Visible Light Induced C-H/N-H and C-X Bonds Reactions
Abstract
:1. Introduction
2. Visible Light Catalyzed Net Oxidation
2.1. Oxidative Production of Imine Ion Intermediates
2.2. Free Radical Intermediates Produced by Oxidation
2.3. Oxidation Reaction of Other Functional Groups
2.4. Other Types of Oxidation Reactions
3. Visible Light Catalyzed Net Reduction Reactions
3.1. Reduction in Electron Deficient Olefins
3.2. Reductive Dehalogenation Reactions
3.3. Deductive Desulfonation of Benzene Sulfonyl and Other Sulfur Salts
3.4. Reductive Deprotection
3.5. Reductive Ring Opening of Azacyclopropane
4. Visible Light-Catalyzed Redox Neutral Reaction
4.1. Atom Transfer Radical Addition Reaction
4.2. Combination of Visible Light Catalysis and Asymmetric Catalysis
4.3. Combination of Visible Light Catalysis and Transition Metal Catalysis
4.4. Free Radical Addition Reaction to π-System Species
5. Visible Light Catalyzed Energy Transfer Reaction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morton, O. Solar energy: A new day dawning?: Silicon Valley sunrise. Nature 2006, 443, 19–23. [Google Scholar]
- Lewis, N.S. Toward cost-effective solar energy use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [Green Version]
- Nocera, D.G. On the future of global energy. Daedalus 2006, 135, 112–115. [Google Scholar]
- Ciamician, G. The photochemistry of the future. Science 1912, 36, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyanasundaram, K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Corrd. Chem. Rev. 1982, 46, 159–244. [Google Scholar] [CrossRef]
- Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Von Zelewsky, A. Ru(II) polypyridine complexes: Photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. [Google Scholar]
- Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and photophysics of coordination compounds: Ruthenium. Top. Curr. Chem. 2007, 280, 117–214. [Google Scholar]
- Wang, X.-Y.; Guerzo, A.D.; Tunuguntla, H.; Schehl, R.H. Advanced Ceramics for Energy and Environmental Applications. Res. Intermed. 2007, 33, 63. [Google Scholar] [CrossRef]
- Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Photochemistry and photophysics of coordination compounds: Iridium. Top. Curr. Chem. 2007, 281, 143–203. [Google Scholar]
- Balzani, V.; Credi, A.; Venturi, M. Photochemical conversion of solar energy. ChemSusChem 2008, 1, 26–58. [Google Scholar] [CrossRef]
- Nicewicz, D.A.; MacMillan, D.W. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008, 322, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Ischay, M.A.; Anzovino, M.E.; Du, J.; Yoon, T.P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 2008, 130, 12886–12887. [Google Scholar] [CrossRef]
- Narayanam, J.M.R.; Tucker, J.W.; Stephenson, C.R.J. Electron-transfer photoredox catalysis: Development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 2009, 131, 8756–8757. [Google Scholar] [CrossRef]
- Gust, D.; Moore, T.A.; Moore, A.L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 1993, 26, 198–205. [Google Scholar] [CrossRef]
- Ravelli, D.; Dondi, D.; Fangnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Acc. Chem. Soc. Rev. 2009, 38, 1999–2011. [Google Scholar]
- Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed. 2009, 48, 9785–9789. [Google Scholar] [CrossRef]
- Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 40, 120. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.W.; Stephenson, C.R. Shining light on photoredox catalysis: Theory and synthetic applications. Chem. Soc. Rev. 2012, 77, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Teply, F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect. Czech. Chem. Commun. 2011, 76, 859–917. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Nam, W. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: Beyond electroluminescence. Chem. Soc. Rev. 2012, 41, 7061–7084. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Zheng, N. A photo touch on amines: New synthetic adventures of nitrogen radical cations. Synlett 2012, 23, 1851–1856. [Google Scholar]
- Shi, L.; Xia, W. New Cy5 photosensitizers for cancer phototherapy: A low singlet–triplet gap provides high quantum yield of singlet oxygen. Chem. Soc. Rev. 2012, 41, 7061. [Google Scholar]
- Hoffmann, N. Homogeneous Photocatalytic Reactions with Organometallic and Coordination Compounds—Perspectives for Sustainable Chemistry. ChemSusChem 2012, 5, 352–371. [Google Scholar] [CrossRef]
- Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem. 2013, 11, 2387–2403. [Google Scholar] [CrossRef] [PubMed]
- Hari, D.P.; Kong, B. The photocatalyzed meerwein arylation: Classic reaction of aryl diazonium salts in a new light. Angew. Chem. Int. Ed. 2013, 52, 4734–4743. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Xu, X.; Li, X. Tandem trifluoromethylthiolation/aryl migration of aryl alkynoates to trifluoromethylthiolated alkenes. Chin. J. Chem. 2013, 33, 2046. [Google Scholar] [CrossRef] [Green Version]
- Xuan, J.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Visible-light-induced formal [3 + 2] cycloaddition for pyrrole synthesis under metal-free conditions. Eur. J. Org. Chem. 2013, 2013, 6755. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [Green Version]
- Groger, H. Catalytic enantioselective Strecker reactions and analogous syntheses. Chem. Rev. 2003, 103, 2795–2828. [Google Scholar] [CrossRef]
- Cordova, A. The direct catalytic asymmetric Mannich reaction. Acc. Chem. Res. 2004, 37, 102–112. [Google Scholar] [CrossRef]
- Condie, A.G.; Gonzalelez-Gomez, J.C.; Stephenson, C.R. Visible-light photoredox catalysis: Aza-Henry reactions via C−H functionalization. J. Am. Chem. Soc. 2010, 132, 1464–1465. [Google Scholar] [CrossRef]
- Freeman, D.B.; Furst, L.; Condie, A.G.; Stephenson, C.R. Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. J. Org. Lett. 2012, 14, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Rueping, M.; Vila, C.; Koenings, R.M.; Poscharny, K.; Fabry, D.C. Dual catalysis: Combining photoredox and Lewis base catalysis for direct Mannich reactions. Chem. Commun. 2011, 47, 2360–2362. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Visible light-induced oxidative coupling reaction: Easy access to Mannich-type products. Chem. Commun. 2012, 48, 2337–2339. [Google Scholar]
- Rueping, M.; Zhu, S.; Koenigs, R.M. Visible-light photoredox catalyzed oxidative Strecker reaction. Chem. Commun. 2011, 47, 12709–12711. [Google Scholar] [CrossRef]
- Rueping, M.; Zhu, S.; Koenings, R.M. Photoredox catalyzed C–P bond forming reactions—Visible light mediated oxidative phosphonylations of amines. Chem. Commun. 2011, 47, 8679–8681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueping, M.; Koenigs, R.M.; Poscharny, K.; Fabry, D.C.; Leonori, D.; Vila, C. Dual Catalysis: Combination of Photocatalytic Aerobic Oxidation and Metal Catalyzed Alkynylation Reactions—C-C Bond Formation Using Visible Light. Chem. Eur. J. 2012, 18, 5170–5174. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, X.; Mao, H.; Tang, Z.; Cheng, Y.; Zhu, C. Visible-light-induced direct C(sp3)–H difluromethylation of tetrahydroisoquinolines with the in situ generated difluoroenolates. Chem. Commun. 2014, 50, 7521–7523. [Google Scholar]
- Xuan, J.; Feng, Z.-J.; Duan, S.-W.; Xiao, W.-J. Room temperature synthesis of isoquino [2,1-a][3,1] oxazine and isoquino[2,1-a]pyrimidine derivatives via visible light photoredox catalysis. RSC Adv. 2012, 2, 4065–4068. [Google Scholar] [CrossRef]
- Zou, Y.Q.; Lu, L.Q.; Fu, L.; Chang, N.J.; Rong, J.; Chen, J.R.; Xiao, W.J. Visible-light-induced oxidation/[3 + 2] cycloaddition/oxidative aromatization sequence: A photocatalytic strategy to construct pyrrolo [2,1-a] isoquinolines. Angew. Chem. Int. Ed. 2011, 50, 7171–7175. [Google Scholar] [CrossRef]
- Rueping, M.; Leonori, D.; Poisson, T. Visible light mediated azomethine ylide formation—Photoredox catalyzed [3 + 2] cycloadditions. Chem. Commun. 2011, 47, 9615–9617. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Cheng, Y.; An, J.; Lu, L.-Q.; Zhang, X.-X.; Xiao, W.-J. Visible light-induced intramolecular cyclization reactions of diamines: A new strategy to construct tetrahydroimidazoles. Chem. Commun. 2011, 47, 8337–8339. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhao, X.; Wang, X.; Liu, Q.; Li, Z.; Wang, D.Z. Visible-Light-Promoted C-C Bond Cleavage: Photocatalytic Generation of Iminium Ions and Amino Radicals. Angew. Chem. Int. Ed. 2012, 51, 8050–8053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-Q.; Hu, M.; Huang, X.-C.; Gong, L.-B.; Xie, Y.-X.; Li, J.-H. Direct α-arylation of α-amino carbonyl compounds with indoles using visible light photoredox catalysis. J. Org. Chem. 2012, 77, 8705–8711. [Google Scholar] [CrossRef]
- Zhu, S.; Rueping, M. Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides. Chem. Commun. 2012, 48, 11960–11962. [Google Scholar] [CrossRef] [PubMed]
- Rueping, M.; Vila, C.; Szadkowska, A.; Koenigs, R.M.; Fronert, J. Photoredox Catalysis as an Efficient Tool for the Aerobic Oxidation of Amines and Alcohols: Bioinspired Demethylations and Condensations. ACS Catal. 2012, 2, 2810–2815. [Google Scholar] [CrossRef]
- Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev. 2013, 42, 97–113. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 2014, 12, 6059–6071. [Google Scholar] [CrossRef] [Green Version]
- Nicewicz, D.A.; Hamilton, D.S. Organic photoredox catalysis as a general strategy for anti-Markovnikov alkene hydrofunctionalization. Synlett 2014, 25, 1191–1196. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef]
- Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Highly efficient visible-light-induced aerobic oxidative C–C, C–P coupling from C–H bonds catalyzed by a gold(III)-complex. Org. Biomol. Chem. 2013, 11, 1606–1609. [Google Scholar] [CrossRef]
- To, W.P.; Liu, Y.; Lau, T.C.; Che, C.M. A Robust Palladium(II)–Porphyrin Complex as Catalyst for Visible Light Induced Oxidative C—H Functionalization. Chem. Eur. J. 2013, 19, 5654–5664. [Google Scholar] [CrossRef]
- Zhong, J.-J.; Meng, Q.-Y.; Wang, G.-X.; Liu, Q.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. A Highly Efficient and Selective Aerobic Cross-Dehydrogenative-Coupling Reaction Photocatalyzed by a Platinum(II) Terpyridyl Complex. Chem. Eur. J. 2013, 19, 6443–6450. [Google Scholar] [CrossRef]
- Li, J.; He, L.; Liu, Q.; Ren, Y.; Jiang, H. Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nat. Commun. 2022, 13, 928. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.L.; Gu, Q.S.; Liu, X.Y. Catalytic enantioselective C(sp3)–H functionalization involving radical intermediates. Nat. Commun. 2021, 12, 475. [Google Scholar] [CrossRef]
- Hari, D.P.; Konig, B. Eosin Y catalyzed visible light oxidative C–C and C–P bond formation. Org. Lett. 2011, 13, 3852–3855. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Kee, C.W.; Chen, L.; Tan, C.-H. Dehydrogenative coupling reactions catalysed by Rose Bengal using visible light irradiation. Green Chem. 2011, 13, 2682–2685. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Reactivity and Mechanistic Insight into Visible-Light-Induced Aerobic Cross-Dehydrogenative Coupling Reaction by Organophotocatalysts. Chem. Eur. J. 2012, 18, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gu, X.Y.; Li, Y.J.; Li, P.X. Aerobic transition-metal-free visible-light photoredox indole C-3 formylation reaction. ACS Catal. 2014, 4, 1897–1900. [Google Scholar] [CrossRef]
- Fu, W.; Guo, W.; Zou, G.; Xu, C. Selective trifluoromethylation and alkynylation of tetrahydroisoquinolines using visible light irradiation by Rose Bengal. J. Fluor. Chem. 2012, 140, 88–94. [Google Scholar] [CrossRef]
- Ju, X.; Li, D.; Li, W.; Yu, W.; Bian, F. The reaction of tertiary anilines with maleimides under visible light redox. Adv. Synth. Catal. 2012, 354, 3561–3567. [Google Scholar] [CrossRef]
- Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D.P.; Rueping, M. Oxygen switch in visible-light photoredox catalysis: Radical additions and cyclizations and unexpected C–C-bond cleavage reactions. J. Am. Chem. Soc. 2013, 135, 1823–1829. [Google Scholar] [CrossRef]
- Douglas, J.J.; Cole, K.P.; Stephenson, C.R.J. Photoredox catalysis in a complex pharmaceutical setting: Toward the preparation of JAK2 inhibitor LY2784544. J. Org. Chem. 2014, 79, 11631–11643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordwell, F.G.; Zhang, X.-M.; Satish, A.V.; Cheng, J.-P. Assessment of the importance of changes in ground-state energies on the bond dissociation enthalpies of the OH bonds in phenols and the SH bonds in thiophenols. J. Am. Chem. Soc. 1994, 116, 6605–6610. [Google Scholar] [CrossRef]
- Cano-Yelo, H.; Deronzier, A. Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt system. Tetrahedron Lett. 1984, 25, 5517–5520. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, L.; Jiao, N. Utilization of natural sunlight and air in the aerobic oxidation of benzyl halides. Org. Lett. 2011, 13, 2168–2171. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R.L.; Jorgensen, K.A.; Xiao, W.-J. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: Photoredox catalysis using visible light. Angew. Chem. Int. Ed. 2012, 51, 784. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic visible-light photoredox radical C–H functionalization: Catalytic synthesis of 2-substituted benzothiazoles. Org. Lett. 2012, 14, 98–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, T.; Zhou, X.; Yang, Y. Oxygen-vacancy-boosted visible light driven photocatalytic oxidative dehydrogenation of saturated N-heterocycles over Nb2O5 nanorods. Appl. Catal. B Environ. 2022, 316, 121622. [Google Scholar] [CrossRef]
- Bergonzini, G.; Schindler, C.S.; Wallentin, C.-J.; Jacobsen, E.N.; Stephenson, C.R.J. Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem. Sci. 2014, 5, 112–116. [Google Scholar] [CrossRef] [Green Version]
- DiRocco, D.A.; Rovis, T. Catalytic Asymmetric α-Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode: N-Heterocyclic Carbene and Photoredox Catalysis. J. Am. Chem. Soc. 2012, 134, 8094–8097. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.-J.; Xuan, J.; Xia, X.-D.; Ding, W.; Guo, W.; Chen, J.-R.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Direct sp3 C–H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis. Org. Biomol. Chem. 2014, 12, 2037–2040. [Google Scholar] [CrossRef]
- Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C.-J. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org. Biomol. Chem. 2015, 13, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, J.W.; Narayanam, J.M.R.; Shah, P.S.; Stephenson, C.R.J. Oxidative photoredox catalysis: Mild and selective deprotection of PMB ethers mediated by visible light. Chem. Commun. 2011, 47, 5040–5042. [Google Scholar] [CrossRef]
- An, J.; Zou, Y.-Q.; Yang, Q.-Q.; Wang, Q.; Xiao, W.-J. Visible Light-Induced Aerobic Oxyamidation of Indoles: A Photocatalytic Strategy for the Preparation of Tetrahydro-5H-indolo [2,3-b] quinolinols. Adv. Synth. Cat. 2013, 355, 1483–1489. [Google Scholar] [CrossRef]
- Ding, W.; Zhou, Q.-Q.; Xuan, J.; Li, T.-R.; Lu, L.-Q.; Xiao, W.-J. Photocatalytic aerobic oxidation/semipinacol rearrangement sequence: A concise route to the core of pseudoindoxyl alkaloids. Tetrahedron Lett. 2014, 55, 4648–4652. [Google Scholar] [CrossRef]
- Parrish, J.D.; Ischay, M.A.; Lu, Z.; Guo, S.; Peters, N.R.; Yoon, T.P. Endoperoxide synthesis by photocatalytic aerobic [2 + 2 + 2] cycloadditions. Org. Lett. 2012, 14, 1640–1643. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Parrish, J.D.; Yoon, T.P. [3 + 2] Photooxygenation of aryl cyclopropanes via visible light photocatalysis. Tetrahedron 2014, 70, 4270–4278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Visible-Light-Mediated Decarboxylation/Oxidative Amidation of α-Keto Acids with Amines under Mild Reaction Conditions Using O2. Angew. Chem. Int. Ed. 2014, 53, 502–506. [Google Scholar] [CrossRef]
- Sun, H.; Yang, C.; Lin, R.; Xia, W. Regioselective Ring-Opening Nucleophilic Addition of Aziridines through Photoredox Catalyst. Adv. Synth. Cat. 2014, 356, 2775–2780. [Google Scholar] [CrossRef]
- Hamada, T.; Ishida, H.; Usui, S.; Watanabe, Y.; Tsumura, K.; Ohkubo, K. A novel photocatalytic asymmetric synthesis of (R)-(+)-1,1′-bi-2-naphthol derivatives by oxidative coupling of 3-substituted-2-naphthol with Δ-[Ru(menbpy)3]2+[menbpy = 4,4′-di (1R,2S,5R)-(–)-menthoxycarbonyl-2,2′-bipyridine], which posseses molecular helicity. Chem. Commun. 1993, 11, 909–911. [Google Scholar]
- Jin, J.; MacMillan, D.W.C. Direct α-Arylation of Ethers through the Combination of Photoredox-Mediated C-H Functionalization and the Minisci Reaction. Angew. Chem. Int. Ed. 2014, 54, 1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pac, C.; Ihama, M.; Yasuda, M.; Miyauchi, Y.; Sakurai, H. Tris (2,2′-bipyridine) ruthenium(2+)-mediated photoreduction of olefins with 1-benzyl-1,4-dihydronicotinamide: A mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds. J. Am. Chem. Soc. 1981, 103, 6495–6497. [Google Scholar] [CrossRef]
- Ellefsen, J.D.; Miller, S.J. Photocatalytic Reductive Olefin Hydrodifluoroalkylation Enabled by Tertiary Amine Reductants Compatible with Complex Systems. J. Org. Chem. 2022, 87, 10250–10255. [Google Scholar] [CrossRef] [PubMed]
- Tilby, M.J.; Dewez, D.F.; Pantaine, L.R.; Hall, A.; Martínez-Lamenca, C.; Willis, M.C. Photocatalytic late-stage functionalization of sulfonamides via sulfonyl radical intermediates. ACS Catal. 2022, 12, 6060–6067. [Google Scholar] [CrossRef] [PubMed]
- Alonso, F.; Beletskaya, I.P.; Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 2002, 102, 4009–4092. [Google Scholar] [CrossRef]
- Goren, Z.; Willner, I. Photochemical and chemical reduction of vicinal dibromides via phase transfer of 4,4′-bipyridinium radical: The role of radical disproportionation. J. Am. Chem. Soc. 1983, 105, 7764–7765. [Google Scholar] [CrossRef]
- Hironaka, K.; Fukuzumi, S.; Tanaka, T. Tris(bipyridyl)ruthenium(II)-photosensitized reaction of 1-benzyl-1,4-dihydronicotinamide with benzyl bromide. J. Chem. Soc. Perkin Trans. 2 1984, 10, 1705–1709. [Google Scholar] [CrossRef]
- Maidan, R.; Goren, Z.; Becker, J.Y.; Willner, I. Application of multielectron charge relays in chemical and photochemical debromination processes. The role of induced disproportionation of N,N’-dioctyl-4,4′-bipyridinium radical cation in two-phase systems. J. Am. Chem. Soc. 1984, 106, 6217–6222. [Google Scholar] [CrossRef]
- Mashraqui, S.H.; Kellogg, R.M. 3-Methyl-2,3-dihydrobenzothiazoles as reducing agent. Dye enhanced photoreactions. Tetrahedron Lett. 1985, 26, 1453–1456. [Google Scholar] [CrossRef]
- Maidan, R.; Willner, I. Photochemical and chemical enzyme catalyzed debromination of meso-1,2-dibromostilbene in multiphase systems. J. Am. Chem. Soc. 1986, 108, 1080–1082. [Google Scholar] [CrossRef]
- Willner, I.; Tsfania, T.; Eichen, Y. Photocatalyzed and electrocatalyzed reduction of vicinal dibromides and activated ketones using ruthenium(I) tris(bipyridine) as electron-transfer mediator. J. Org. Chem. 1990, 55, 2656–2662. [Google Scholar] [CrossRef]
- Neumann, M.; Fiildner, S.; Konig, B.; Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed. 2011, 50, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Willner, I.; Goren, Z.; Mandler, D.; Maidan, R.; Degani, Y.; Oegani, J. Transformation of single-electron transfer photoproducts into multielectron charge relays: The functions of water—Oil two-phase systems and enzyme catalysis. J. Photochem. 1985, 28, 215–228. [Google Scholar] [CrossRef]
- Maji, T.; Karmakar, A.; Reiser, O. Comprehensive Organic Synthesis. J. Org. Chem. 2011, 76, 736. [Google Scholar] [CrossRef]
- McTiernan, C.D.; Pitre, S.P.; Scaiano, J.C. Photocatalytic dehalogenation of vicinal dibromo compounds utilizing sexithiophene and visible-light irradiation. ACS Catal. 2014, 4, 4034. [Google Scholar] [CrossRef]
- Nguyen, J.O.; O’Amato, E.M.; Narayanam, J.M.; Stephenson, C.R. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 2012, 4, 854. [Google Scholar] [CrossRef]
- Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. Photosensitized decarboxylative Michael addition through N-(acyloxy) phthalimides via an electron-transfer mechanism. J. Am. Chem. Soc. 1991, 113, 9401–9402. [Google Scholar] [CrossRef]
- Okada, K.; Okubo, K.; Morita, N.; Oda, M. Redox-mediated decarboxylative photo-phenylselenenylation of N-acyloxyphthalimides. Chem. Lett. 1993, 22, 2021–2024. [Google Scholar] [CrossRef]
- Okada, K.; Okubo, K.; Morita, N.; Oda, M. Reductive decarboxylation of N-(acyloxy) phthalimides via redox-initiated radical chain mechanism. Tetrahedron Lett. 1992, 33, 7377–7380. [Google Scholar] [CrossRef]
- Kim, H.; Lee, C. Visible-light-induced photocatalytic reductive transformations of organohalides. Angew. Chem. Int. Ed. 2012, 51, 12303–12306. [Google Scholar] [CrossRef]
- Wang, H.; Tao, J.; Cai, X.; Chen, W.; Zhao, Y.; Xu, Y.; Yao, W.; Zeng, J.; Wan, Q. Stereoselective Synthesis of α-Linked 2-Deoxy Glycosides Enabled by Visible-Light-Mediated Reductive Deiodination. Chem. Eur. J. 2014, 20, 17319–17323. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, L.; Queffélec, C.; Haidaraly, K.M.; Blart, E.; Pellegrin, Y. Dehalogenation reaction photocatalyzed by homoleptic copper(i) complexes associated with strongly reductive sacrificial donors. Catal. Sci. Technol. 2021, 11, 6041–6047. [Google Scholar] [CrossRef]
- Nakamura, K.; Fujii, M.; Mekata, H.; Oka, S.; Ohno, A. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 897–898. [Google Scholar]
- Yang, D.-T.; Meng, Q.-Y.; Zhong, J.-J.; Xiang, M.; Liu, Q.; Wu, L.-Z. Metal-free desulfonylation reaction through visible-light photoredox catalysis. Eur. J. Org. Chem. 2013, 2013, 7528–7532. [Google Scholar] [CrossRef]
- Xuan, J.; Li, B.-J.; Feng, Z.-J.; Sun, G.-D.; Ma, H.-H.; Yuan, Z.-W.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Desulfonylation of Tosyl Amides through Catalytic Photoredox Cleavage of N-S Bond Under Visible-Light Irradiation. Chem. Asian. J. 2013, 8, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Hedstrand, D.M.; Kruizinga, W.M.; Kellogg, R.M. Light induced and dye accelerated reductions of phenacyl onium salts by 1,4-dihydropyridines. Tetrahedron Lett. 1978, 19, 1255–1258. [Google Scholar] [CrossRef]
- Van Bergen, T.J.; Hedstrand, D.M.; Kruizinga, W.H.; Kellogg, R.M. Reduction of aldehydes and ketones by sodium dithionite. J. Org. Chem. 1979, 44, 4953. [Google Scholar] [CrossRef]
- Kerzig, C.; Guo, X.; Wenger, O.S. Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2122–2127. [Google Scholar] [CrossRef]
- Zlotorzynska, M.; Sammis, G.M. Photoinduced electron-transfer-promoted redox fragmentation of N-alkoxyphthalimides. Org. Lett. 2011, 13, 6264–6267. [Google Scholar] [CrossRef]
- Larraufie, M.H.; Pellet, R.; Fensterbank, L.; Goddard, J.P.; Lacote, E.; Malacria, M.; Ollivier, C. Visible-light-induced photoreductive generation of radicals from epoxides and aziridines. Angew. Chem. Int. Ed. 2011, 50, 4463. [Google Scholar] [CrossRef]
- Hiraonaka, T.; Shiori, J.; Okahata, N. Ruthenium–bipyridine complex-catalyzed photo-induced reduction of nitrobenzenes with hydrazine. Bull. Chem. Soc. Jpn. 2004, 77, 1763–1764. [Google Scholar]
- Kern, J.-M.; Sauvage, J.-P. Photochemical deposition of electrically conducting polypyrrole. Chem. Commun. 1987, 10, 657–658. [Google Scholar] [CrossRef]
- Zhang, W.; Carpenter, K.L.; Lin, S. Electrochemistry broadens the scope of flavin photocatalysis: Photoelectrocatalytic oxidation of unactivated alcohols. Angew. Chem. 2020, 132, 417–425. [Google Scholar] [CrossRef]
- Gazi, S.; Ananthakrishnan, R. Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Appl. Catal. B Environ. 2011, 105, 317–325. [Google Scholar] [CrossRef]
- Chen, Y.; Kamlet, A.S.; Steinman, J.B.; Liu, D.R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 2011, 3, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Willner, I.; Ford, W.E.; Otvos, J.W.; Calvin, M. Photoinduced electron transfer across a water-oil boundary: A model for redox reaction separation. Nature 1979, 280, 823–824. [Google Scholar] [CrossRef]
- Aida, K.; Hirao, M.; Funabashi, A.; Sugimura, N.; Ota, E.; Yamaguchi, J. Reductive Ring Opening of Epoxides under Dual Zirconocene and Photoredox Catalysis. J. Chem. 2022, 8, 1762. [Google Scholar]
- Aida, K.; Hirao, M.; Funabashi, A.; Sugimura, N.; Ota, E.; Yamaguchi, J. Catalytic reductive ring opening of epoxides enabled by zirconocene and photoredox catalysis. Chem 2022, 8, 1762–1774. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Csiba, M.A.; Jaszberenyi, J.C. Ru(bpy)32+-mediated addition of Se-phenyl p-tolueneselenosulfonate to electron rich olefins. Tetrahedron Lett. 1994, 35, 2869–2872. [Google Scholar] [CrossRef]
- Nguyen, J.D.; Tucker, J.W.; Konieczynska, M.D.; Stephenson, C.R.J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc. 2011, 133, 4160–4163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. [Cu(dap)2Cl] As an Efficient Visible-Light-Driven Photoredox Catalyst in Carbon–Carbon Bond-Forming Reactions. Chem. Eur. J. 2012, 18, 7336–7340. [Google Scholar] [CrossRef]
- Gu, X.; Li, X.; Qu, Y.; Yang, Q.; Li, P.; Yao, Y. Intermolecular Visible-Light Photoredox Atom-Transfer Radical [3 + 2]-Cyclization of 2-(Iodomethyl) cyclopropane-1,1-dicarboxylate with Alkenes and Alkynes. Chem. Eur. J. 2013, 19, 11878–11882. [Google Scholar] [CrossRef]
- Gu, X.; Lu, P.; Fan, W.; Li, P.; Yao, Y. Visible light photoredox atom transfer Ueno–Stork reaction. Org. Biomol. Chem. 2013, 11, 7088–7091. [Google Scholar] [CrossRef] [Green Version]
- Shih, H.W.; Vander Wal, M.N.; Grange, R.L.; MacMillan, D.W. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 2010, 132, 13600–13603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagib, D.A.; Scott, M.E.; MacMillan, D.W. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 2009, 131, 10875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, P.V.; Nagib, D.A.; MacMillan, D.W. Photoredox Catalysis: A Mild, Operationally Simple Approach to the Synthesis of α-Trifluoromethyl Carbonyl Compounds. Angew. Chem. Int. Ed. 2011, 50, 6119. [Google Scholar] [CrossRef] [Green Version]
- Cecere, G.; Konig, C.M.; Alleva, J.L.; MacMillan, D.W.C. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: A strategy for asymmetric amine fragment coupling. J. Am. Chem. Soc. 2013, 135, 11521–11524. [Google Scholar] [CrossRef] [Green Version]
- Cherevatskaya, M.; Neumann, M.; Ftildner, S.; Harlander, C.; Klimmel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; Konig, B. Visible-light-promoted stereoselective alkylation by combining heterogeneous photocatalysis with organocatalysis. Angew. Chem. Int. Ed. 2012, 51, 4062–4066. [Google Scholar] [CrossRef]
- Arceo, E.; Jurberg, I.D.; Alvarez-Fernandez, A.; Melchiorre, P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat. Chem. 2013, 5, 750–756. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, L.; Luo, S. Asymmetric α-photoalkylation of β-ketocarbonyls by primary amine catalysis: Facile access to acyclic all-carbon quaternary stereocenters. J. Am. Chem. Soc. 2014, 136, 14642–14654. [Google Scholar] [CrossRef]
- Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. Synergistic catalysis of ionic Brønsted acid and photosensitizer for a redox neutral asymmetric α-coupling of N-arylaminomethanes with aldimines. J. Am. Chem. Soc. 2015, 137, 13768–13771. [Google Scholar] [CrossRef]
- Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 2014, 515, 100. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Z.; Cai, J.; Gong, L. Visible-light-promoted asymmetric catalysis by chiral complexes of first-row transition metals. Synthesis 2021, 53, 1570. [Google Scholar]
- Zhou, K.; Yu, Y.; Lin, Y.M.; Li, Y.; Gong, L. Copper-catalyzed aerobic asymmetric cross-dehydrogenative coupling of C (sp3)–H bonds driven by visible light. Green Chem. 2020, 22, 4597–4603. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Chen, B.; Xu, M.; Li, C.; Zhang, D.; Zhang, G. Copper-catalyzed photoinduced enantioselective dual carbofunctionalization of alkenes. Org. Lett. 2020, 22, 1490. [Google Scholar] [CrossRef]
- Xia, H.-D.; Li, Z.-L.; Gu, Q.-S.; Dong, X.-Y.; Fang, J.-H.; Du, X.-Y.; Wang, L.-L.; Liu, X.-Y. Photoinduced Copper-Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew. Chem. Int. Ed. 2020, 59, 16926. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jin, W.; Yu, S. Enantioselective remote C (sp3)–H cyanation via dual photoredox and copper catalysis. Org. Lett. 2020, 22, 5910. [Google Scholar] [CrossRef]
- Saha, D. Catalytic enantioselective radical transformations enabled by visible light. Chem. Asian J. 2020, 15, 2129–2152. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.-C. Enantioselective synthesis enabled by visible light photocatalysis. Org. Biomol. Chem. 2020, 18, 4298–4353. [Google Scholar] [CrossRef] [PubMed]
- Prentice, C.; Morrisson, J.; Smith, A.D.; Zysman-Colman, E. Beilstein Recent developments in enantioselective photocatalysis. J. Org. Chem. 2020, 16, 2363. [Google Scholar]
- Zhang, H.-H.; Chen, H.; Zhu, C.; Yu, S. A review of enantioselective dual transition metal/photoredox catalysis. Sci. China Chem. 2020, 63, 637–647. [Google Scholar] [CrossRef]
- Huang, X.; Meggers, E. Asymmetric photocatalysis with bis-cyclometalated rhodium complexes. Acc. Chem. Res. 2019, 52, 833–847. [Google Scholar] [CrossRef] [PubMed]
- Vega-Peñaloza, A.; Paria, S.; Bonchio, M.; Dell’Amico, L.; Companyó, X. Profiling the privileges of pyrrolidine-based catalysts in asymmetric synthesis: From polar to light-driven radical chemistry. ACS Catal. 2019, 9, 6058. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, W.; Zheng, W.-H.; Lu, H. Advances in asymmetric visible-light photocatalysis. Org. Biomol. Chem. 2019, 17, 8673–8689. [Google Scholar] [CrossRef]
- Lipp, A.; Badir, S.O.; Molander, G.A. Stereoinduction in metallaphotoredox catalysis. Angew. Chem. Int. Ed. 2021, 60, 1714–1726. [Google Scholar] [CrossRef]
- Kalyani, D.; McMurtrey, K.B.; Neufeldt, S.R.; Sanford, M.S. Room-temperature C–H arylation: Merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 2011, 133, 18566–18569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufeldt, S.R.; Sanford, M.S. The Catalytic Potential of Coptis japonica NCS2 Revealed–Development and Utilisation of a Fluorescamine-Based Assay. Adv. Synth. Cata. 2012, 354, 2997–3008. [Google Scholar]
- Lang, S.B.; O’Nele, K.M.; Tunge, J.A. Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis. J. Am. Chem. Soc. 2014, 136, 13606–13609. [Google Scholar] [CrossRef] [Green Version]
- Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Redox-Neutral α-Allylation of Amines by Combining Palladium Catalysis and Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 1625–1628. [Google Scholar] [CrossRef]
- Ye, Y.; Sanford, M.S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 2012, 134, 9034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, B.; Hopkinson, M.N.; Glorius, F. Combining gold and photoredox catalysis: Visible light-mediated oxy-and aminoarylation of alkenes. J. Am. Chem. Soc. 2013, 135, 5505. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Ahneman, D.T.; Chu, L.; Terrett, J.A.; Doyle, A.G.; MacMillan, D.W.C. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides. Science 2014, 345, 437–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellis, J.C.; Primer, D.N.; Molander, G.A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 2014, 345, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Yelo, H.; Deronzier, A. Photocatalysis of the Pschorr reaction by tris-(2,2′-bipyridyl) ruthenium(II) in the phenanthrene series. J. Chem. Soc. Perkin Trans. 2 1984, 6, 1093–1098. [Google Scholar] [CrossRef]
- Hari, D.P.; Schroll, P.; Konig, B. Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc. 2012, 134, 2958. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Jia, Z.H.; Zhao, C.J.; Zhang, Y.Y.; Wang, C.; Xiao, J. Direct Arylation of N-Heteroarenes with Aryldiazonium Salts by Photoredox Catalysis in Water. Chem. Eur. J. 2014, 20, 2960–2965. [Google Scholar] [CrossRef]
- Xiao, J.; Xue, D.; Liu, Y.-X.; Wang, J.-D.; Zhao, C.-J.; Zou, Q.-Z.; Wang, C. Room-temperature arylation of arenes and heteroarenes with diaryliodonium salts by photoredox catalysis. Synlett 2013, 24, 507. [Google Scholar]
- Cheng, Y.; Gu, X.; Li, P. Visible-light photoredox in homolytic aromatic substitution: Direct arylation of arenes with aryl halides. Org. Lett. 2013, 15, 2664–2667. [Google Scholar] [CrossRef]
- Nagib, D.A.; MacMillan, D.W.C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 2011, 480, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Choi, S.; Ko, E.; Cho, E.J. Trifluoromethylation of heterocycles via visible light photoredox catalysis. Tetrahedron Lett. 2012, 53, 2005. [Google Scholar] [CrossRef]
- Xie, J.; Yuan, X.; Abdukader, A.; Zhu, C.; Ma, J. Visible-light-promoted radical C–H trifluoromethylation of free anilines. Org. Lett. 2014, 16, 1768–1771. [Google Scholar] [CrossRef]
- Wang, L.; Wei, X.J.; Lei, W.L.; Chen, H.; Wu, L.Z.; Liu, Q. Direct C–H difluoromethylenephosphonation of arenes and heteroarenes with bromodifluoromethyl phosphonate via visible-light photocatalysis. Chem. Commun. 2014, 50, 15916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wei, X.J.; Jia, W.L.; Zhong, J.J.; Wu, L.Z.; Liu, Q. Visible-Light-Driven Difluoroacetamidation of Unactive Arenes and Heteroarenes by Direct C–H Functionalization at Room Temperature. Org. Lett. 2014, 16, 5842–5845. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X.-S. Visible light-mediated C–H difluoromethylation of electron-rich heteroarenes. Org. Lett. 2014, 16, 2958. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, E.; You, Y.; Cho, E.J. Visible Light-Induced Aromatic Difluoroalkylation. Adv. Synth. Cat. 2014, 356, 2741–2748. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.; Lee, D.G.; Roh, S.W.; Lee, C. Nitrogen-centered radical-mediated C–H imidation of arenes and heteroarenes via visible light induced photocatalysis. Chem. Commun. 2014, 50, 9273–9276. [Google Scholar] [CrossRef]
- Allen, L.J.; Cabrera, P.J.; Lee, M.; Sanford, M.S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C–H amination of arenes and heteroarenes. J. Am. Chem. Soc. 2014, 136, 5607–5610. [Google Scholar] [CrossRef]
- Qin, Q.; Yu, S. Visible-light-promoted redox neutral C–H amidation of heteroarenes with hydroxylamine derivatives. Org. Lett. 2014, 16, 3504–3507. [Google Scholar] [CrossRef]
- Yasu, Y.; Koike, T.; Akita, M. Three-component Oxytrifluoromethylation of Alkenes: Highly Efficient and Regioselective Difunctionalization of C—C Bonds Mediated by Photoredox Catalysts. Angew. Chem. Int. Ed. 2012, 51, 9567–9571. [Google Scholar] [CrossRef]
- Yasu, Y.; Koike, T.; Akita, M. Intermolecular aminotrifluoromethylation of alkenes by visible-light-driven photoredox catalysis. Org. Lett. 2013, 15, 2136–2139. [Google Scholar] [CrossRef]
- Yasu, Y.; Arai, Y.; Tomita, R.; Koike, T.; Akita, M. Highly regio-and diastereoselective synthesis of CF3-substituted lactones via photoredox-catalyzed carbolactonization of alkenoic acids. Org. Lett. 2014, 16, 780–783. [Google Scholar] [CrossRef]
- Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Combining photoredox-catalyzed trifluoromethylation and oxidation with DMSO: Facile synthesis of α-trifluoromethylated ketones from aromatic alkenes. Angew. Chem. Int. Ed. 2014, 53, 7144–7148. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Choi, S.; Kim, E.; Cho, E.J. Trifluoromethylation of alkenes by visible light photoredox catalysis. J. Org. Chem. 2012, 77, 11383–11387. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Jung, J.; Park, S.; Cho, E.J. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2014, 53, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, J.M.; Nicewicz, D.A. Synthesis of Highly Substituted Tetrahydrofurans by Catalytic Polar-Radical-Crossover Cycloadditions of Alkenes and Alkenols. Angew. Chem. Int. Ed. 2013, 52, 3967–3971. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Nicewicz, D.A. Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system. J. Am. Chem. Soc. 2013, 135, 9588–9591. [Google Scholar] [CrossRef] [Green Version]
- Perkowski, A.J.; Nicewicz, D.A. Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes. J. Am. Chem. Soc. 2013, 135, 10334–10337. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.; Manohar, N.; Nicewicz, D.A. anti-Markovnikov Hydroamination of Alkenes Catalyzed by a Two-Component Organic Photoredox System. Angew. Chem. Int. Ed. 2014, 53, 6198–6201. [Google Scholar] [CrossRef] [Green Version]
- Wilger, D.J.; Grandjean, J.M.; Lammert, T.R.; Nicewicz, D.A. The direct anti-Markovnikov addition of mineral acids to styrenes. Nat. Chem. 2014, 6, 720–726. [Google Scholar] [CrossRef]
- Du, J.; Yoon, T.P. Crossed intermolecular [2 + 2] cycloadditions of acyclic enones via visible light photocatalysis. J. Am. Chem. Soc. 2009, 131, 14604–14605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Shen, M.; Yoon, T.P. [3 + 2] Cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc. 2011, 133, 1162–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Skubi, K.L.; Schultz, D.M.; Yoon, T.P. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Science 2014, 344, 392–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Visible light photoredox catalysis: Generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to michael acceptors. Org. Lett. 2012, 14, 672–675. [Google Scholar] [CrossRef]
- Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Visible-light-mediated utilization of α-aminoalkyl radicals: Addition to electron-deficient alkenes using photoredox catalysts. J. Am. Chem. Soc. 2012, 134, 3338–3341. [Google Scholar] [CrossRef]
- Miyake, Y.; Ashida, Y.; Nakajima, K.; Nishibayashi, Y. Visible-light-mediated addition of α-aminoalkyl radicals generated from α-silylamines to α,β-unsaturated carbonyl compounds. Chem. Commun. 2012, 48, 6966–6968. [Google Scholar] [CrossRef]
- Yoon, U.C.; Mariano, P.S. Mechanistic and synthetic aspects of amine-enone single electron transfer photochemistry. Acc. Chem. Res. 1992, 25, 233–240. [Google Scholar] [CrossRef]
- Xu, W.; Jeon, Y.T.; Hasegawa, E.; Yoon, U.C.; Mariano, P.S. Novel electron-transfer photocyclization reactions of. alpha.-silyl amine. alpha., beta.-unsaturated ketone and ester systems. J. Am. Chem. Soc. 1989, 111, 406–408. [Google Scholar] [CrossRef]
- Jeon, Y.T.; Lee, C.-P.; Mariano, P.S. Radical cyclization reactions of. alpha.-silyl amine. alpha., beta.-unsaturated ketone and ester systems promoted by single electron transfer photosensitization. J. Am. Chem. Soc. 1991, 113, 8847–8863. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, X.-M.; Mariano, P.S. Single electron transfer promoted photocyclization reactions of (aminoalkyl) cyclohexenones. Mechanistic and synthetic features of processes involving the generation and reactions of amine cation and. alpha.-amino radicals. J. Am. Chem. Soc. 1991, 113, 8863–8878. [Google Scholar] [CrossRef]
- Hamilton, D.S.; Nicewicz, D.A. Direct catalytic anti-Markovnikov hydroetherification of alkenols. J. Am. Chem. Soc. 2012, 134, 18577–18580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.-Q.; Duan, S.-W.; Meng, X.-G.; Hu, X.-Q.; Gao, S.; Chen, J.-R.; Xiao, W.-J. Visible light induced intermolecular [2 + 2]-cycloaddition reactions of 3-ylideneoxindoles through energy transfer pathway. Tetrahedron 2012, 68, 6914–6919. [Google Scholar] [CrossRef]
- Xia, X.-D.; Xuan, J.; Wang, Q.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Synthesis of 2-Substituted Indoles through Visible Light-Induced Photocatalytic Cyclizations of Styryl Azides. Adv. Synth. Cat. 2014, 356, 2807–2812. [Google Scholar] [CrossRef]
- Lu, Z.; Yoon, T.P. Visible light photocatalysis of [2 + 2] styrene cycloadditions by energy transfer. Angew. Chem. Int. Ed. 2012, 51, 10329. [Google Scholar] [CrossRef] [PubMed]
- Farney, E.P.; Yoon, T.P. Visible-Light Sensitization of Vinyl Azides by Transition-Metal Photocatalysis. Angew. Chem. Int. Ed. 2014, 53, 793–797. [Google Scholar] [CrossRef]
- Fan, W.G.; Li, P.X. Visible-Light-Mediated 1,2-Acyl Migration: The Reaction of Secondary Enamino Ketones with Singlet Oxygen. Angew. Chem. Int. Ed. 2014, 53, 12201. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Dong, W.; Xie, X.; Wan, J.; Zhang, Z. Visible light-induced aerobic C–N bond activation: A photocatalytic strategy for the preparation of 2-arylpyridines and 2-arylquinolines. RSC Adv. 2016, 54, 48315–48318. [Google Scholar] [CrossRef]
- Zhao, M.; Lu, B.; Ding, G.; Ren, K.; Xie, X.; Zhang, Z. Ru-catalyzed asymmetric hydrogenation of δ-keto Weinreb amides: Enantioselective synthesis of (+)-Centrolobine. Org. Biomol. Chem. 2016, 14, 2723–2730. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Dong, W.; Ren, K.; Xie, X.; Wan, J.; Zhang, Z. Visible light-induced intramolecular dearomative cyclization of α-bromo-N-benzyl-alkylamides: Efficient construction of 2-azaspiro[4.5]decanes. Chem. Commun. 2016, 52, 3709–3712. [Google Scholar] [CrossRef]
- Gao, X.; Dong, W.; Hu, B.; Gao, H.; Yuan, Y.; Xie, X.; Zhang, Z. Visible-light induced tandem radical cyanomethylation and cyclization of N-aryl acrylamides: Access to cyanomethylated oxindoles. RSC Adv. 2017, 78, 49299–49302. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yuan, Y.; Xie, X.; Zhang, Z. Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: A facile strategy to synthesize spiroindolenines. Chem. Commun. 2020, 56, 14047–14050. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, C.; Yuan, Y.; Xie, X.; Zhang, Z. Visible-light-induced intramolecular radical cascade of α-bromo-N-benzyl-alkylamides: A new strategy to synthesize tetracyclic N-fused indolo [2,1-a] isoquinolin-6 (5 H)-ones. Org. Biomol. Chem. 2020, 18, 263. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Yang, L.; Zhang, Z.; Xie, X. Visible-light-promoted aerobic oxidation of sulfides and sulfoxides in ketone solvents. Tetrahedron 2022, 110, 132708. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, S.Y.; Dong, W.H.; Wu, F.; Xie, X.M.; Zhang, Z.G. Visible-Light-Induced Radical Cascade Cyclization of o-Diisocyanoarenes: Synthesis of Diethyl Benzo[a]phenazine-6,6(5H)-Dicarboxylate. Adv. Synth. Catal. 2021, 363, 4216–4221. [Google Scholar] [CrossRef]
- Dong, W.; Yuan, Y.; Liang, C.; Wu, F.; Zhang, S.; Xie, X.; Zhang, Z. Photocatalytic radical ortho-dearomative cyclization: Access to spiro[4.5]deca-1,7,9-trien-6-ones. J. Org. Chem. 2021, 86, 3697–3705. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.; MacMillan, D.W. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 2014, 136, 11602–11605. [Google Scholar] [CrossRef]
- Affron, D.P.; Davis, O.A.; Bull, J.A. Regio-and stereospecific synthesis of C-3 functionalized proline derivatives by palladium catalyzed directed C(sp3)–H arylation. Org. Lett. 2014, 16, 4956–4959. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.S.; Lin, P.-H.; Zhang, Q.; Zeng, B.; Wang, Q.; Meguellati, K. Visible Light Induced C-H/N-H and C-X Bonds Reactions. Reactions 2023, 4, 189-230. https://doi.org/10.3390/reactions4010012
Ahmad MS, Lin P-H, Zhang Q, Zeng B, Wang Q, Meguellati K. Visible Light Induced C-H/N-H and C-X Bonds Reactions. Reactions. 2023; 4(1):189-230. https://doi.org/10.3390/reactions4010012
Chicago/Turabian StyleAhmad, Muhammad Siddique, Po-Han Lin, Qing Zhang, Bing Zeng, Qifeng Wang, and Kamel Meguellati. 2023. "Visible Light Induced C-H/N-H and C-X Bonds Reactions" Reactions 4, no. 1: 189-230. https://doi.org/10.3390/reactions4010012
APA StyleAhmad, M. S., Lin, P. -H., Zhang, Q., Zeng, B., Wang, Q., & Meguellati, K. (2023). Visible Light Induced C-H/N-H and C-X Bonds Reactions. Reactions, 4(1), 189-230. https://doi.org/10.3390/reactions4010012