Bio-Oil: The Next-Generation Source of Chemicals
Abstract
:1. Introduction
2. Thermochemical Processes
3. Thermochemical Conversion Routes of Biomass
4. Bio-Oil Chemical Composition and Characteristics
4.1. General Traits
4.2. Phenols
4.3. Ketones and Aldehydes
4.4. Acids
4.5. Sugars and Alcohols
4.6. N-Containing
5. Applications of Bio-Oil as Chemical Source and Its Refinement Strategies
6. Final Remarks and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaswal, R.; Shende, A.; Nan, W.; Amar, V.; Shende, R. Hydrothermal liquefaction and photocatalytic reforming of pinewood (Pinus ponderosa)-derived acid hydrolysis residue for hydrogen and bio-oil production. Energy Fuels 2019, 33, 6454–6462. [Google Scholar] [CrossRef]
- Shan Ahamed, T.; Anto, S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. Upgrading of bio-oil from thermochemical conversion of various biomass—Mechanism, challenges and opportunities. Fuel 2021, 287, 119329. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Progress of the applications of bio-oil. Renew. Sustain. Energy Rev. 2020, 134, 110124. [Google Scholar] [CrossRef]
- Ahmad, S.F.K.; Ali, U.F.M.; Isa, K.M. Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review. Environ. Eng. Res. 2020, 25, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Guedes, R.E.; Luna, A.S.; Torres, A.R. Operating parameters for bio-oil production in biomass pyrolysis: A review. J. Anal. Appl. Pyrolysis 2018, 129, 134–149. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Schmitt, N.; Apfelbacher, A.; Jäger, N.; Daschner, R.; Stenzel, F.; Hornung, A. Thermo-chemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process—A review. Biofuels Bioprod. Biorefining 2019, 13, 822–837. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Upgrading biomass fast pyrolysis liquids. Environ. Prog. 2012, 31, 261–268. [Google Scholar] [CrossRef]
- Chen, X.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process. Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Venderbosch, R.H. Fast Pyrolysis. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 175–206. [Google Scholar]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Younas, R.; Hao, S.; Zhang, L.; Zhang, S. Hydrothermal liquefaction of rice straw with NiO nanocatalyst for bio-oil production. Renew. Energy 2017, 113, 532–545. [Google Scholar] [CrossRef]
- Valle, B.; Remiro, A.; García-Gómez, N.; Gayubo, A.G.; Bilbao, J. Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: A review. J. Chem. Technol. Biotechnol. 2019, 94, 670–689. [Google Scholar] [CrossRef]
- Chan, Y.H.; Tan, R.R.; Yusup, S.; Lam, H.L.; Quitain, A.T. Comparative life cycle assessment (LCA) of bio-oil production from fast pyrolysis and hydrothermal liquefaction of oil palm empty fruit bunch (EFB). Clean Technol. Environ. Policy 2016, 18, 1759–1768. [Google Scholar] [CrossRef]
- Arun, J.; Gopinath, K.P.; SundarRajan, P.S.; Malolan, R.; AjaySrinivaasan, P. Hydrothermal liquefaction and pyrolysis of Amphiroa fragilissima biomass: Comparative study on oxygen content and storage stability parameters of bio-oil. Bioresour. Technol. Rep. 2020, 11, 100465. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Zhang, Y.; Liu, Z. Hydrothermal Liquefaction of Typical Livestock Manures in China: Biocrude oil Production and Migration of Heavy Metals. J. Anal. Appl. Pyrolysis 2018, 135, 133–140. [Google Scholar] [CrossRef]
- De Caprariis, B.; De Filippis, P.; Petrullo, A.; Scarsella, M. Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production. Fuel 2017, 208, 618–625. [Google Scholar] [CrossRef]
- Mathanker, A.; Pudasainee, D.; Kumar, A.; Gupta, R. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization. Fuel 2020, 271, 117534. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, F.; Djandja, J.O.; Zhang, S.L.; Xu, Y.P.; Duan, P.G. Hydrothermal liquefaction of crop straws: Effect of feedstock composition. Fuel 2020, 265, 116946. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Ahmad, A.; Shekher Giri, B.; Chaturvedi, P. Hydrothermal liquefaction of rice husk and cow dung in Mixed-Bed-Rotating Pyrolyzer and application of biochar for dye removal. Bioresour. Technol. 2020, 309, 123294. [Google Scholar] [CrossRef]
- Shahi, T.; Beheshti, B.; Zenouzi, A.; Almasi, M. Bio-oil production from residual biomass of microalgae after lipid extraction: The case of Dunaliella sp. Biocatal. Agric. Biotechnol. 2020, 23, 101494. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhang, J.J.; Huang, Y.H.; Li, M.F.; Bian, J.; Peng, F. Comparative investigation on bio-oil production from eucalyptus via liquefaction in subcritical water and supercritical ethanol. Ind. Crops Prod. 2019, 140, 111695. [Google Scholar] [CrossRef]
- Fernandes, F.; Matos, S.; Gaspar, D.; Silva, L.; Paulo, I.; Vieira, S.; Pinto, P.C.R.; Bordado, J.; dos Santos, R.G. Boosting the higher heating value of Eucalyptus globulus via thermochemical liquefaction. Sustainability 2021, 13, 3717. [Google Scholar] [CrossRef]
- Dhanavath, K.N.; Islam, M.S.; Bankupalli, S.; Bhargava, S.K.; Shah, K.; Parthasarathy, R. Experimental investigations on the effect of pyrolytic bio-oil during the liquefaction of Karanja Press Seed Cake. J. Environ. Chem. Eng. 2017, 5, 4986–4993. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Kandasamy, S.; He, Z. Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending-operation parameter and biocrude chemistry investigation. Energy 2020, 193, 116645. [Google Scholar] [CrossRef]
- Yang, T.; Wu, K.; Li, B.; Du, C.; Wang, J.; Li, R. Conversion of lignin into phenolic-rich oil by two-step liquefaction in sub-supercritical ethanol system assisted by carbon dioxide. J. Energy Inst. 2021, 94, 329–336. [Google Scholar] [CrossRef]
- Anastasakis, K.; Biller, P.; Madsen, R.B.; Glasius, M.; Johannsen, I. Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation. Energies 2018, 11, 2695. [Google Scholar] [CrossRef] [Green Version]
- Devi, T.E.; Parthiban, R. Hydrothermal liquefaction of Nostoc ellipsosporum biomass grown in municipal wastewater under optimized conditions for bio-oil production. Bioresour. Technol. 2020, 316, 123943. [Google Scholar] [CrossRef]
- Chan, Y.H.; Quitain, A.T.; Yusup, S.; Uemura, Y.; Sasaki, M.; Kida, T. Liquefaction of palm kernel shell in sub- and supercritical water for bio-oil production. J. Energy Inst. 2018, 91, 721–732. [Google Scholar] [CrossRef]
- Amado, M.; Bastos, D.; Gaspar, D.; Matos, S.; Vieira, S.; Bordado, J.M.; Galhano dos Santos, R. Thermochemical liquefaction of pinewood shaves—Evaluating the performance of cleaner and sustainable alternative solvents. J. Clean. Prod. 2021, 304. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhou, Q.; Li, M.F.; Li, S.X.; Bian, J.; Peng, F. Conversion of poplar into bio-oil via subcritical hydrothermal liquefaction: Structure and antioxidant capacity. Bioresour. Technol. 2018, 270, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Galhano dos Santos, R.; Ventura, P.; Bordado, J.C.; Mateus, M.M. Direct and efficient liquefaction of potato peel into bio-oil. Environ. Chem. Lett. 2017, 15, 453–458. [Google Scholar] [CrossRef]
- Paul, T.; Sinharoy, A.; Pakshirajan, K.; Pugazhenthi, G. Lipid-rich bacterial biomass production using refinery wastewater in a bubble column bioreactor for bio-oil conversion by hydrothermal liquefaction. J. Water Process Eng. 2020, 37, 101462. [Google Scholar] [CrossRef]
- Chen, D.; Ma, Q.; Wei, L.; Li, N.; Shen, Q.; Tian, W.; Zhou, J.; Long, J. Catalytic hydroliquefaction of rice straw for bio-oil production using Ni/CeO2 catalysts. J. Anal. Appl. Pyrolysis 2018, 130, 249–255. [Google Scholar] [CrossRef]
- Ma, Q.; Chen, D.; Wei, L.; Shen, Q.; Ji, Z.; Chen, Y.; Zou, X.; Xu, C.; Zhou, J. Bio-oil production from hydrogenation liquefaction of rice straw over metal (Ni, Co, Cu)-modified CeO2 catalysts. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 200–206. [Google Scholar] [CrossRef]
- Leng, L.; Li, J.; Yuan, X.; Li, J.; Han, P.; Hong, Y.; Wei, F.; Zhou, W. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 2018, 251, 49–56. [Google Scholar] [CrossRef]
- Arun, J.; Gopinath, K.P.; SundarRajan, P.S.; Malolan, R.; Adithya, S.; Sai Jayaraman, R.; Srinivaasan Ajay, P. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production. Bioresour. Technol. 2020, 310, 123443. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Y.; Peng, Y.; Yao, L.; Dong, Y.; Yang, B.; Song, R. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production. Bioresour. Technol. 2020, 300, 122665. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, H.; He, Z.; Wang, S.; Chen, H. Bio-oil production from hydrothermal liquefaction of ultrasonic pre-treated Spirulina platensis. Energy Convers. Manag. 2018, 159, 204–212. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Deng, F. Acidic ionic liquid catalyzed liquefaction of untreated switchgrass biomass in acetone and Pd-La(OTf)3 catalyzed reduction of the products. Biomass Bioenergy 2019, 127, 105260. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers. Manag. 2018, 176, 393–408. [Google Scholar] [CrossRef]
- Charusiri, W.; Numcharoenpinij, N. Characterization of the optimal catalytic pyrolysis conditions for bio-oil production from brown salwood (Acacia mangium Willd) residues. Biomass Bioenergy 2017, 106, 127–136. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Sukri, R.S.; Hussain, M.; Farooq, A.; Moogi, S.; Park, Y.K. Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Convers. Manag. 2020, 226, 113502. [Google Scholar] [CrossRef]
- Gautam, N.; Chaurasia, A. Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy 2020, 190, 116434. [Google Scholar] [CrossRef]
- Khuenkaeo, N.; Tippayawong, N. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem. Eng. Commun. 2020, 207, 153–160. [Google Scholar] [CrossRef]
- Gonçalves, G.D.C.; Nakamura, P.K.; Furtado, D.F.; Veit, M.T. Utilization of brewery residues to produces granular activated carbon and bio-oil. J. Clean. Prod. 2017, 168, 908–916. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Tian, X.; Dai, L.; Jiang, L.; Zhang, S.; Wu, Q.; Wen, P.; Fu, G.; Liu, Y.; et al. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresour. Technol. 2018, 269, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, E.; Schena, T.; Marcelo, M.C.A.; Primaz, C.T.; Silva, A.N.; Ferrão, M.F.; Bjerk, T.; Caramão, E.B. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Ind. Crops Prod. 2018, 111, 856–864. [Google Scholar] [CrossRef]
- Ansari, K.B.; Arora, J.S.; Chew, J.W.; Dauenhauer, P.J.; Mushrif, S.H. Fast Pyrolysis of Cellulose, Hemicellulose, and Lignin: Effect of Operating Temperature on Bio-oil Yield and Composition and Insights into the Intrinsic Pyrolysis Chemistry. Ind. Eng. Chem. Res. 2019, 58, 15838–15852. [Google Scholar] [CrossRef]
- Zainan, N.H.; Srivatsa, S.C.; Li, F.; Bhattacharya, S. Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris. Fuel 2018, 223, 12–19. [Google Scholar] [CrossRef]
- Adamakis, I.D.; Lazaridis, P.A.; Terzopoulou, E.; Torofias, S.; Valari, M.; Kalaitzi, P.; Rousonikolos, V.; Gkoutzikostas, D.; Zouboulis, A.; Zalidis, G.; et al. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Environ. Sci. Pollut. Res. 2018, 25, 23018–23032. [Google Scholar] [CrossRef] [PubMed]
- Sotoudehnia, F.; Baba Rabiu, A.; Alayat, A.; McDonald, A.G. Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard. J. Anal. Appl. Pyrolysis 2020, 145, 104722. [Google Scholar] [CrossRef]
- Primaz, C.T.; Ribes-Greus, A.; Jacques, R.A. Valorization of cotton residues for production of bio-oil and engineered biochar. Energy 2021, 235, 121363. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Yang, H.; Wang, X.; Che, Q.; Chen, W.; Chen, H. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil. Bioresour. Technol. 2019, 273, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Shu, J.; Xia, H.; Wang, S.; Zhang, L.; Peng, J.; Li, C.; Jiang, X.; Zhang, Q. Pyrolysis of Crofton weed for the production of aldehyde rich bio-oil and combustible matter rich bio-gas. Appl. Therm. Eng. 2019, 148, 1164–1170. [Google Scholar] [CrossRef]
- Cao, B.; Wang, S.; Hu, Y.; Abomohra, A.E.F.; Qian, L.; He, Z.; Wang, Q.; Uzoejinwa, B.B.; Esakkimuthu, S. Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds. Renew. Energy 2019, 138, 29–38. [Google Scholar] [CrossRef]
- Chireshe, F.; Collard, F.X.; Görgens, J.F. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln reactor. J. Clean. Prod. 2020, 260, 120987. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P.; Ratanawilai, S. Application of extracted marine Chlorella sp. residue for bio-oil production as the biomass feedstock and microwave absorber. Energy Convers. Manag. 2019, 195, 819–829. [Google Scholar] [CrossRef]
- Kadlimatti, H.M.; Raj Mohan, B.; Saidutta, M.B. Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology. Biomass Bioenergy 2019, 123, 25–33. [Google Scholar] [CrossRef]
- Van Schalkwyk, D.L.; Mandegari, M.; Farzad, S.; Görgens, J.F. Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes. Energy Convers. Manag. 2020, 213, 112815. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Kim, J.K.; Oh, C.H.; Park, J.W.; Kwon, E.E. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization. J. Environ. Manage. 2019, 234, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Papari, S.; Hawboldt, K.; Helleur, R. Production and Characterization of Pyrolysis Oil from Sawmill Residues in an Auger Reactor. Ind. Eng. Chem. Res. 2017, 56, 1920–1925. [Google Scholar] [CrossRef]
- Hidayat, S.; Abu Bakar, M.S.; Yang, Y.; Phusunti, N.; Bridgwater, A.V. Characterisation and Py-GC/MS analysis of Imperata Cylindrica as potential biomass for bio-oil production in Brunei Darussalam. J. Anal. Appl. Pyrolysis 2018, 134, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Yücedağ, E.; Durak, H. Bio-oil and bio-char from lactuca scariola: Significance of catalyst and temperature for assessing yield and quality of pyrolysis. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–14. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Ye, D.; Cai, L.P.; Shi, S.Q. Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts. Renew. Energy 2018, 121, 146–152. [Google Scholar] [CrossRef]
- Abu Bakar, M.S.; Ahmed, A.; Jeffery, D.M.; Hidayat, S.; Sukri, R.S.; Mahlia, T.M.I.; Jamil, F.; Khurrum, M.S.; Inayat, A.; Moogi, S.; et al. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production. Bioresour. Technol. 2020, 318, 123913. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, Z.E.; Abdulkhani, A.; Saha, B. Characterization of fast pyrolysis bio-oil from hardwood and softwood lignin. Energies 2020, 13, 887. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, D.; Bendu, H.; Singh, R.K.; Murugan, S. Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines. Energy 2017, 118, 600–612. [Google Scholar] [CrossRef]
- Dong, Q.; Li, H.; Niu, M.; Luo, C.; Zhang, J.; Qi, B.; Li, X.; Zhong, W. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst. Bioresour. Technol. 2018, 266, 284–290. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Omairey, E.; Cai, J.; Gu, F.; Bridgwater, A.V. Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen. J. Clean. Prod. 2018, 187, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Suntivarakorn, R.; Treedet, W.; Singbua, P.; Teeramaetawat, N. Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Rep. 2018, 4, 565–575. [Google Scholar] [CrossRef]
- Lin, B.; Huang, Q.; Chi, Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process. Technol. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Kostas, E.T.; Durán-Jiménez, G.; Shepherd, B.J.; Meredith, W.; Stevens, L.A.; Williams, O.S.A.; Lye, G.J.; Robinson, J.P. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem. Eng. J. 2020, 387, 123404. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Manag. Res. 2020, 38, 213–225. [Google Scholar] [CrossRef]
- Moutsoglou, A.; Lawburgh, B.; Lawburgh, J. Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin. J. Anal. Appl. Pyrolysis 2018, 135, 350–360. [Google Scholar] [CrossRef]
- Park, J.W.; Heo, J.; Ly, H.V.; Kim, J.; Lim, H.; Kim, S.S. Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor. Energy 2019, 179, 517–527. [Google Scholar] [CrossRef]
- Idris, R.; Chong, W.W.F.; Ali, A.; Idris, S.; Hasan, M.F.; Ani, F.N.; Chong, C.T. Phenol-rich bio-oil derivation via microwave-induced fast pyrolysis of oil palm empty fruit bunch with activated carbon. Environ. Technol. Innov. 2021, 21, 101291. [Google Scholar] [CrossRef]
- Vasu, H.; Wong, C.F.; Vijiaretnam, N.R.; Chong, Y.Y.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y.; Ng, H.K. Insight into Co-pyrolysis of Palm Kernel Shell (PKS) with Palm Oil Sludge (POS): Effect on Bio-oil Yield and Properties. Waste Biomass Valorization 2020, 11, 5877–5889. [Google Scholar] [CrossRef]
- Qureshi, K.M.; Lup, A.N.K.; Khan, S.; Abnisa, F.; Daud, W.M.A.W. Effect of temperature and feed rate on pyrolysis oil produced via helical screw fluidized bed reactor. Korean J. Chem. Eng. 2021, 38, 1797–1809. [Google Scholar] [CrossRef]
- Edmunds, C.W.; Molina, E.A.R.; André, N.; Hamilton, C.; Park, S.; Fasina, O.; Adhikari, S.; Kelley, S.S.; Tumuluru, J.S.; Rials, T.G.; et al. Blended feedstocks for thermochemical conversion: Biomass characterization and bio-oil production from switchgrass-pine residues blends. Front. Energy Res. 2018, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Lanjewar, R.; Mondal, P. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts. Chemosphere 2022, 287, 132220. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Amutio, M.; Lopez, G.; Santamaria, L.; Bilbao, J.; Olazar, M. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Manag. 2019, 85, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Echresh Zadeh, Z.; Abdulkhani, A.; Saha, B. A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods. Energy 2021, 214, 118930. [Google Scholar] [CrossRef]
- Maisano, S.; Urbani, F.; Mondello, N.; Chiodo, V. Catalytic pyrolysis of Mediterranean sea plant for bio-oil production. Int. J. Hydrog. Energy 2017, 42, 28082–28092. [Google Scholar] [CrossRef]
- Tshikesho, R.S.; Kumar, A.; Huhnke, R.L.; Apblett, A. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil. Bioresour. Technol. 2019, 285, 121299. [Google Scholar] [CrossRef] [Green Version]
- Lazzari, E.; dos Santos Polidoro, A.; Onorevoli, B.; Schena, T.; Silva, A.N.; Scapin, E.; Jacques, R.A.; Caramão, E.B. Production of rice husk bio-oil and comprehensive characterization (qualitative and quantitative) by HPLC/PDA and GC × GC/qMS. Renew. Energy 2019, 135, 554–565. [Google Scholar] [CrossRef]
- Cai, W.; Dai, L.; Liu, R. Catalytic fast pyrolysis of rice husk for bio-oil production. Energy 2018, 154, 477–487. [Google Scholar] [CrossRef]
- Cai, W.; Liu, R.; He, Y.; Chai, M.; Cai, J. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process. Technol. 2018, 171, 308–317. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, L.; Zhu, L.; Zhu, X. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation. J. Anal. Appl. Pyrolysis 2018, 131, 113–119. [Google Scholar] [CrossRef]
- Sahoo, K.; Kumar, A.; Chakraborty, J.P. A comparative study on valuable products: Bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. J. Mater. Cycles Waste Manag. 2021, 23, 186–204. [Google Scholar] [CrossRef]
- Liang, J.; Morgan, H.M.; Liu, Y.; Shi, A.; Lei, H.; Mao, H.; Bu, Q. Enhancement of bio-oil yield and selectivity and kinetic study of catalytic pyrolysis of rice straw over transition metal modified ZSM-5 catalyst. J. Anal. Appl. Pyrolysis 2017, 128, 324–334. [Google Scholar] [CrossRef]
- Ahmed, N.; Zeeshan, M.; Iqbal, N.; Farooq, M.Z.; Shah, S.A. Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. J. Clean. Prod. 2018, 196, 927–934. [Google Scholar] [CrossRef]
- Chorazy, T.; Čáslavský, J.; Žvaková, V.; Raček, J.; Hlavínek, P. Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment. Waste Biomass Valorization 2020, 11, 4491–4505. [Google Scholar] [CrossRef]
- Laesecke, J.; Ellis, N.; Kirchen, P. Production, analysis and combustion characterization of biomass fast pyrolysis oil—Biodiesel blends for use in diesel engines. Fuel 2017, 199, 346–357. [Google Scholar] [CrossRef]
- Teixeira Cardoso, A.R.; Conrado, N.M.; Krause, M.C.; Bjerk, T.R.; Krause, L.C.; Caramão, E.B. Chemical characterization of the bio-oil obtained by catalytic pyrolysis of sugarcane bagasse (industrial waste) from the species Erianthus arundinaceus. J. Environ. Chem. Eng. 2019, 7, 102970. [Google Scholar] [CrossRef]
- Sukumar, V.; Manieniyan, V.; Senthilkumar, R.; Sivaprakasam, S. Production of bio oil from sweet lime empty fruit bunch by pyrolysis. Renew. Energy 2020, 146, 309–315. [Google Scholar] [CrossRef]
- Chen, D.; Gao, D.; Capareda, S.C.; Huang, S.; Wang, Y. Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse. Bioresour. Technol. 2019, 277, 37–45. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, S.; Chen, W.; Cai, Q. Pyrolysis of tobacco wastes for bio-oil with aroma compounds. J. Anal. Appl. Pyrolysis 2018, 248–254. [Google Scholar] [CrossRef]
- Midhun Prasad, K.; Murugavelh, S. Experimental investigation and kinetics of tomato peel pyrolysis: Performance, combustion and emission characteristics of bio-oil blends in diesel engine. J. Clean. Prod. 2020, 254, 120115. [Google Scholar] [CrossRef]
- Ly, H.V.; Lim, D.H.; Sim, J.W.; Kim, S.S.; Kim, J. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst. Energy 2018, 162, 564–575. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Peng, Y.; Ke, L.; Yang, Q.; Jiang, L.; Dai, L.; Liu, Y.; Ruan, R.; Xia, D.; et al. Microwave-assisted pyrolysis of waste cooking oil for hydrocarbon bio-oil over metal oxides and HZSM-5 catalysts. Energy Convers. Manag. 2020, 220, 113124. [Google Scholar] [CrossRef]
- Iqbal, T.; Lu, Q.; Dong, C.Q.; Zhou, M.X.; Arain, Z.; Ali, Z.; Khan, I.; Hussain, Z.; Abbas, A. A study of product distribution under fast pyrolysis of wheat stalk while producing bio-oil. 2018 Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. iCoMET 2018 - Proc. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Eschenbacher, A.; Saraeian, A.; Shanks, B.H.; Jensen, P.A.; Li, C.; Duus, J.Ø.; Hansen, A.B.; Mentzel, U.V.; Henriksen, U.B.; Ahrenfeldt, J.; et al. Enhancing bio-oil quality and energy recovery by atmospheric hydrodeoxygenation of wheat straw pyrolysis vapors using Pt and Mo-based catalysts. Sustain. Energy Fuels 2020, 4, 1991–2008. [Google Scholar] [CrossRef]
- Paul, A.S.; Panwar, N.L.; Salvi, B.L.; Jain, S.; Sharma, D. Experimental investigation on the production of bio-oil from wheat straw. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–16. [Google Scholar] [CrossRef]
- dos Santos Polidoro, A.; Scapin, E.; Lazzari, E.; Silva, A.N.; dos Santos, A.L.; Caramão, E.B.; Jacques, R.A. Valorization of coffee silverskin industrial waste by pyrolysis: From optimization of bio-oil production to chemical characterization by GC × GC/qMS. J. Anal. Appl. Pyrolysis 2018, 129, 43–52. [Google Scholar] [CrossRef]
- Aboulkas, A.; Hammani, H.; El Achaby, M.; Bilal, E.; Barakat, A.; El harfi, K. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Bioresour. Technol. 2017, 243, 400–408. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V. Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renew. Sustain. Energy Rev. 2021, 135, 110152. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Yang, H.; Zhu, D.; Chen, X.; Wang, X.; Chen, H. Correlation of Feedstock and Bio-oil Compound Distribution. Energy Fuels 2017, 31, 7093–7100. [Google Scholar] [CrossRef]
- Fan, Y.; Cai, Y.; Li, X.; Jiao, L.; Xia, J.; Deng, X. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method. Energy Convers. Manag. 2017, 138, 106–118. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, Y.; Yang, H.; Liu, M.; Xiao, H.; Wu, Z.; Chen, H.; Naqvi, S.R. Prediction of Bio-oil Yield and Hydrogen Contents Based on Machine Learning Method: Effect of Biomass Compositions and Pyrolysis Conditions. Energy Fuels 2020, 34, 11050–11060. [Google Scholar] [CrossRef]
- Auersvald, M.; Macek, T.; Schulzke, T.; Staš, M.; Šimáček, P. Influence of biomass type on the composition of bio-oils from ablative fast pyrolysis. J. Anal. Appl. Pyrolysis 2020, 150, 104838. [Google Scholar] [CrossRef]
- Abdul Latif, N.I.S.; Ong, M.Y.; Nomanbhay, S. Hydrothermal liquefaction of Malaysia’s algal biomass for high-quality bio-oil production. Eng. Life Sci. 2019, 19, 246–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Liang, S.; Guho, N.M.; Hanson, A.J.; Smith, M.W.; Garcia-Perez, M.; McDonald, A.G. Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process. J. Anal. Appl. Pyrolysis 2015, 115, 268–278. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, S.; Nabi, M.N.; Moghaddam, L.; Brooks, P.; Ghandehari, P.S.; Erler, D. Combined pyrolysis and sulphided NiMo/Al2O3 catalysed hydroprocessing in a multistage strategy for the production of biofuels from milk processing waste. Fuel 2021, 295, 120602. [Google Scholar] [CrossRef]
- Kim, J.S. Production, separation and applications of phenolic-rich bio-oil—A review. Bioresour. Technol. 2015, 178, 90–98. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, N.; Li, H.; Deng, W.; Cheng, Y.; Wang, Y.; Liu, Y.; Cobb, K.; Lei, H.; Chen, P.; et al. Recent advances in improving lignocellulosic biomass-based bio-oil production. J. Anal. Appl. Pyrolysis 2020, 149, 104845. [Google Scholar] [CrossRef]
- He, T.; Zhong, Z.; Zhang, B. Bio-oil Upgrading via Ether Extraction, Looped-Oxide Catalytic Deoxygenation, and Mild Electrocatalytic Hydrogenation Techniques. Energy Fuels 2020, 34, 9725–9733. [Google Scholar] [CrossRef]
- Jacobson, K.; Maheria, K.C.; Kumar Dalai, A. Bio-oil valorization: A review. Renew. Sustain. Energy Rev. 2013, 23, 91–106. [Google Scholar] [CrossRef]
- Elkasabi, Y.; Mullen, C.A.; Jackson, M.A.; Boateng, A.A. Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications. J. Anal. Appl. Pyrolysis 2015, 114, 179–186. [Google Scholar] [CrossRef]
- Chan, Y.H.; Yusup, S.; Quitain, A.T.; Uemura, Y.; Sasaki, M. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluids 2014, 95, 407–412. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, C.; Hao, S.; Luo, G.; Zhang, S.; Chen, J. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Bioresour. Technol. 2016, 220, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Vecino Mantilla, S.; Gauthier-Maradei, P.; Álvarez Gil, P.; Tarazona Cárdenas, S. Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: Yield optimization and bio-oil characterization. J. Anal. Appl. Pyrolysis 2014, 108, 284–294. [Google Scholar] [CrossRef]
- Choi, G.G.; Oh, S.J.; Lee, S.J.; Kim, J.S. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour. Technol. 2015, 178, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Omoriyekomwan, J.E.; Tahmasebi, A.; Yu, J. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresour. Technol. 2016, 207, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Abnisa, F.; Daud, W.M.A.W.; Husin, W.N.W.; Sahu, J.N. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 2011, 35, 1863–1872. [Google Scholar] [CrossRef]
- Pinheiro Pires, A.P.; Arauzo, J.; Fonts, I.; Domine, M.E.; Fernández Arroyo, A.; Garcia-Perez, M.E.; Montoya, J.; Chejne, F.; Pfromm, P.; Garcia-Perez, M. Challenges and opportunities for bio-oil refining: A review. Energy Fuels 2019, 33, 4683–4720. [Google Scholar] [CrossRef]
- Wang, C.; Luo, Z.; Li, S.; Zhu, X. Coupling effect of condensing temperature and residence time on bio-oil component enrichment during the condensation of biomass pyrolysis vapors. Fuel 2020, 274, 117861. [Google Scholar] [CrossRef]
- Urrutia, R.I.; Yeguerman, C.; Jesser, E.; Gutierrez, V.S.; Volpe, M.A.; Werdin González, J.O. Sunflower seed hulls waste as a novel source of insecticidal product: Pyrolysis bio-oil bioactivity on insect pests of stored grains and products. J. Clean. Prod. 2021, 287, 125000. [Google Scholar] [CrossRef]
- Sarchami, T.; Batta, N.; Berruti, F. Production and separation of acetic acid from pyrolysis oil of lignocellulosic biomass: A review. Biofuels Bioprod. Biorefining 2021, 15, 1912–1937. [Google Scholar] [CrossRef]
- Luo, D.; Yin, W.; Han, D.; He, H.; Xia, S. Glycolic acid and formic acid production from pyrolysis oil water-soluble fraction by catalytic oxidation. Chem. Eng. Sci. 2021, 239, 116644. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, L.; Xu, Q.; Zhang, Z.; Shao, Y.; Dong, D.; Gao, G.; Liu, Q.; Wang, S.; Hu, X. Evidence for cross-polymerization between the biomass-derived furans and phenolics. Renew. Energy 2020, 154, 517–531. [Google Scholar] [CrossRef]
- Sun, K.; Xu, Q.; Shao, Y.; Zhang, L.; Liu, Q.; Zhang, S.; Wang, Y.; Hu, X. Cross-Polymerization between the Typical Sugars and Phenolic Monomers in Bio-Oil: A Model Compounds Study. Energy Fuels 2019, 33, 7480–7490. [Google Scholar] [CrossRef]
- Hu, X.; Nango, K.; Bao, L.; Li, T.; Mahmudul Hasan, M.D.; Li, C.Z. High yields of solid carbonaceous materials from biomass. Green Chem. 2019, 21, 1128–1140. [Google Scholar] [CrossRef]
- Cheng, S. Bio-Based Phenolic Resins and Adhesives Derived from Forestry Residues/Wastes and Lignin. Ph.D. Thesis, Lakehead University, Thunder Bay, ON, Canada, 2011. Available online: http://knowledgecommons.lakeheadu.ca/handle/2453/315 (accessed on 31 October 2021).
- Yi, J.; Zhang, J.; Yao, S.; Chang, J.; Li, B. Preparation of bio-oil-phenol-formaldehyde resins from biomass pyrolysis oil. Appl. Mech. Mater. 2012, 174–177, 1429–1432. [Google Scholar] [CrossRef]
- Vithanage, A.E.; Chowdhury, E.; Alejo, L.D.; Pomeroy, P.C.; DeSisto, W.J.; Frederick, B.G.; Gramlich, W.M. Renewably sourced phenolic resins from lignin bio-oil. J. Appl. Polym. Sci. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- Cui, Y.; Hou, X.; Wang, W.; Chang, J. Synthesis and characterization of bio-oil phenol formaldehyde resin used to fabricate phenolic based materials. Materials 2017, 10, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celikbag, Y.; Nuruddin, M.; Biswas, M.; Asafu-Adjaye, O.; Via, B.K. Bio-oil-based phenol–formaldehyde resin: Comparison of weight- and molar-based substitution of phenol with bio-oil. J. Adhes. Sci. Technol. 2020, 34, 2743–2754. [Google Scholar] [CrossRef]
- Sarika, P.R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins. Polymers 2020, 12, 2237. [Google Scholar] [CrossRef]
- Hu, S.; Luo, X.; Li, Y. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 2014, 7, 66–72. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Xu, P.; Chang, J. Preparation and characterization of phenolic foam modified with bio-oil. Materials 2018, 11, 2228. [Google Scholar] [CrossRef] [Green Version]
- Schulzke, T.; Iakovleva, A.; Cao, Q.; Conrad, S.; Zabelkin, S.; Grachev, A. Polyurethane foams produced from pyrolysis oil—Production and possible application. Biomass Bioenergy 2018, 115, 195–202. [Google Scholar] [CrossRef]
- Rasman, M.; Hassan, N.A.; Hainin, M.R.; Putra Jaya, R.; Haryati, Y.; Shukry, N.A.M.; Abdullah, M.E.; Kamaruddin, N.H.M. Engineering properties of bitumen modified with bio-oil. MATEC Web Conf. 2018, 250, 02003. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: Towards more sustainable materials in road pavements. J. Traffic Transp. Eng. 2020, 7, 192–204. [Google Scholar] [CrossRef]
- Zhang, R.; You, Z.; Wang, H.; Ye, M.; Yap, Y.K.; Si, C. The impact of bio-oil as rejuvenator for aged asphalt binder. Constr. Build. Mater. 2019, 196, 134–143. [Google Scholar] [CrossRef]
- Li, C.; Rajib, A.; Sarker, M.; Liu, R.; Fini, E.H.; Cai, J. Balancing the Aromatic and Ketone Content of Bio-Oils as Rejuvenators to Enhance Their Efficacy in Restoring Properties of Aged Bitumen. ACS Sustain. Chem. Eng. 2021, 9, 6912–6922. [Google Scholar] [CrossRef]
- Poh, C.C.; Hassan, N.A.; Raman, N.A.A.; Shukry, N.A.M.; Warid, M.N.M.; Satar, M.K.I.M.; Ismail, C.R.; Hassan, S.A.; Mashros, N. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012053. [Google Scholar] [CrossRef]
- Zabelkin, S.; Bikbulatova, G.; Grachev, A.; Bashkirov, V.; Burenkov, S.; Makarov, A. Modification of bitumen binder by the liquid products of wood fast pyrolysis. Road Mater. Pavement Des. 2019, 20, 1182–1200. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhao, W.; Norinaga, K.; Fang, J.J.; Wang, Y.G.; Zong, Z.M.; Wei, X.Y. Separation of phenols and ketones from bio-oil produced from ethanolysis of wheat stalk. Sep. Purif. Technol. 2015, 152, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.H.; Loh, S.K.; Chin, B.L.F.; Yiin, C.L.; How, B.S.; Cheah, K.W.; Wong, M.K.; Loy, A.C.M.; Gwee, Y.L.; Lo, S.L.Y.; et al. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects. Chem. Eng. J. 2020, 397, 125406. [Google Scholar] [CrossRef]
- Stanford, J.P.; Hall, P.H.; Rover, M.R.; Smith, R.G.; Brown, R.C. Separation of sugars and phenolics from the heavy fraction of bio-oil using polymeric resin adsorbents. Sep. Purif. Technol. 2018, 194, 170–180. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Hu, W.; Fu, D.; Wang, G. Analytical strategies for chemical characterization of bio-oil. J. Sep. Sci. 2020, 43, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Michailof, C.M.; Kalogiannis, K.G.; Sfetsas, T.; Patiaka, D.T.; Lappas, A.A. Advanced analytical techniques for bio-oil characterization. Wiley Interdiscip. Rev. Energy Environ. 2016, 5, 614–639. [Google Scholar] [CrossRef]
- Ohra-aho, T.; Rohrbach, L.; Winkelman, J.G.M.; Heeres, H.J.; Mikkelson, A.; Oasmaa, A.; van de Beld, B.; Leijenhorst, E.J.; Heeres, H. Evaluation of Analysis Methods for Formaldehyde, Acetaldehyde, and Furfural from Fast Pyrolysis Bio-Oil. Energy Fuels 2021, 35, 18583–18591. [Google Scholar] [CrossRef] [PubMed]
- Lienemann, C.-P.; Quignard, A.; Texier, N.; Charon, N. Measuring inorganics in biomass fast pyrolysis oils. J. Anal. Appl. Pyrolysis 2021, 159, 105313. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Alvarez-Chavez, B.J.; Godbout, S.; Palacios-Rios, J.H.; Le Roux, É.; Raghavan, V. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: A critical review. Biomass Bioenergy 2019, 128, 105333. [Google Scholar] [CrossRef]
- Tarves, P.C.; Serapiglia, M.J.; Mullen, C.A.; Boateng, A.A.; Volk, T.A. Effects of hot water extraction pretreatment on pyrolysis of shrub willow. Biomass Bioenergy 2017, 107, 299–304. [Google Scholar] [CrossRef]
- Zhao, Q.; Mäkinen, M.; Haapala, A.; Jänis, J. Valorization of Bark from Short Rotation Trees by Temperature-Programmed Slow Pyrolysis. ACS Omega 2021, 6, 9771–9779. [Google Scholar] [CrossRef]
- Xu, J.; Brodu, N.; Abdelouahed, L.; Taouk, B. Investigation of the combination of fractional condensation and water extraction for improving the storage stability of pyrolysis bio-oil. Fuel 2022, 314, 123019. [Google Scholar] [CrossRef]
- Xu, J.; Brodu, N.; Wang, J.; Abdelouahed, L.; Taouk, B. Chemical characteristics of bio-oil from beech wood pyrolysis separated by fractional condensation and water extraction. J. Energy Inst. 2021, 99, 186–197. [Google Scholar] [CrossRef]
- Albrecht, K.O.; Olarte, M.V.; Wang, H. Upgrading Fast Pyrolysis Liquids. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 207–255. [Google Scholar]
- Schulzke, T.; Conrad, S.; Westermeyer, J. Fractionation of flash pyrolysis condensates by staged condensation. Biomass Bioenergy 2016, 95, 287–295. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Li, K.; Zhu, X. Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: Effects of pyrolysis temperature and residence time. Energy Convers. Manag. 2018, 166, 260–267. [Google Scholar] [CrossRef]
- Montesantos, N.; Pedersen, T.H.; Nielsen, R.P.; Rosendahl, L.; Maschietti, M. Supercritical carbon dioxide fractionation of bio-crude produced by hydrothermal liquefaction of pinewood. J. Supercrit. Fluids 2019, 149, 97–109. [Google Scholar] [CrossRef]
- Feng, Y.; Meier, D. Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. J. Supercrit. Fluids 2017, 128, 6–17. [Google Scholar] [CrossRef]
- Chan, Y.H.; Yusup, S.; Quitain, A.T.; Uemura, Y.; Loh, S.K. Fractionation of pyrolysis oil via supercritical carbon dioxide extraction: Optimization study using response surface methodology (RSM). Biomass Bioenergy 2017, 107, 155–163. [Google Scholar] [CrossRef]
- Cesari, L.; Canabady-Rochelle, L.; Mutelet, F. Separation of phenols from lignin pyrolysis oil using ionic liquid. Sep. Purif. Technol. 2019, 209, 528–534. [Google Scholar] [CrossRef]
- Cristino, A.F.; Logan, D.; Bordado, J.C.; Dos Santos, R.G. The role of ionic liquids on biomass liquefaction—A short review of the recent advances. Processes 2021, 9, 1214. [Google Scholar] [CrossRef]
- Hansen, S.; Mirkouei, A.; Diaz, L.A. A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renew. Sustain. Energy Rev. 2020, 118, 109548. [Google Scholar] [CrossRef]
- Yuan, X.; Ding, X.; Leng, L.; Li, H.; Shao, J.; Qian, Y.; Huang, H.; Chen, X.; Zeng, G. Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions. Energy 2018, 154, 110–118. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Lappas, A.A. Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e281. [Google Scholar] [CrossRef]
- Sharma, K.; Castello, D.; Haider, M.S.; Pedersen, T.H.; Rosendahl, L.A. Continuous co-processing of HTL bio-oil with renewable feed for drop-in biofuels production for sustainable refinery processes. Fuel 2021, 306, 121579. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Zheng, L.; Shi, M.; Li, J. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery. Energy Convers. Manag. 2019, 195, 620–629. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Liakos, D.; Pfisterer, U.; Moustaka-Gouni, M.; Karonis, D.; Bezergianni, S. Impact of hydrogenation on miscibility of fast pyrolysis bio-oil with refinery fractions towards bio-oil refinery integration. Biomass Bioenergy 2021, 151, 106171. [Google Scholar] [CrossRef]
Feedstock | Thermochemical Process | Application | Yield (%) | Ref. |
---|---|---|---|---|
Amphiroa fragilissima | HTL | Fuel | 29 | [16] |
Animal manure | HTL | Fuel and Chemicals | 31 | [17] |
Cellulose | HTL | Fuel | - | [18] |
Corn stover | HTL | Fuel | 29 | [19] |
Corn straw | HTL | Fuel and Chemicals | 8 | [20] |
Cow dung | HTL | Fuel and Chemicals | 57 | [21] |
Dunaliella sp | HTL | Fuel | 13 | [22] |
Eucalyptus | TL | Chemicals | 30 | [23] |
Eucalyptus globulus | TL | Fuel | 96 | [24] |
Hay | HTL | Fuel | - | [18] |
Karanja press seed cake | TL | Fuel | 99 | [25] |
Lemon Peel and Spirulina Platensis | HTL | Fuel | 26 | [26] |
Lignin | TL | Fuel and Chemicals | 63 | [27] |
Miscanthus | HTL | Fuel | 26 | [28] |
Nostoc ellipsosporum | HTL | Chemicals | 25 | [29] |
Oak wood | HTL | Fuel | - | [18] |
Palm kernel shell | HTL | Fuel and Chemicals | 16 | [30] |
Peanut straw | HTL | Fuel and Chemicals | 15 | [20] |
Pinewood shaves | TL | Fuel | 99 | [31] |
Pinus ponderosa | HTL | Fuel | 16 | [1] |
Poplar | HTL | Fuel | 20 | [32] |
Potato peels | TL | Fuel and Chemicals | 80 | [33] |
Rhodococcus opacus | HTL | Fuel | 27 | [34] |
Rice husk | HTL | Fuel and Chemicals | 60 | [21] |
Rice straw | CHTL | Chemicals | - | [35] |
Rice straw | CHTL | Fuel | 67 | [36] |
Rice straw | HTL | Chemicals | 48 | [35] |
Rice straw | HTL | Fuel | 30 | [13] |
Rice straw | TL | Fuel | 23 | [37] |
Rice straw | HTL | Fuel and Chemicals | 15 | [20] |
Rice Straw and municipal sewage sludge | TL | Fuel | 32 | [37] |
Scenedesmus obliquus | HTL | Fuel | 40 | [38] |
Sewage sludge | HTL | Fuel | 25 | [28] |
Soybean straw | HTL | Fuel and Chemicals | 16 | [20] |
Spirulina | TL | Fuel | 50 | [39] |
Spirulina | HTL | Fuel | 33 | [28] |
Spirulina platensis, pre-treated | HTL | Fuel | 50 | [40] |
Switchgrass | TL | Fuel and Chemicals | 40 | [41] |
Walnut shell | HTL | Fuel | - | [18] |
Woodchips | TL | Fuel | 27 | [37] |
Woodchips and municipal sewage sludge | TL | Fuel | 32 | [37] |
Feedstock | Thermochemical Process | Application | Yield (%) | Ref. |
---|---|---|---|---|
Acacia cincinnata | IP | Fuel | 53 | [42] |
Acacia holosericea | IP | Fuel | 47 | [42] |
Acacia mangium | CP | Fuel | 45 | [43] |
Acacia sawdust | P | Fuel | 29–45 | [44] |
Amphiroa fragilissima | P | Fuel | 33 | [16] |
Bamboo | P | Fuel | 47 | [45] |
Bamboo residues | P | Fuel | 45 | [46] |
Brewery residue | Co-P | Fuel and Chemicals | 56 | [47] |
Camellia oleifera shell | MP | Fuel | 27 | [48] |
Cassava peel | P | Chemicals | - | [49] |
Cellulose | FP | Chemicals | 61–85 | [50] |
Chlorella vulgaris | CP | Fuel | 20 | [51] |
Chlorella vulgaris | FP | Fuel and Chemicals | - | [52] |
Coconut fibers | P | Chemicals | - | [49] |
Coconut shells | P | Fuel | 50 | [46] |
Coffee silverskin | P | Chemicals | - | [49] |
Corncobs | P | Fuel | 44 | [46] |
Corrugated cardboard | P | Fuel | 47 | [53] |
Cotton seed | FP | Fuel | [54] | |
Cotton seeds | P | Chemicals | - | [49] |
Cotton stalk | CP | Fuel | 53–56 | [55] |
Crambe seeds | P | Chemicals | - | [49] |
Crofton weed | P | Fuel and Chemicals | 29 | [56] |
Duckweed | P | Chemicals | - | [49] |
Enteromorpha clathrate | P | Fuel | - | [57] |
Eucalyptus grandis | CP | Fuel | 12–29 | [58] |
Eucalyptus sawdust | P | Chemicals | - | [49] |
Extracted marine chlorella sp. residue | MP | Fuel | 46 | [59] |
Food waste | MP | Fuel and Chemicals | 30 | [60] |
Forest residue | Co-P | Fuel | 23 | [61] |
Giant miscanthus | FP | Fuel | 50 | [62] |
Hardwood | P | Fuel | 55 | [63] |
Hemicellulose | FP | Chemicals | 34–56 | [50] |
Imperata cylindrica | P | Fuel and Chemicals | 37 | [64] |
Lactuca scariola | CP | Fuel | 34 | [65] |
Larch sawdust | CP | Chemicals | - | [66] |
Lemon myrtle | P | Fuel and Chemicals | 39 | [67] |
Lignin | FP | Fuel | 30 | [68] |
Lignin | FP | Chemicals | 27–55 | [50] |
Mahua seed | P | Fuel | 50 | [69] |
Mango seeds | P | Chemicals | - | [49] |
Moso bamboo | MP | Fuel | 30 | [70] |
Municipal solid waste | IP | Chemicals | 11 | [71] |
Napier grass | FP | Fuel | 33 | [72] |
Neem bark | P | Fuel | 38 | [45] |
Oily sludge and rice husk | Co-P | Fuel | 72 | [73] |
Olive pomace | MP | Fuel and Chemicals | 30 | [74] |
Olive pruning residue, olea europea | MP | Chemicals | 40 | [75] |
Organosolv lignin | P | Fuel | 30 | [76] |
Palm empty fruit bunch | FP | Fuel | 64 | [77] |
Palm empty fruit bunch | MP | Chemicals | 38 | [78] |
Palm kernel shell and sludge | Co-P | Fuel | 41 | [79] |
Palm shell | P | Fuel | 73 | [80] |
Peach cores | P | Chemicals | - | [49] |
Peanut shell | P | Chemicals | - | [49] |
Pine | P | Fuel | 48 | [81] |
Pine needles | CP | Fuel and Chemicals | 51 | [82] |
Pineapple leaves | P | Chemicals | - | [49] |
Pinewood sawdust | FCo-P | Fuel | 72 | [83] |
Populus wood | FP | Fuel and Chemicals | 63 | [84] |
Posidonia oceanica | CP | Fuel and Chemicals | 51 | [85] |
Red cedar | FP | Fuel | 53 | [86] |
Rice husk | P | Chemicals | - | [49] |
Rice husk | P | Fuel | 15 | [87] |
Rice husk | CFP | Fuel | 47 | [88] |
Rice husk | FP | Fuel | 48 | [89] |
Rice husk | P | Fuel | 42 | [45] |
Rice husk | P | Fuel and Chemicals | 75 | [90] |
Rice straw | MP | Fuel | 32 | [48] |
Rice straw | P | Fuel | 33 | [91] |
Rice straw | MP | Fuel and Chemicals | 30 | [92] |
Sawdust | FP | Fuel | 60 | [62] |
Scrap tire and pinewood sawdust | FCo-P | Fuel | 55 | [83] |
Scrap tire and sugarcane bagasse | Co-P | Fuel | 50 | [93] |
Sewage sludge | MP | Fuel and Chemicals | 75 | [94] |
Softwood | P | Fuel | 50 | [76] |
Softwood | FP | Fuel | 31 | [95] |
Spent coffee grounds | P | Chemicals | - | [49] |
Spruce wood | FP | Fuel and Chemicals | 65 | [84] |
Sugarcane bagasse | P | Fuel | 39 | [45] |
Sugarcane bagasse | CP | Fuel | 30 | [96] |
Sugarcane bagasse | P | Chemicals | - | [49] |
Sugarcane bagasse | P | Fuel | 53 | [91] |
Sweet lime | P | Fuel | 28 | [97] |
Sweet sorghum bagasse | FP | Chemicals | 50 | [98] |
Switchgrass | P | Fuel | 46 | [81] |
Switchgrass and pine | P | Fuel | 45 | [81] |
Tobacco seeds | P | Chemicals | 14–47 | [49] |
Tobacco wastes | P | Fuel and Chemicals | 67 | [99] |
Tomato peel | P | Fuel | 40 | [100] |
Tulip tree | CP | Fuel | 49 | [101] |
Waste cooking oil | MP | Fuel | 40 | [102] |
Wheat stalk | FP | Fuel | - | [103] |
Wheat straw | P | Fuel | 37 | [91] |
Wheat straw | P | Fuel | 60 | [104] |
Wheat straw | P | Fuel | 42 | [105] |
Coffee silverskin | P | Chemicals | 15 | [106] |
Gelidium sesquipedale | P | Fuel and Chemicals | 24 | [107] |
Feedstock | Contents (%) | ||||
---|---|---|---|---|---|
Phenols | Phenolic Aldehydes and Ketones | Furans | Anhydro-Sugars | Other O Containing | |
Cellulose | - | - | 11–17 | 40–77 | 0–40 |
Hemicellulose | 0–13 | - | 26–58 | 6–28 | 2–67 |
Lignin | 44–65 | 25–55 | - | - | 1–10 |
Elemental Composition wt% | |||||||||
---|---|---|---|---|---|---|---|---|---|
Viscosity | Relative Density | pH | Water Content | Heating Value | O | N | C | H | Ash |
25–100 cP | 1.1–1.2 | 2.8–4 | 15–30 wt% | 16–26 MJ/kg | 27–40 | 0.05–1 | 55–64 | 5–8 | 0.03–0.3% |
Feedstock | Process | Contents (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phenols | Esters | Ketones | Acids | Alcohols | Hydrocarbons | Furans | N-Containing | Aldehydes | Ref. | ||
Cellulose | HTL | 13 | - | 21 | 2 | - | - | 1 | - | 24 | [18] |
Corn straw | HTL | 53 | - | 21 | 4 | 1 | 1 | - | 3 | 1 | [20] |
Hay | HTL | 24 | 1 | 15 | 16 | - | - | - | - | 16 | [18] |
Nostoc ellipsosporum | HTL | 1 | 3 | - | 8 | - | 25 | 8 | - | 4 | [29] |
Oak wood | HTL | 38 | - | 14 | 5 | - | - | - | - | 14 | [18] |
Palm empty fruit bunch | HTL | 7 | - | 16 | - | - | - | - | - | - | [121] |
Palm kernel shell | HTL | 81 | 3 | - | - | 3 | - | - | - | - | [121] |
Palm mesocarp fiber | HTL | 89 | - | 5 | - | - | - | - | - | - | [121] |
Peanut straw | HTL | 28 | 26 | 8 | 1 | 4 | 6 | 1 | [20] | ||
Pinus ponderosa | HTL | 30 | 4 | - | 5 | - | - | 1 | - | - | [1] |
Rice straw | CHTL | 46 | 19 | 7 | 1 | 3 | 11 | 2 | - | - | [35] |
Rice straw | CHTL | 28–44 | - | 2–12 | - | 5–11 | - | - | 5–16 | - | [36] |
Rice straw | HTL | 45 | 13 | 16 | 7 | 5 | 0.5 | 1 | - | 0.1 | [35] |
Rice straw | HTL | 25 | - | 9 | 6 | 9 | - | - | - | - | [36] |
Rice straw | HTL | 46–70 | - | 10–42 | - | 1–42 | - | - | - | 1–2 | [122] |
Rice straw | HTL, heavy oil | 0–2 | - | 4–9 | 0–0.5 | 0–13 | 13–28 | - | 9–18 | - | [13] |
Rice straw | HTL, light oil | 14–39 | 0–7 | 8–24 | 2–7 | 0–16 | 0–12 | 0–6 | 0–6 | 3–23 | [13] |
Rice straw | CHTL, heavy oil | 0–2 | - | 5–7 | 8–27 | 7–11 | 16–36 | - | 11–26 | - | [13] |
Rice straw | CHTL, light oil | 14–41 | 0–1 | 9–25 | 3–8 | 3–27 | 2–13 | 0–2 | 0–0.5 | 1–19 | [13] |
Rice straw | HTL | 34 | - | 35 | 1 | 1 | 5 | - | 4 | 2 | [20] |
Soybean straw | HTL | 29 | - | 50 | 1 | - | 6 | - | 8 | 2 | [20] |
Spirulina platensis | HTL | 6 | 20 | 2 | 1 | - | 7 | 5 | 37 | - | [40] |
Walnut shell | HTL | 50 | 1 | 4 | 2 | - | - | - | - | 4 | [18] |
Feedstock | Process | Contents (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenols | Esters | Ketones | Acids | Alcohols | Hydrocarbons | Furans | Anhydro-Sugar | N-Containing | Aldehydes | Author | ||
Acacia mangium | CP | 35 | - | 18 | - | 13 | - | 4 | 45 | - | 5 | [43] |
Bamboo residues | P | 37 | - | 17 | - | 18 | - | 20 | - | - | 3 | [46] |
Cellulose | FP | - | - | - | - | - | - | 11–17 | 40–77 | - | - | [50] |
Chlorella sp. residue | P | 18 | 18 | 3 | 12 | 6 | 0.5 | 6 | 2 | 30 | - | [59] |
Coconut shells | P | 43 | - | 4 | - | 22 | - | 1 | - | - | 6 | [46] |
Corncobs | P | 40 | - | 6 | - | 31 | - | 6 | - | - | - | [46] |
Crofton weed | P | 13 | 15 | - | 6 | 13 | 2 | 11 | - | - | 28 | [56] |
Hemicellulose | FP | 0–13 | - | - | - | - | - | 26–58 | 6–28 | - | - | [50] |
Lignin | FP | 44–65 | - | - | - | - | - | - | - | - | - | [50] |
Palm empty fruit bunch | MFP | 59–73 | 11–16 | 12–19 | 8–9 | - | - | - | 3–8 | - | [78] | |
Palm empty fruit bunch | P | 12 | - | - | 88 | - | 1 | - | - | - | - | [123] |
Palm kernel shell | FP | 17–25 | - | - | 19–28 | - | - | - | - | - | - | [124] |
Palm kernel shell | MP | 71 | - | - | - | - | - | - | - | - | - | [125] |
Palm kernel shell and sludge | CO-P | 12–22 | - | - | - | - | - | 1–5 | - | - | - | [79] |
Palm shell | P | 22 | - | - | 4 | 3 | - | 2 | - | 47 | 1 | [126] |
Pinewood sawdust | CO-FP | 11 | - | 7 | 6 | 4 | - | 6 | 5 | 1 | 8 | [83] |
Polyhydroxyalkanoate bacteria | P | 18 | - | 10 | 46 | - | - | - | 21 | - | [114] | |
Rice husk | P | 8 | - | 6 | 0.2 | 1 | - | 1 | - | - | 1 | [87] |
Rice straw | P | 8 | 4 | 25 | - | 28 | - | 17 | 5 | - | - | [91] |
Scrap tire and sugarcane bagasse | CO-P | 52 | - | 12 | 11 | 11 | - | - | - | - | 5 | [93] |
Sugarcane bagasse | P | 20 | - | - | 15 | 4 | - | - | - | - | 40 | [123] |
Sugarcane bagasse | P | 23 | 3 | 16 | - | - | - | 23 | 24 | - | - | [91] |
Wheat stalk | FP | 26–27 | - | 8 | 10–11 | - | - | - | - | - | - | [103] |
Wheat straw | P | 19 | 12 | 30 | - | 27 | - | 7 | 0.3 | - | - | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, H.; Cristino, A.F.; Orišková, S.; Galhano dos Santos, R. Bio-Oil: The Next-Generation Source of Chemicals. Reactions 2022, 3, 118-137. https://doi.org/10.3390/reactions3010009
Machado H, Cristino AF, Orišková S, Galhano dos Santos R. Bio-Oil: The Next-Generation Source of Chemicals. Reactions. 2022; 3(1):118-137. https://doi.org/10.3390/reactions3010009
Chicago/Turabian StyleMachado, Henrique, Ana F. Cristino, Sofia Orišková, and Rui Galhano dos Santos. 2022. "Bio-Oil: The Next-Generation Source of Chemicals" Reactions 3, no. 1: 118-137. https://doi.org/10.3390/reactions3010009
APA StyleMachado, H., Cristino, A. F., Orišková, S., & Galhano dos Santos, R. (2022). Bio-Oil: The Next-Generation Source of Chemicals. Reactions, 3(1), 118-137. https://doi.org/10.3390/reactions3010009