Enhancing Photon Transfer Efficiency in Photocatalysis Using Suspended LED Lights for Water Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LED Light Bulbs
2.3. Experimental Setup
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Mancuso, A.; Navarra, W.; Sacco, O.; Pragliola, S.; Vaiano, V.; Venditto, V. Photocatalytic Degradation of Thiacloprid Using Tri-Doped TiO2 Photocatalysts: A Preliminary Comparative Study. Catalysts 2021, 11, 927. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Jadaa, W.; Prakash, A.; Ray, A.K. Photocatalytic Degradation of Diazo Dye over Suspended and Immobilized TiO2 Catalyst in Swirl Flow Reactor: Kinetic Modeling. Processes 2021, 9, 1741. [Google Scholar] [CrossRef]
- Dionysiou, D.D.; Balasubramanian, G.; Suidan, M.T.; Khodadoust, A.P.; Baudin, I.; Laîné, J.M. Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water. Water Res. 2000, 34, 2927–2940. [Google Scholar] [CrossRef]
- Lin, H.; Valsaraj, K.T. Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment. J. Appl. Electrochem. 2005, 35, 699–708. [Google Scholar] [CrossRef]
- Aran, H.C.; Salamon, D.; Rijnaarts, T.; Mul, G.; Wessling, M.; Lammertink, R.G.H. Porous photocatalytic membrane microreactor (P2M2): A new reactor concept for photochemistry. J. Photochem. Photobiol. A Chem. 2011, 225, 36–41. [Google Scholar]
- Kuipers, J.; Bruning, H.; Yntema, D.; Rijnaarts, H. Wirelessly powered ultraviolet light emitting diodes for photocatalytic oxidation. J. Photochem. Photobiol. A Chem. 2015, 299, 25–30. [Google Scholar] [CrossRef]
- Kuhlmann, K.; Matthews, D.R. Current Assignee Meridian Design Inc. U.S. Patent No. US7550089B2, 23 June 2009. [Google Scholar]
- Yao, Z.; Wang, M.; Jia, R.; Zhao, Q.; Liu, L.; Sun, S. Comparison of UV-based advanced oxidation processes for the removal of different fractions of NOM from drinking water. J. Environ. Sci. 2023, 126, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wen, W.; Qian, X.Y.; Liu, J.B.; Wu, J.M. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Sci. Rep. 2017, 7, 41253. [Google Scholar] [PubMed]
- Rojviroon, T.; Sirivithayapakorn, S. Properties of TiO2 thin films prepared using sol–gel process. Surf. Eng. 2013, 29, 77–80. [Google Scholar] [CrossRef]
Reactor Shape, Volume, mL | UV/Visible Light Source Wattage, Watt | Watt per Unit Volume W/mL | Reference |
---|---|---|---|
Cylindrical 100 mL | 200 W high pressure mercury lamp | 2 | Yao et al., 2023 [11] |
Dish type 100 mL | 75 W low pressure mercury lamp | 0.75 | Yao et al., 2023 [11] |
Cylindrical 25 mL | 18 W UV + 500 W Xe lamp | 20.75 | Yang Yu et al., 2017 [12] |
Cylindrical 1100 mL | 500 W UV-LED | 0.45 | Thammasak Rojviroon et al., 2013 [13] |
Cylindrical 500 mL | 1.7 W (total) * | 0.0035 | This study |
Sample Initial Concentration mg/L | Degradation % | Time Requirements | |
---|---|---|---|
This Study | Waleed et al. [5] | ||
40 | 75 | 10 (h) | 14 (h) |
18 | 90 | 210 (min) | 270 (min) |
14 | 95 | 140 (min) | 150 (min) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rad, S.M.; Ray, A.K.; Barghi, S. Enhancing Photon Transfer Efficiency in Photocatalysis Using Suspended LED Lights for Water Treatment. Reactions 2023, 4, 246-253. https://doi.org/10.3390/reactions4020014
Rad SM, Ray AK, Barghi S. Enhancing Photon Transfer Efficiency in Photocatalysis Using Suspended LED Lights for Water Treatment. Reactions. 2023; 4(2):246-253. https://doi.org/10.3390/reactions4020014
Chicago/Turabian StyleRad, Samira Mosalaei, Ajay K. Ray, and Shahzad Barghi. 2023. "Enhancing Photon Transfer Efficiency in Photocatalysis Using Suspended LED Lights for Water Treatment" Reactions 4, no. 2: 246-253. https://doi.org/10.3390/reactions4020014
APA StyleRad, S. M., Ray, A. K., & Barghi, S. (2023). Enhancing Photon Transfer Efficiency in Photocatalysis Using Suspended LED Lights for Water Treatment. Reactions, 4(2), 246-253. https://doi.org/10.3390/reactions4020014