Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview
Abstract
:1. Introduction
2. Phyto-Mediated Synthesis: Plants and Flowers
- i.
- Plant parts are rinsed with water.
- ii.
- Plant parts are then sliced into smaller parts and then grinded in a mortar or ball-milled (the choice depends on the nature of the plant part). The obtained material can either be used itself or subjected to solid–liquid extraction (boiling, soxhlet, etc.).
- iii.
- Mixture is filtered to remove the solid component.
- iv.–vi.
- Plant extract can then be used for NP synthesis (sometimes a pre-concentration step is necessary).
Source of Biological Reactants | Year | Applications | Ref. |
---|---|---|---|
Microbes/bacteria | 2022 | Biomedical, agricultural, environmental | [20] |
Plant extracts | 2022 | Antimicrobial | [21] |
Microorganisms, plant extracts, algae | 2022 | Gas Sensing | [22] |
Microorganisms, plant extracts | 2022 | Fertilizers | [23] |
Plant extracts | 2022 | Biomedical | [24] |
Microorganisms, plant extracts | 2022 | Biomedical, (bio)sensing, imaging | [25] |
Natural extracts | 2022 | Pharmacotherapeutics | [26] |
Fruit peel | 2022 | Nutraceutical, biomedical, active coatings, sorbents | [27] |
Plant extracts | 2022 | Anticancer agents | [28] |
Microorganisms, plant extracts | 2022 | Photocatalysis | [29] |
Microorganisms, plant extracts, algae | 2021 | Pollutant removal | [30] |
Plant parts | 2021 | Antimicrobial, anticancer | [31] |
Marine organisms | 2021 | Drug delivery, antimicrobial, (bio)sensing, fertilizers | [32] |
Microorganisms, plant extracts, algae | 2021 | Antibacterial, antioxidant, antidiabetic and tissue regeneration | [33] |
Biopolymers, plant parts | 2021 | Nanocomposite production | [34] |
Plant extracts | 2021 | Environmental | [35] |
Plant extracts | 2021 | Biomedical | [36] |
Biopolymers, plant parts | 2021 | Drug delivery | [37] |
3. Algae and Seaweeds
4. Foods and Herbs
5. Bacteria and Microorganisms
6. Application of ZnONPs as Antimicrobial and Antiviral Agents
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sportelli, M.C.; Scarabino, S.; Picca, R.A.; Cioffi, N. Recent Trends in the Electrochemical Synthesis of Zinc Oxide Nano-Colloids. In CRC Concise Encyclopedia of Nanotechnology; CRC Press, LLC: Boca Raton, FL, USA, 2015; pp. 1158–1172. ISBN 978-1-4665-8034-3. [Google Scholar]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A Review on Green Synthesis of Zinc Oxide Nanoparticles—An Eco-Friendly Approach. Resour.-Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Srivastava, S.; Usmani, Z.; Atanasov, A.G.; Singh, V.K.; Singh, N.P.; Abdel-Azeem, A.M.; Prasad, R.; Gupta, G.; Sharma, M.; Bhargava, A. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis. Mini Rev. Med. Chem. 2021, 21, 245–265. [Google Scholar] [CrossRef]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Prasad, A.R.; Williams, L.; Garvasis, J.; Shamsheera, K.O.; Basheer, S.M.; Kuruvilla, M.; Joseph, A. Applications of Phytogenic ZnO Nanoparticles: A Review on Recent Advancements. J. Mol. Liq. 2021, 331, 115805. [Google Scholar] [CrossRef]
- Food and Drug Administration; Department of Health and Human Services FDA. Code of Federal Regulations, Title 21: Zinc Oxide. Available online: https://www.accessdata.fda.gov/ (accessed on 28 May 2021).
- Beveridge, T.J.; Fyfe, W.S. Metal Fixation by Bacterial Cell Walls. Can. J. Earth Sci. 1985, 22, 1893–1898. [Google Scholar] [CrossRef]
- Fendler, J.H. Biomineralization Inspired Preparation of Nanoparticles and Nanoparticulate Films. Curr. Opin. Solid State Mater. Sci. 1997, 2, 365–369. [Google Scholar] [CrossRef]
- Mondal, A.; Umekar, M.S.; Bhusari, G.S.; Chouke, P.B.; Lambat, T.; Mondal, S.; Chaudhary, R.G.; Mahmood, S.H. Biogenic Synthesis of Metal/Metal Oxide Nanostructured Materials. Curr. Pharm. Biotechnol. 2021, 22, 1782–1793. [Google Scholar] [CrossRef]
- Stephen, J.R.; Macnaughtont, S.J. Developments in Terrestrial Bacterial Remediation of Metals. Curr. Opin. Biotechnol. 1999, 10, 230–233. [Google Scholar] [CrossRef]
- Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Khamlich, S.; Maaza, M. Sageretia thea (Osbeck.) Mediated Synthesis of Zinc Oxide Nanoparticles and Its Biological Applications. Nanomedicine 2017, 12, 1767–1789. [Google Scholar] [CrossRef]
- Narendra Kumar, H.K.; Chandra Mohana, N.; Nuthan, B.R.; Ramesha, K.P.; Rakshith, D.; Geetha, N.; Satish, S. Phyto-Mediated Synthesis of Zinc Oxide Nanoparticles Using Aqueous Plant Extract of Ocimum americanum and Evaluation of Its Bioactivity. SN Appl. Sci. 2019, 1, 651. [Google Scholar] [CrossRef]
- Duran, N.; Seabra, A.B. Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications. Curr. Nanosci. 2018, 14, 82–94. [Google Scholar] [CrossRef]
- Bandala, E.R.; Stanisic, D.; Tasic, L. Biogenic Nanomaterials for Photocatalytic Degradation and Water Disinfection: A Review. Environ. Sci. Water Res. Technol. 2020, 6, 3195–3213. [Google Scholar] [CrossRef]
- Huang, Y.; Haw, C.Y.; Zheng, Z.; Kang, J.; Zheng, J.-C.; Wang, H.-Q. Biosynthesis of Zinc Oxide Nanomaterials from Plant Extracts and Future Green Prospects: A Topical Review. Adv. Sustain. Syst. 2021, 5, 2000266. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Devi Rajeswari, V. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 2018, e3569758. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BioNanoScience 2020, 10, 848–863. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Herdade, A.M.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Paranhos, A.; Veiga, F. Plant-Mediated Green Synthesis of Metal-Based Nanoparticles for Dermopharmaceutical and Cosmetic Applications. Int. J. Pharm. 2021, 597, 120311. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J. Inorg. Organomet. Polym. 2022. [Google Scholar] [CrossRef]
- Sheikh, S.; Mungole, A.J.; Krambe, S. A Review on Plant Extract Mediated Biological Synthesis of Zinc Oxide Nanoparticles and Its Antimicrobial Applications. Int. J. Res. Biosci. Agric. Technol. 2022, 2, 286–289. [Google Scholar]
- Dadkhah, M.; Tulliani, J.-M. Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications. Sensors 2022, 22, 4669. [Google Scholar] [CrossRef]
- Rani, S.; Kumar, P.; Dahiya, P.; Dang, A.S.; Suneja, P. Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects. Front. Microbiol. 2022, 13, 824427. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, K.; Khan, F.; Akram, M.; Zainab, R.; Rashid, A.; Kausar, S.; Kesherwani, D.; Parmar, P.; Ravichandran, S.; Rm, M.; et al. Synthesis of Nanoparticles from Plant Extracts. Acta Sci. Microbiol. 2022, 5, 29–35. [Google Scholar] [CrossRef]
- Deka, B.; Baruah, C.; Babu, A.; Kalita, P. Biological and Non-Conventional Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs): Their Potential Applications. J. Nanotechnol. Nanomater. 2022, 3, 79–89. [Google Scholar]
- Haldar, A.G.M.; Mahapatra, D.K.; Dadure, K.M.; Chaudary, R.G. Natural Extracts-Mediated Biosynthesis of Zinc Oxide Nanoparticles and Their Multiple Pharmacotherapeutic Perspectives. Jordan J. Phys. 2022, 15, 67–79. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, R.; Dhiman, A.; Sharma, A.; Prabhakar, P.K.; Gopalakrishnan, K.; Kumar, R.; Singh, A. Fruit Peel Bioactives, Valorisation into Nanoparticles and Potential Applications: A Review. Crit. Rev. Food Sci. Nutr. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Rani, N.; Saini, K. Biogenic Metal and Metal Oxides Nanoparticles as Anticancer Agent: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012043. [Google Scholar] [CrossRef]
- Bandala, E.R. Chapter 15—Photocatalytic Applications of Biogenic Nanomaterials. In Sustainable Nanotechnology for Environmental Remediation; Koduru, J.R., Karri, R.R., Mubarak, N.M., Bandala, E.R., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 383–396. ISBN 978-0-12-824547-7. [Google Scholar]
- Pang, C.Y.; Issabayeva, G.; Ning, K.L.Y.; Chu, W.M. Synthesis and Applications of Zinc Oxide for Removal of Various Pollutants: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 945, 012044. [Google Scholar] [CrossRef]
- Bukhari, A.; Ijaz, I.; Gilani, E.; Nazir, A.; Zain, H.; Saeed, R.; Alarfaji, S.S.; Hussain, S.; Aftab, R.; Naseer, Y. Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article. Coatings 2021, 11, 1374. [Google Scholar] [CrossRef]
- Yosri, N.; Khalifa, S.A.M.; Guo, Z.; Xu, B.; Zou, X.; El-Seedi, H.R. Marine Organisms: Pioneer Natural Sources of Polysaccharides/Proteins for Green Synthesis of Nanoparticles and Their Potential Applications. Int. J. Biol. Macromol. 2021, 193, 1767–1798. [Google Scholar] [CrossRef]
- Singh, T.A.; Sharma, A.; Tejwan, N.; Ghosh, N.; Das, J.; Sil, P.C. A State of the Art Review on the Synthesis, Antibacterial, Antioxidant, Antidiabetic and Tissue Regeneration Activities of Zinc Oxide Nanoparticles. Adv. Colloid Interface Sci. 2021, 295, 102495. [Google Scholar] [CrossRef]
- Hamrayev, H.; Shameli, K.; Yusefi, M.; Korpayev, S. Green Route for the Fabrication of ZnO Nanoparticles and Potential Functionalization with Chitosan Using Cross-Linkers: A Review. J. Res. Nanosci. Nanotechnol. 2021, 3, 1–25. [Google Scholar] [CrossRef]
- Kumar, J.A.; Krithiga, T.; Manigandan, S.; Sathish, S.; Renita, A.A.; Prakash, P.; Prasad, B.S.N.; Kumar, T.R.P.; Rajasimman, M.; Hosseini-Bandegharaei, A.; et al. A Focus to Green Synthesis of Metal/Metal Based Oxide Nanoparticles: Various Mechanisms and Applications towards Ecological Approach. J. Clean. Prod. 2021, 324, 129198. [Google Scholar] [CrossRef]
- Murali, M.; Kalegowda, N.; Gowtham, H.G.; Ansari, M.A.; Alomary, M.N.; Alghamdi, S.; Shilpa, N.; Singh, S.B.; Thriveni, M.C.; Aiyaz, M.; et al. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021, 13, 1662. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. Recent Advancements in Synthesis and Drug Delivery Utilization of Polysaccharides-Based Nanocomposites: The Important Role of Nanoparticles and Layered Double Hydroxides. Int. J. Biol. Macromol. 2021, 193, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Alrajhi, A.H.; Ahmed, N.M.; Al Shafouri, M.; Almessiere, M.A.; ahmed Mohammed Al-Ghamdi, A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officials Extract. Mater. Sci. Semicond. Process. 2021, 125, 105641. [Google Scholar] [CrossRef]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia Officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Royji Albeladi, S.S.; Malik, M.A.; Al-thabaiti, S.A. Facile Biofabrication of Silver Nanoparticles Using Salvia Officinalis Leaf Extract and Its Catalytic Activity towards Congo Red Dye Degradation. J. Mater. Res. Technol. 2020, 9, 10031–10044. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W.M. Adsorption, Antimicrobial and Wound Healing Activities of Biosynthesised Zinc Oxide Nanoparticles. Chem. Pap. 2021, 75, 893–907. [Google Scholar] [CrossRef]
- Primo, J.D.O.; Bittencourt, C.; Acosta, S.; Sierra-Castillo, A.; Colomer, J.-F.; Jaerger, S.; Teixeira, V.C.; Anaissi, F.J. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal from Wastewater. Front. Chem. 2020, 8, 571790. [Google Scholar] [CrossRef]
- Rasli, N.I.; Basri, H.; Harun, Z. Zinc Oxide from Aloe Vera Extract: Two-Level Factorial Screening of Biosynthesis Parameters. Heliyon 2020, 6, e03156. [Google Scholar] [CrossRef]
- Li, C.; Du, H.; Wang, L.; Shu, Q.; Zheng, Y.; Xu, Y.; Zhang, J.; Zhang, J.; Yang, R.; Ge, Y. Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers. J. Agric. Food Chem. 2009, 57, 8496–8503. [Google Scholar] [CrossRef] [PubMed]
- Nazaruk, J.; Jakoniuk, P. Flavonoid Composition and Antimicrobial Activity of Cirsium rivulare (Jacq.) All. Flowers. J. Ethnopharmacol. 2005, 102, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Suručić, R.; Šmitran, A.; Gajić, D.; Božić, L.; Antić, M.; Topić-Vučenović, V.; Umičević, N.; Antunović, V.; Jelić, D. Phytosynthesis of Zinc Oxide Nanoparticles with Acetonic Extract of Flowers of Geranium robertianum L. (Geraniaceae). J. Hyg. Eng. Des. 2021, 34, 5. [Google Scholar]
- Ajayan, A.S.; Hebsur, N.B. Green Synthesis of Zinc Oxide Nanoparticles Using Tea (Camellia sinesis) and Datura (Datura stramonium) Leaf Extract and Their Characterization. Chem. Sci. Rev. Lett. 2021, 10, 150–157. [Google Scholar] [CrossRef]
- Surendra, B.S.; Mallikarjunaswamy, C.; Pramila, S.; Rekha, N.D. Bio-Mediated Synthesis of ZnO Nanoparticles Using Lantana Camara Flower Extract: Its Characterizations, Photocatalytic, Electrochemical and Anti-Inflammatory Applications. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100442. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Hassankiadeh, M.N.; Zhang, L. Facile Biosynthesis of SnO2/ZnO Nanocomposite Using Acroptilon Repens Flower Extract and Evaluation of Their Photocatalytic Activity. Ceram. Int. 2021, 47, 29303–29308. [Google Scholar] [CrossRef]
- Ilangovan, A.; Venkatramanan, A.; Thangarajan, P.; Saravanan, A.; Rajendran, S.; Kaveri, K. Green Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) Using Aqueous Extract of Tagetes Erecta Flower and Evaluation of Its Antioxidant, Antimicrobial, and Cytotoxic Activities on HeLa Cell Line. Curr. Biotechnol. 2021, 10, 61–76. [Google Scholar] [CrossRef]
- Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elharty, M.E.; Saleh, A.; Abdelkader, D.H.; Mokhtar, F.A. Antibacterial Activity of Nano Zinc Oxide Green-Synthesised from Gardenia thailandica Triveng. Leaves against Pseudomonas aeruginosa Clinical Isolates: In Vitro and in Vivo Study. Artif. Cells Nanomed. Biotechnol. 2022, 50, 96–106. [Google Scholar] [CrossRef]
- Iqbal, T.; Raza, A.; Zafar, M.; Afsheen, S.; Kebaili, I.; Alrobei, H. Plant-Mediated Green Synthesis of Zinc Oxide Nanoparticles for Novel Application to Enhance the Shelf Life of Tomatoes. Appl. Nanosci. 2022, 12, 179–191. [Google Scholar] [CrossRef]
- Mane, P.; Shinde, B.; Mundada, P.; Karale, B.; Burungale, A. Biogenic Synthesis of ZnO Nanoparticles from Parthenium Histerophorus Extract and Its Catalytic Activity for Building Bioactive Polyhydroquinolines. Res. Chem. Intermed. 2021, 47, 1743–1758. [Google Scholar] [CrossRef]
- Parveen, K.; Kumar, N.; Ledwani, L. Green Synthesis of Zinc Oxide Nanoparticles Mediated from Cassia renigera Bark and Detect Its Effects on Four Varieties of Rice. ChemistrySelect 2022, 7, e202200415. [Google Scholar] [CrossRef]
- Hessien, M. Recent Progress in Zinc Oxide Nanomaterials and Nanocomposites: From Synthesis to Applications. Ceram. Int. 2022, 48, 22609–22628. [Google Scholar] [CrossRef]
- Fagier, M.A. Plant-Mediated Biosynthesis and Photocatalysis Activities of Zinc Oxide Nanoparticles: A Prospect towards Dyes Mineralization. J. Nanotechnol. 2021, 2021, e6629180. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Fawcett, D.; Verduin, J.J.; Shah, M.; Sharma, S.B.; Poinern, G.E.J. A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. J. Nanosci. 2017, 2017, e8013850. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Berneira, L.M.; Poletti, T.; de Freitas, S.C.; Maron, G.K.; Carreno, N.L.V.; de Pereira, C.M.P. Novel Application of Sub-Antarctic Macroalgae as Zinc Oxide Nanoparticles Biosynthesizers. Mater. Lett. 2022, 320, 132341. [Google Scholar] [CrossRef]
- Kanniah, P.; Chelliah, P.; Thangapandi, J.R.; Thangapandi, E.J.J.S.B.; Kasi, M.; Sivasubramaniam, S. Benign Fabrication of Metallic/Metal Oxide Nanoparticles from Algae. In Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 465–493. [Google Scholar] [CrossRef]
- El-Said, G.F.; El-Sikaily, A. Chemical Composition of Some Seaweed from Mediterranean Sea Coast, Egypt. Environ. Monit. Assess. 2013, 185, 6089–6099. [Google Scholar] [CrossRef]
- Lin, S.-T.; Thirumavalavan, M.; Jiang, T.-Y.; Lee, J.-F. Synthesis of ZnO/Zn Nano Photocatalyst Using Modified Polysaccharides for Photodegradation of Dyes. Carbohydr. Polym. 2014, 105, 1–9. [Google Scholar] [CrossRef]
- Priyadharshini, R.I.; Prasannaraj, G.; Geetha, N.; Venkatachalam, P. Microwave-Mediated Extracellular Synthesis of Metallic Silver and Zinc Oxide Nanoparticles Using Macro-Algae (Gracilaria edulis) Extracts and Its Anticancer Activity against Human PC3 Cell Lines. Appl. Biochem. Biotechnol. 2014, 174, 2777–2790. [Google Scholar] [CrossRef]
- Alsaggaf, M.S.; Diab, A.M.; ElSaied, B.E.F.; Tayel, A.A.; Moussa, S.H. Application of ZnO Nanoparticles Phycosynthesized with Ulva fasciata Extract for Preserving Peeled Shrimp Quality. Nanomaterials 2021, 11, 385. [Google Scholar] [CrossRef] [PubMed]
- Anjali, K.P.; Sangeetha, B.M.; Raghunathan, R.; Devi, G.; Dutta, S. Seaweed Mediated Fabrication of Zinc Oxide Nanoparticles and Their Antibacterial, Antifungal and Anticancer Applications. ChemistrySelect 2021, 6, 647–656. [Google Scholar] [CrossRef]
- Thirumoorthy, G.S.; Balasubramaniam, O.; Kumaresan, P.; Muthusamy, P.; Subramani, K. Tetraselmis Indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity. BioNanoScience 2021, 11, 172–181. [Google Scholar] [CrossRef]
- Srivastava, S.; Bhargava, A. Biological Synthesis of Nanoparticles: Algae. In Green Nanoparticles: The Future of Nanobiotechnology; Srivastava, S., Bhargava, A., Eds.; Springer: Singapore, 2022; pp. 139–171. ISBN 9789811671067. [Google Scholar]
- Subramanian, H.; Krishnan, M.; Mahalingam, A. Photocatalytic Dye Degradation and Photoexcited Anti-Microbial Activities of Green Zinc Oxide Nanoparticles Synthesized via Sargassum Muticum Extracts. RSC Adv. 2022, 12, 985–997. [Google Scholar] [CrossRef]
- Azizi, S.; Ahmad, M.B.; Namvar, F.; Mohamad, R. Green Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Brown Marine Macroalga Sargassum Muticum Aqueous Extract. Mater. Lett. 2014, 116, 275–277. [Google Scholar] [CrossRef]
- Kumar, R.V.; Vinoth, S.; Baskar, V.; Arun, M.; Gurusaravanan, P. Synthesis of Zinc Oxide Nanoparticles Mediated by Dictyota dichotoma Endophytic Fungi and Its Photocatalytic Degradation of Fast Green Dye and Antibacterial Applications. S. Afr. J. Bot. 2022, in press. [CrossRef]
- Nagarajan, S.; Arumugam Kuppusamy, K. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 2013, 11, 39. [Google Scholar] [CrossRef]
- Elemike, E.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ezeani, R.O. Chapter 8—Agro-Waste Materials: Sustainable Substrates in Nanotechnology. In Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Abd-Elsalam, K.A., Periakaruppan, R., Rajeshkumar, S., Eds.; Nanobiotechnology for Plant Protection; Elsevier: Amsterdam, The Netherlands, 2022; pp. 187–214. ISBN 978-0-12-823575-1. [Google Scholar]
- Velázquez-Gamboa, M.C.; Rodríguez-Hernández, L.; Abud-Archila, M.; Gutiérrez-Miceli, F.A.; González-Mendoza, D.; Valdez-Salas, B.; González-Terreros, E.; Luján-Hidalgo, M.C. Agronomic Biofortification of Stevia rebaudiana with Zinc Oxide (ZnO) Phytonanoparticles and Antioxidant Compounds. Sugar Tech. 2021, 23, 453–460. [Google Scholar] [CrossRef]
- Anugrah, D.S.B.; Alexander, H.; Pramitasari, R.; Hudiyanti, D.; Sagita, C.P. A Review of Polysaccharide-Zinc Oxide Nanocomposites as Safe Coating for Fruits Preservation. Coatings 2020, 10, 988. [Google Scholar] [CrossRef]
- Zuorro, A.; Iannone, A.; Natali, S.; Lavecchia, R. Green Synthesis of Silver Nanoparticles Using Bilberry and Red Currant Waste Extracts. Processes 2019, 7, 193. [Google Scholar] [CrossRef]
- Dulta, K.; Koşarsoy Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P.K. Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications. J. Clust. Sci. 2021, 33, 603–617. [Google Scholar] [CrossRef]
- Abdelmigid, H.M.; Hussien, N.A.; Alyamani, A.A.; Morsi, M.M.; AlSufyani, N.M.; Kadi, H.A. Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation. Molecules 2022, 27, 1236. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Verma, R.; Chauhan, A.; Dhatwalia, J.; Guleria, I.; Ghotekar, S.; Thakur, S.; Mansi, K.; Kumar, R.; Kumari, A.; et al. Antioxidant, Antimicrobial, and Photocatalytic Activity of Green Synthesized ZnO-NPs from Myrica esculenta Fruits Extract. Inorg. Chem. Commun. 2022, 141, 109518. [Google Scholar] [CrossRef]
- Ramesh, R.; Parasaran, M.; Mubashira, G.T.F.; Flora, C.; Liakath Ali Khan, F.; Almaary, K.S.; Elbadawi, Y.B.; Chen, T.-W.; Kanimozhi, K.; Bashir, A.K.H.; et al. Biogenic Synthesis of ZnO and NiO Nanoparticles Mediated by Fermented Cocos nucifera. (L) Deoiled Cake Extract for Antimicrobial Applications towards Gram Positive and Gram Negative Pathogens. J. King Saud Univ.-Sci. 2022, 34, 101696. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green Synthesis of Zinc Oxide Nanoparticles Using Phoenix Dactylifera Waste as Bioreductant for Effective Dye Degradation and Antibacterial Performance in Wastewater Treatment. J. Hazard. Mater. 2021, 402, 123560. [Google Scholar] [CrossRef] [PubMed]
- Abbes, N.; Bekri, I.; Cheng, M.; Sejri, N.; Cheikhrouhou, M.; Xu, J. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Mulberry Fruit and Their Antioxidant Activity. Mater. Sci. 2021, 28, 144–150. [Google Scholar] [CrossRef]
- Menazea, A.A.; Ismail, A.M.; Samy, A. Novel Green Synthesis of Zinc Oxide Nanoparticles Using Orange Waste and Its Thermal and Antibacterial Activity. J. Inorg. Organomet. Polym. 2021, 31, 4250–4259. [Google Scholar] [CrossRef]
- Thi, T.U.D.; Thoai Nguyen, T.; Dang Thi, Y.; Thi, K.H.T.; Thang Phan, B.; Ngoc Pham, K. Green Synthesis of ZnO Nanoparticles Using Orange Fruit Peel Extract for Antibacterial Activities. RSC Adv. 2020, 10, 23899–23907. [Google Scholar] [CrossRef]
- Proniewicza, E.; Tąta, A.; Starowicz, M.; Wójcik, A.; Pacek, J.; Molenda, M. Is the Electrochemical or the “Green Chemistry” Method the Optimal Method for the Synthesis of ZnO Nanoparticles for Applications to Biological Material? Characterization and SERS on ZnO. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125771. [Google Scholar] [CrossRef]
- Issam, N.; Naceur, D.; Nechi, G.; Maatalah, S.; Zribi, K.; Mhadhbi, H. Green Synthesised ZnO Nanoparticles Mediated by Olea europaea Leaf Extract and Their Antifungal Activity against Botrytis cinerea Infecting Faba Bean Plants. Arch. Phytopathol. Plant Prot. 2021, 54, 1083–1105. [Google Scholar] [CrossRef]
- Khan, M.I.; Fatima, N.; Shakil, M.; Tahir, M.B.; Riaz, K.N.; Rafique, M.; Iqbal, T.; Mahmood, K. Investigation of In-Vitro Antibacterial and Seed Germination Properties of Green Synthesized Pure and Nickel Doped ZnO Nanoparticles. Phys. B Condens. Matter 2021, 601, 412563. [Google Scholar] [CrossRef]
- Umamaheswari, A.; Prabu, S.L.; John, S.A.; Puratchikody, A. Green Synthesis of Zinc Oxide Nanoparticles Using Leaf Extracts of Raphanus sativus Var. Longipinnatus and Evaluation of Their Anticancer Property in A549 Cell Lines. Biotechnol. Rep. 2021, 29, e00595. [Google Scholar] [CrossRef] [PubMed]
- Djouadi, A.; Derouiche, S. Spinach Mediated Synthesis of Zinc Oxide Nanoparticles: Characterization, In Vitro Biological Activities Study and in Vivo Acute Toxicity Evaluation. Curr. Res. Green Sustain. Chem. 2021, 4, 100214. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic Fabrication of ZnO and Gold Decorated ZnO Nanoparticles for Photocatalytic Degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Saemi, R.; Taghavi, E.; Jafarizadeh-Malmiri, H.; Anarjan, N. Fabrication of Green ZnO Nanoparticles Using Walnut Leaf Extract to Develop an Antibacterial Film Based on Polyethylene–Starch–ZnO NPs. Green Process. Synth. 2021, 10, 112–124. [Google Scholar] [CrossRef]
- Kalia, A.; Kaur, M.; Shami, A.; Jawandha, S.K.; Alghuthaymi, M.A.; Thakur, A.; Abd-Elsalam, K.A. Nettle-Leaf Extract Derived ZnO/CuO Nanoparticle-Biopolymer-Based Antioxidant and Antimicrobial Nanocomposite Packaging Films and Their Impact on Extending the Post-Harvest Shelf Life of Guava Fruit. Biomolecules 2021, 11, 224. [Google Scholar] [CrossRef]
- Zahiri Oghani, F.; Tahvildari, K.; Nozari, M. Novel Antibacterial Food Packaging Based on Chitosan Loaded ZnO Nano Particles Prepared by Green Synthesis from Nettle Leaf Extract. J Inorg Organomet Polym 2021, 31, 43–54. [Google Scholar] [CrossRef]
- Negi, A.; Gangwar, R.; Vishwakarma, R.K.; Negi, D.S. Biogenic Zinc Oxide Nanoparticles as an Antibacterial, Antifungal, and Photocatalytic Tool Mediated via Leaves of Girardinia Diversifolia. Nanotechnol. Environ. Eng. 2022, 7, 223–233. [Google Scholar] [CrossRef]
- Zaheer, T.; Imran, M.; Pal, K.; Sajid, M.S.; Abbas, R.Z.; Aqib, A.I.; Hanif, M.A.; Khan, S.R.; Khan, M.K.; ur Rahman, S.; et al. Synthesis, Characterization and Acaricidal Activity of Green-Mediated ZnO Nanoparticles against Hyalomma Ticks. J. Mol. Struct. 2021, 1227, 129652. [Google Scholar] [CrossRef]
- Asmat-Campos, D.; Delfín-Narciso, D.; Juárez-Cortijo, L. Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers 2021, 9, 10. [Google Scholar] [CrossRef]
- Rashidian, G.; Lazado, C.C.; Mahboub, H.H.; Mohammadi-Aloucheh, R.; Prokić, M.D.; Nada, H.S.; Faggio, C. Chemically and Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp (Cyprinus carpio) Skin Mucus. Int. J. Mol. Sci. 2021, 22, 3270. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Zakir, M.; Ali, M.M.; Irshad, S.; Javid, A.; Khan, M.; Ara, C.; Asmatullah. Effects of Allium cepa-Mediated Zinc Oxide Nanoparticles on Male Reproductive Tissue and Sperm Abnormalities of Albino Mice (Mus musculus). Appl. Nanosci. 2021, 11, 807–815. [Google Scholar] [CrossRef]
- Arab, C.; El Kurdi, R.; Patra, D. Chitosan Coated Zinc Curcumin Oxide Nanoparticles for the Determination of Ascorbic Acid. J. Mol. Liq. 2021, 328, 115504. [Google Scholar] [CrossRef]
- Manjula, R.; Prasad, B.D.; Vidya, Y.S.; Nagabhushana, H.; Anantharaju, K.S. Mentha Arvensis Mediated Synthesis and Characterization of Zinc Oxide Nanoparticles for Energy Applications. Mater. Today Proc. 2021, 46, 6051–6055. [Google Scholar] [CrossRef]
- Vijayakumar, S.; González-Sánchez, Z.I.; Malaikozhundan, B.; Saravanakumar, K.; Divya, M.; Vaseeharan, B.; Durán-Lara, E.F.; Wang, M.-H. Biogenic Synthesis of Rod Shaped ZnO Nanoparticles Using Red Paprika (Capsicum annuum L. Var. Grossum (L.) Sendt) and Their in Vitro Evaluation. J. Clust. Sci. 2021, 32, 1129–1139. [Google Scholar] [CrossRef]
- El Golli, A.; Fendrich, M.; Bazzanella, N.; Dridi, C.; Miotello, A.; Orlandi, M. Wastewater Remediation with ZnO Photocatalysts: Green Synthesis and Solar Concentration as an Economically and Environmentally Viable Route to Application. J. Environ. Manag. 2021, 286, 112226. [Google Scholar] [CrossRef]
- Mbenga, Y.; Mthiyane, M.N.; Botha, T.L.; Horn, S.; Pieters, R.; Wepener, V.; Onwudiwe, D.C. Nanoarchitectonics of ZnO Nanoparticles Mediated by Extract of Tulbaghia Violacea and Their Cytotoxicity Evaluation. J. Inorg. Organomet. Polym. 2022, 1–11. [Google Scholar] [CrossRef]
- Rajkumar, K.S.; Sivagaami, P.; Ramkumar, A.; Murugadas, A.; Srinivasan, V.; Arun, S.; Senthil Kumar, P.; Thirumurugan, R. Bio-Functionalized Zinc Oxide Nanoparticles: Potential Toxicity Impact on Freshwater Fish Cyprinus Carpio. Chemosphere 2022, 290, 133220. [Google Scholar] [CrossRef]
- Isah, S.; Ozbay, G. Valorization of Food Loss and Wastes: Feedstocks for Biofuels and Valuable Chemicals. Front. Sustain. Food Syst. 2020, 4, 82. [Google Scholar] [CrossRef]
- Ahmad, J.; Ovais, M.; Qasim, M. Chapter 4—Microbial Enzymes–Mediated Biosynthesis of Metal Nanoparticles. In Biogenic Nanoparticles for Cancer Theranostics; Patra, C., Ahmad, I., Ayaz, M., Khalil, A.T., Mukherjee, S., Ovais, M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–100. ISBN 978-0-12-821467-1. [Google Scholar]
- Piotrowska-Seget, Z.; Cycoń, M.; Kozdrój, J. Metal-Tolerant Bacteria Occurring in Heavily Polluted Soil and Mine Spoil. Appl. Soil Ecol. 2005, 28, 237–246. [Google Scholar] [CrossRef]
- Rehman, S.; Jermy, B.R.; Akhtar, S.; Borgio, J.F.; Azeez, S.A.; Ravinayagam, V.; Jindan, R.A.; Alsalem, Z.H.; Buhameid, A.; Gani, A. Isolation and Characterization of a Novel Thermophile; Bacillus haynesii, Applied for the Green Synthesis of ZnO Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2072–2082. [Google Scholar] [CrossRef] [PubMed]
- Siddique, K.; Shahid, M.; Shahzad, T.; Mahmood, F.; Nadeem, H.; Saif ur Rehman, M.; Hussain, S.; Sadak, O.; Gunasekaran, S.; Kamal, T.; et al. Comparative Efficacy of Biogenic Zinc Oxide Nanoparticles Synthesized by Pseudochrobactrum sp. C5 and Chemically Synthesized Zinc Oxide Nanoparticles for Catalytic Degradation of Dyes and Wastewater Treatment. Environ. Sci. Pollut. Res. 2021, 28, 28307–28318. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Wu, Z.; Jiang, H.; Luo, J.; Noman, M.; Shahid, M.; Manzoor, I.; Allemailem, K.S.; Alrumaihi, F.; Li, B. Bioinspired Green Synthesis of Zinc Oxide Nanoparticles from a Native Bacillus cereus Strain RNT6: Characterization and Antibacterial Activity against Rice Panicle Blight Pathogens Burkholderia glumae and B. gladioli. Nanomaterials 2021, 11, 884. [Google Scholar] [CrossRef]
- Saleh, H.A.; Matter, I.A.; Abdel-Wareth, M.T.A.; Darwesh, O.M. Molluscicidal, Histopathological and Genotoxic Effects of Scenedesmus obliquus and Spirulina platensis Extracts and Their Biosynthesized Zinc Oxide Nanoparticles on Biomphalaria alexandrina Snails. Aquac. Res. 2022, 53, 3680–3695. [Google Scholar] [CrossRef]
- Faisal, S.; Abdullah; Rizwan, M.; Ullah, R.; Alotaibi, A.; Khattak, A.; Bibi, N.; Idrees, M. Paraclostridium Benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications. Oxid. Med. Cell. Longev. 2022, 2022, e5994033. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Kiew, S.F.; Ansah, S.B.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green Approaches for the Synthesis of Metal and Metal Oxide Nanoparticles Using Microbial and Plant Extracts. Nanoscale 2022, 14, 2534–2571. [Google Scholar] [CrossRef]
- Jadoun, S.; Chauhan, N.P.S.; Zarrintaj, P.; Barani, M.; Varma, R.S. Nanomaterials for Sustainability: A Review on Green Synthesis of Nanoparticles Using Microorganisms. Environ. Chem. Lett. 2022; preprint. [Google Scholar]
- Mohd Yusof, H.; Mohamad, R.; Zaidan, U.H.; Abdul Rahman, N.A. Microbial Synthesis of Zinc Oxide Nanoparticles and Their Potential Application as an Antimicrobial Agent and a Feed Supplement in Animal Industry: A Review. J. Anim. Sci. Biotechnol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Koul, B.; Poonia, A.K.; Yadav, D.; Jin, J.-O. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021, 11, 886. [Google Scholar] [CrossRef]
- Golhani, D.K.; Khare, A.; Burra, G.K.; Jain, V.K.; Rao Mokka, J. Microbes Induced Biofabrication of Nanoparticles: A Review. Inorg. Nano-Met. Chem. 2020, 50, 983–999. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhagwat, T.; Chopade, B.A.; Webster, T.J. Chapter 20—Patents, Technology Transfer, and Commercialization Aspects of Biogenic Nanoparticles. In Nanobiotechnology; Ghosh, S., Webster, T.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 323–339. ISBN 978-0-12-822878-4. [Google Scholar]
- Yudasari, N.; Wiguna, P.A.; Handayani, W.; Suliyanti, M.M.; Imawan, C. The Formation and Antibacterial Activity of Zn/ZnO Nanoparticle Produced in Pometia pinnata Leaf Extract Solution Using a Laser Ablation Technique. Appl. Phys. A 2021, 127, 56. [Google Scholar] [CrossRef] [PubMed]
- Vinay, S.P.; Chandrasekhar, N. Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles. J. Inorg. Organomet. Polym. 2021, 31, 552–558. [Google Scholar] [CrossRef]
- Soltanian, S.; Sheikhbahaei, M.; Mohamadi, N.; Pabarja, A.; Abadi, M.F.S.; Tahroudi, M.H.M. Biosynthesis of Zinc Oxide Nanoparticles Using Hertia Intermedia and Evaluation of Its Cytotoxic and Antimicrobial Activities. BioNanoScience 2021, 11, 245–255. [Google Scholar] [CrossRef]
- Şahin, B.; Soylu, S.; Kara, M.; Türkmen, M.; Aydin, R.; Çetin, H. Superior Antibacterial Activity against Seed-Borne Plant Bacterial Disease Agents and Enhanced Physical Properties of Novel Green Synthesized Nanostructured ZnO Using Thymbra spicata Plant Extract. Ceram. Int. 2021, 47, 341–350. [Google Scholar] [CrossRef]
- Rahman, A.; Harunsani, M.H.; Tan, A.L.; Ahmad, N.; Khan, M.M. Antioxidant and Antibacterial Studies of Phytogenic Fabricated ZnO Using Aqueous Leaf Extract of Ziziphus mauritiana Lam. Chem. Pap. 2021, 75, 3295–3308. [Google Scholar] [CrossRef]
- Pachaiappan, R.; Rajendran, S.; Ramalingam, G.; Vo, D.-V.N.; Priya, P.M.; Soto-Moscoso, M. Green Synthesis of Zinc Oxide Nanoparticles by Justicia adhatoda Leaves and Their Antimicrobial Activity. Chem. Eng. Technol. 2021, 44, 551–558. [Google Scholar] [CrossRef]
- Hasan, M.; Altaf, M.; Zafar, A.; Hassan, S.G.; Ali, Z.; Mustafa, G.; Munawar, T.; Saif, M.S.; Tariq, T.; Iqbal, F.; et al. Bioinspired Synthesis of Zinc Oxide Nano-Flowers: A Surface Enhanced Antibacterial and Harvesting Efficiency. Mater. Sci. Eng. C 2021, 119, 111280. [Google Scholar] [CrossRef]
- Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green Synthesis of Zinc Oxide Nanoparticles Using Different Plant Extracts and Their Antibacterial Activity against Xanthomonas oryzae Pv. Oryzae. Artif. Cells Nanomed. Biotechnol. 2019, 47, 341–352. [Google Scholar] [CrossRef]
- Álvarez-Chimal, R.; García-Pérez, V.I.; Álvarez-Pérez, M.A.; Arenas-Alatorre, J.Á. Green Synthesis of ZnO Nanoparticles Using a Dysphania ambrosioides Extract. Structural Characterization and Antibacterial Properties. Mater. Sci. Eng. C 2021, 118, 111540. [Google Scholar] [CrossRef]
- Gilavand, F.; Saki, R.; Mirzaei, S.Z.; Esmaeil Lashgarian, H.; Karkhane, M.; Marzban, A. Green Synthesis of Zinc Nanoparticles Using Aqueous Extract of Magnoliae Officinalis and Assessment of Its Bioactivity Potentials. Biointerface Res. Appl. Chem. 2020. [Google Scholar] [CrossRef]
- Kalaimurugan, D.; Lalitha, K.; Durairaj, K.; Sivasankar, P.; Park, S.; Nithya, K.; Shivakumar, M.S.; Liu, W.-C.; Balamuralikrishnan, B.; Venkatesan, S. Biogenic Synthesis of ZnO Nanoparticles Mediated from Borassus flabellifer (Linn): Antioxidant, Antimicrobial Activity against Clinical Pathogens, and Photocatalytic Degradation Activity with Molecular Modeling. Environ. Sci. Pollut. Res. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yadav, E.; Yadav, P. Biofabricated Zinc Oxide Nanoparticles Impair Cognitive Function via Modulating Oxidative Stress and Acetylcholinesterase Level in Mice. Environ. Toxicol. 2021, 36, 572–585. [Google Scholar] [CrossRef]
- Umavathi, S.; Mahboob, S.; Govindarajan, M.; Al-Ghanim, K.A.; Ahmed, Z.; Virik, P.; Al-Mulhm, N.; Subash, M.; Gopinath, K.; Kavitha, C. Green Synthesis of ZnO Nanoparticles for Antimicrobial and Vegetative Growth Applications: A Novel Approach for Advancing Efficient High Quality Health Care to Human Wellbeing. Saudi J. Biol. Sci. 2021, 28, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Rajendran, P.; Veeraraghavan, V.P.; Hussain, S.; Balakrishna, J.P.; Chinnathambi, A.; Alharbi, S.A.; Alahmadi, T.A.; Rengarajan, T.; Mohan, S.K. Osteogenic Differentiation and Mineralization Potential of Zinc Oxide Nanoparticles from Scutellaria baicalensis on Human Osteoblast-like MG-63 Cells. Mater. Sci. Eng. C 2021, 119, 111656. [Google Scholar] [CrossRef] [PubMed]
- Sudha, K.G.; Ali, S.; Karunakaran, G.; Kowsalya, M.; Kolesnikov, E.; Gorshenkov, M.V.; Rajeshkumar, M.P. Cyrtrandroemia nicobarica-Synthesized ZnO NRs: A New Tool in Cancer Treatment. JOM 2021, 73, 364–372. [Google Scholar] [CrossRef]
- Seifipour, R.; Nozari, M.; Pishkar, L. Preparation of ZnO Nanoparticles Using Tragopogon collinus Leaf Extract and Study of Its Antibacterial Effects for Therapeutic Applications. J. Plant Biochem. Biotechnol. 2021, 30, 586–595. [Google Scholar] [CrossRef]
- Sathappan, S.; Kirubakaran, N.; Gunasekaran, D.; Gupta, P.K.; Verma, R.S.; Sundaram, J. Green Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) Using Cissus quadrangularis: Characterization, Antimicrobial and Anticancer Studies. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 289–296. [Google Scholar] [CrossRef]
- Chinnathambi, A.; Alahmadi, T.A. Zinc Nanoparticles Green-Synthesized by Alhagi maurorum Leaf Aqueous Extract: Chemical Characterization and Cytotoxicity, Antioxidant, and Anti-Osteosarcoma Effects. Arab. J. Chem. 2021, 14, 103083. [Google Scholar] [CrossRef]
- Ali, S.; Sudha, K.G.; Karunakaran, G.; Kowsalya, M.; Kolesnikov, E.; Rajeshkumar, M.P. Green Synthesis of Stable Antioxidant, Anticancer and Photocatalytic Activity of Zinc Oxide Nanorods from Leea asiatica Leaf. J. Biotechnol. 2021, 329, 65–79. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of Their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef]
- Dey, A.; Somaiah, S. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Thryallis glauca (Cav.) Kuntze and Their Role as Antioxidant and Antibacterial. Microsc. Res. Tech. 2022, 2022, 2835–2847. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, F.H.; Abu Bakar, N.H.H.; Abu Bakar, M. Comparative Study of Chemically Synthesized and Low Temperature Bio-Inspired Musa acuminata Peel Extract Mediated Zinc Oxide Nanoparticles for Enhanced Visible-Photocatalytic Degradation of Organic Contaminants in Wastewater Treatment. J. Hazard. Mater. 2021, 406, 124779. [Google Scholar] [CrossRef] [PubMed]
- Ekennia, A.C.; Uduagwu, D.N.; Nwaji, N.N.; Oje, O.O.; Emma-Uba, C.O.; Mgbii, S.I.; Olowo, O.J.; Nwanji, O.L. Green Synthesis of Biogenic Zinc Oxide Nanoflower as Dual Agent for Photodegradation of an Organic Dye and Tyrosinase Inhibitor. J. Inorg. Organomet. Polym. 2021, 31, 886–897. [Google Scholar] [CrossRef]
- Balanagireddy, G.; Narayana, A.; Roopa, M. Investigation of Organic Field-Effect Transistor (OFET) based NO2 Sensing Response using Low-Cost Green Synthesized Zinc Oxide Nanoparticles. Asian J. Chem. 2021, 33, 31–36. [Google Scholar] [CrossRef]
- Venkatesan, S.; Suresh, S.; Ramu, P.; Kandasamy, M.; Arumugam, J.; Thambidurai, S.; Prabu, K.M.; Pugazhenthiran, N. Biosynthesis of Zinc Oxide Nanoparticles Using Euphorbia milii Leaf Constituents: Characterization and Improved Photocatalytic Degradation of Methylene Blue Dye under Natural Sunlight. J. Indian Chem. Soc. 2022, 99, 100436. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Izzi, M.; Kukushkina, E.A.; Hossain, S.I.; Picca, R.A.; Ditaranto, N.; Cioffi, N. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials 2020, 10, 802. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M.; et al. Inhibition of H1N1 Influenza Virus Infection by Zinc Oxide Nanoparticles: Another Emerging Application of Nanomedicine. J. Biomed. Sci. 2019, 26, 70. [Google Scholar] [CrossRef]
- El-Atab, N.; Mishra, R.B.; Hussain, M.M. Toward Nanotechnology-Enabled Face Masks against SARS-CoV-2 and Pandemic Respiratory Diseases. Nanotechnology 2021, 33, 062006. [Google Scholar] [CrossRef]
- Canalli Bortolassi, A.C.; Guerra, V.G.; Aguiar, M.L.; Soussan, L.; Cornu, D.; Miele, P.; Bechelany, M. Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal. Nanomaterials 2019, 9, 1740. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Mishra, A.; Pandey, G.; Gupta, M.K.; Pandey, P.C. Nanotechnology: A Potential Weapon to Fight against COVID-19. Part. Part. Syst. Charact. 2022, 39, 2100159. [Google Scholar] [CrossRef]
- Kampf, G. Potential Role of Inanimate Surfaces for the Spread of Coronaviruses and Their Inactivation with Disinfectant Agents. Infect. Prev. Pract. 2020, 2, 100044. [Google Scholar] [CrossRef] [PubMed]
- Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Akbari, M.K.; Yadav, R.; Al-Tamimi, A.K.; Naebe, M. Fight against COVID-19: The Case of Antiviral Surfaces. APL Mater. 2021, 9, 031112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Lin, K.; Cai, M. ZnO Nanomaterials: Current Advancements in Antibacterial Mechanisms and Applications. Front. Chem. 2020, 8, 580. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sang, H.; Guo, H.; Popko, J.T.; He, L.; White, J.C.; Dhankher, O.P.; Jung, G.; Xing, B. Antifungal Mechanisms of ZnO and Ag Nanoparticles ToSclerotinia homoeocarpa. Nanotechnology 2017, 28, 155101. [Google Scholar] [CrossRef]
- Gutiérrez Rodelo, C.; Salinas, R.A.; Armenta Jaime, E.; Armenta, S.; Galdámez-Martínez, A.; Castillo-Blum, S.E.; Astudillo-de la Vega, H.; Nirmala Grace, A.; Aguilar-Salinas, C.A.; Gutiérrez Rodelo, J.; et al. Zinc Associated Nanomaterials and Their Intervention in Emerging Respiratory Viruses: Journey to the Field of Biomedicine and Biomaterials. Coord. Chem. Rev. 2022, 457, 214402. [Google Scholar] [CrossRef]
- Melk, M.M.; El-Hawary, S.S.; Melek, F.R.; Saleh, D.O.; Ali, O.M.; Raey, M.A.E.; Selim, N.M. Antiviral Activity of Zinc Oxide Nanoparticles Mediated by Plumbago indica L. Extract Against Herpes Simplex Virus Type 1 (HSV-1). Int. J. Nanomed. 2021, 16, 8221–8233. [Google Scholar] [CrossRef]
- Attia, G.H.; Moemen, Y.S.; Youns, M.; Ibrahim, A.M.; Abdou, R.; El Raey, M.A. Antiviral Zinc Oxide Nanoparticles Mediated by Hesperidin and in Silico Comparison Study between Antiviral Phenolics as Anti-SARS-CoV-2. Colloids Surf. B Biointerfaces 2021, 203, 111724. [Google Scholar] [CrossRef]
- Hamdi, M.; Abdel-Bar, H.M.; Elmowafy, E.; El-khouly, A.; Mansour, M.; Awad, G.A.S. Investigating the Internalization and COVID-19 Antiviral Computational Analysis of Optimized Nanoscale Zinc Oxide. ACS Omega 2021, 6, 6848–6860. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Izzi, M.; Loconsole, D.; Sallustio, A.; Picca, R.A.; Felici, R.; Chironna, M.; Cioffi, N. On the Efficacy of ZnO Nanostructures against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 3040. [Google Scholar] [CrossRef]
- Gonzalez, A.; Aboubakr, H.A.; Brockgreitens, J.; Hao, W.; Wang, Y.; Goyal, S.M.; Abbas, A. Durable Nanocomposite Face Masks with High Particulate Filtration and Rapid Inactivation of Coronaviruses. Sci. Rep. 2021, 11, 24318. [Google Scholar] [CrossRef] [PubMed]
- Merkl, P.; Long, S.; McInerney, G.M.; Sotiriou, G.A. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials 2021, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- El-Megharbel, S.M.; Alsawat, M.; Al-Salmi, F.A.; Hamza, R.Z. Utilizing of (Zinc Oxide Nano-Spray) for Disinfection against “SARS-CoV-2” and Testing Its Biological Effectiveness on Some Biochemical Parameters during (COVID-19 Pandemic)—“ZnO Nanoparticles Have Antiviral Activity against (SARS-CoV-2)”. Coatings 2021, 11, 388. [Google Scholar] [CrossRef]
- Ghareeb, D.A.; Saleh, S.R.; Seadawy, M.G.; Nofal, M.S.; Abdulmalek, S.A.; Hassan, S.F.; Khedr, S.M.; AbdElwahab, M.G.; Sobhy, A.A.; Abdel-Hamid, A.S.A.; et al. Nanoparticles of ZnO/Berberine Complex Contract COVID-19 and Respiratory Co-Bacterial Infection in Addition to Elimination of Hydroxychloroquine Toxicity. J. Pharm. Investig. 2021, 51, 735–757. [Google Scholar] [CrossRef]
- Ishida, T. Anti-Viral Vaccine Activity of Zinc(Ⅱ) for Viral Prevention, Entry, Replication, and Spreading During Pathogenesis Process. CTBEB 2019, 19, 556012. [Google Scholar] [CrossRef]
- Mizielińska, M.; Nawrotek, P.; Stachurska, X.; Ordon, M.; Bartkowiak, A. Packaging Covered with Antiviral and Antibacterial Coatings Based on ZnO Nanoparticles Supplemented with Geraniol and Carvacrol. Int. J. Mol. Sci. 2021, 22, 1717. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sportelli, M.C.; Gaudiuso, C.; Volpe, A.; Izzi, M.; Picca, R.A.; Ancona, A.; Cioffi, N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. Reactions 2022, 3, 423-441. https://doi.org/10.3390/reactions3030030
Sportelli MC, Gaudiuso C, Volpe A, Izzi M, Picca RA, Ancona A, Cioffi N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. Reactions. 2022; 3(3):423-441. https://doi.org/10.3390/reactions3030030
Chicago/Turabian StyleSportelli, Maria Chiara, Caterina Gaudiuso, Annalisa Volpe, Margherita Izzi, Rosaria Anna Picca, Antonio Ancona, and Nicola Cioffi. 2022. "Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview" Reactions 3, no. 3: 423-441. https://doi.org/10.3390/reactions3030030
APA StyleSportelli, M. C., Gaudiuso, C., Volpe, A., Izzi, M., Picca, R. A., Ancona, A., & Cioffi, N. (2022). Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. Reactions, 3(3), 423-441. https://doi.org/10.3390/reactions3030030