Yu, Y.; Cheng, B.; Ju, Y.; Tang, J.; Cai, Z.; Gu, Q.; Xu, J.; Zhou, H. Structure-guided optimization and mechanistic study of a class of quinazolinone-threonine hybrids as antibacterial ThrRS inhibitors. Eur. J. Med. Chem. 2020, 207, 112848. [Google Scholar] [CrossRef]
- Ibrahim, N.; Bonnet, P.; Brion, J.-D.; Peyrat, J.-F.; Bignon, J.; Levaique, H.; Josselin, B.; Robert, T.; Colas, P.; Bach, S.; et al. Identification of a new series of flavopiridol-like structures as kinase inhibitors with high cytotoxic potency. Eur. J. Med. Chem. 2020, 199, 112355. [Google Scholar] [CrossRef]
- Zaręba, P.; Gryzło, B.; Malawska, K.; Sałat, K.; Höfner, G.C.; Nowaczyk, A.; Fijałkowski, Ł.; Rapacz, A.; Podkowa, A.; Furgała, A.; et al. Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice. Eur. J. Med. Chem. 2020, 188, 111920. [Google Scholar] [CrossRef]
- Wasfy, A.F.; Aly, A.A.; Behalo, M.S.; Mohamed, N.S. Synthesis of novel phthalazine derivatives as pharmacological activities. J. Heterocycl. Chem. 2020, 57, 12–25. [Google Scholar] [CrossRef]
- Wang, M.-S.; Zhuo, L.-S.; Yang, F.-P.; Wang, W.-J.; Huang, W.; Yang, G.-F. Synthesis and biological evaluation of new MET inhibitors with 1,6-naphthyridinone scaffold. Eur. J. Med. Chem. 2020, 185, 111803. [Google Scholar] [CrossRef] [PubMed]
- Oluwaseye, A.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E. Quantum chemical descriptors in the QSAR studies of compounds active in maxima electroshock seizure test. J. King Saud Univ. Sci. 2020, 32, 75–83. [Google Scholar] [CrossRef]
- Praveenkumar, E.; Gurrapu, N.; Kolluri, P.K.; Yerragunta, Y.; Kunduru, B.R.; Subhashini, N.J.P. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-βhydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors. Bioorg. Chem. 2019, 90, 103056. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, A.; Pathak, M.; Kaur, L.; Kumar, V.; Roy, B.G.; Ojha, H. DNA binding and antiradical potential of ethyl pyruvate: Key to the DNA radioprotection. Chem. Biol. Interact. 2020, 332, 109313. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, X.; Zhang, Y.; Qiu, H.; Ouyang, F.; He, Y. 3-Bromopyruvate ameliorates pulmonary arterial hypertension by improving mitochondrial metabolism. Life Sci. 2020, 256, 118009. [Google Scholar] [CrossRef]
- Szczuka, I.; Wiśniewski, J.; Kustrzeba-Wójcicka, I.; Terlecki, G. The effect of 3-bromopyruvate on the properties of cathepsin B in the aspect of metastatic potential of colon cancer cells. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2020, 29, 949–957. [Google Scholar] [CrossRef]
- Huang, Q.; Fu, Y.; Zhang, S.; Zhang, Y.; Chen, S.; Zhang, Z. Ethyl pyruvate inhibits glioblastoma cells migration and invasion through modulation of NF-κB and ERK-mediated EMT. PeerJ 2020, 8, e9559. [Google Scholar] [CrossRef]
- Sun, X.; Sun, G.; Huang, Y.; Hao, Y.; Tang, X.; Zhang, N.; Zhao, L.; Zhong, R.; Peng, Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem. Pharmacol. 2020, 177, 113988. [Google Scholar] [CrossRef]
- Kang, P.-W.; Su, J.-P.; Sun, L.-Y.; Gao, H.; Yang, K.-W. 3-Bromopyruvate as a potent covalently reversible inhibitor of New Delhi metallo-β-lactamase-1 (NDM-1). Eur. J. Pharm. Sci. 2020, 142, 105161. [Google Scholar] [CrossRef]
- Gan, L.; Ren, Y.; Lu, J.; Ma, J.; Shen, X.; Zhuang, Z. Synergistic effect of 3-bromopyruvate in combination with rapamycin impacted neuroblastoma metabolism by inhibiting autophagy. OncoTargets Ther. 2020, 13, 11125–11137. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.; Schlegel, H.; Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; et al. Gaussian 09. Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhang, J.; Osslund, T.D.; Plant, M.H.; Clogston, C.L.; Nybo, R.E.; Xiong, F.; Jordan, S.R. Crystal Structure of Murine 11β-Hydroxysteroid Dehydrogenase 1: An Important Therapeutic Target for Diabetes. Biochemistry 2005, 44, 6948–6957. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.P.; Potter, B.V.L. Crystal structures of 11β-hydroxysteroid dehydrogenase type 1 and their use in drug discovery. Future Med. Chem. 2011, 3, 367–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.-J.; Zhu, C.; Bian, Q.; Cui, C.; Du, X.-J.; Li, Z.-M.; Zhao, W.-G. Novel ultrasound-promoted parallel synthesis of trifluoroatrolactamide library via a one-pot passerini/hydrolysis reaction sequence and their fungicidal activities. ACS Comb. Sci. 2014, 16, 17–23. [Google Scholar] [CrossRef]
- Quiroga, D.; Becerra, L.D.; Sadat-Bernal, J.; Vargas, N.; Coy-Barrera, E. Synthesis and Antifungal Activity against Fusarium oxysporum of Some Brassinin Analogs Derived from l-tryptophan: A DFT/B3LYP Study on the Reaction Mechanism. Molecules 2016, 21, 1349. [Google Scholar] [CrossRef] [PubMed]
Ligand | Binding Energy (kcal/mol) | Intermolecular Energy (kcal/mol) | Vdw Hb Desolvation Energy (kcal/mol) | HOMO-LUMO Gap (kcal/mol) |
---|---|---|---|---|
1 | −8.82 | −11.29 | −11.11 | 4.87 |
2 | −8.92 | −11.93 | −11.85 | 4.86 |
3 | −8.83 | −13.22 | −13.15 | 4.89 |
4 | −9.65 | −12.94 | −12.87 | 4.89 |
5 | −8.87 | −12.71 | −12.63 | 4.88 |
6 | −9.17 | −13.29 | −13.15 | 4.89 |
7 | −9.04 | −11.78 | −11.58 | 4.89 |
8 | −9.97 | −13.49 | −13.57 | 4.90 |
9 | −9.52 | −12.54 | −12.37 | 4.88 |
10 | −9.33 | −13.63 | −13.63 | 4.88 |
11 | −9.92 | −14.02 | −13.93 | 4.88 |
12 | −9.68 | −12.71 | −12.62 | 6.30 |
13 | −8.65 | −11.67 | −11.65 | 6.26 |
14 | −8.62 | −11.92 | −11.74 | 6.33 |
15 | −7.72 | −9.91 | −9.83 | 6.48 |
16 | −8.59 | −12.98 | −12.98 | 6.36 |
17 | −8.16 | −10.91 | −10.82 | 6.22 |
18 | −8.50 | −11.25 | −11.18 | 6.41 |
19 | −7.84 | −10.58 | −10.50 | 6.39 |
20 | −8.80 | −12.10 | −12.00 | 6.33 |
21 | −8.38 | −11.46 | −11.38 | 6.22 |
22 | −8.35 | −10.82 | −10.67 | 6.24 |
23 | −7.83 | −10.30 | −10.24 | 6.26 |
24 | −7.50 | −11.07 | −11.00 | 6.34 |
25 | −7.46 | −10.75 | −10.60 | 6.05 |
26 | −9.02 | −12.04 | −11.95 | 6.09 |
27 | −7.33 | −9.79 | −9.61 | 6.13 |
28 | −7.09 | −9.56 | −9.49 | 6.10 |
29 | −6.93 | −9.12 | −9.15 | 6.01 |
30 | −6.87 | −10.44 | −10.41 | 6.11 |
31 | −6.72 | −9.19 | −9.03 | 6.12 |
32 | −6.34 | −8.54 | −8.39 | 6.07 |
33 | −6.23 | −8.15 | −8.03 | 6.00 |
34 | −6.18 | −8.65 | −8.49 | 6.06 |
35 | −6.09 | −7.73 | −7.64 | 6.07 |
36 | −5.65 | −7.57 | −7.43 | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroga, D. Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). Reactions 2023, 4, 108-116. https://doi.org/10.3390/reactions4010006
Quiroga D. Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). Reactions. 2023; 4(1):108-116. https://doi.org/10.3390/reactions4010006
Chicago/Turabian StyleQuiroga, Diego. 2023. "Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1)" Reactions 4, no. 1: 108-116. https://doi.org/10.3390/reactions4010006
APA StyleQuiroga, D. (2023). Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). Reactions, 4(1), 108-116. https://doi.org/10.3390/reactions4010006