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Abstract: Bio-oil, although rich in chemical species, is primarily used as fuel oil, due to its greater
calorific power when compared to the biomass from which it is made. The incomplete understanding
of how to explore its chemical potential as a source of value-added chemicals and, therefore, a supply
of intermediary chemical species is due to the diverse composition of bio-oil. Being biomass-based,
making it subject to composition changes, bio-oil is obtained via different processes, the two most
common being fast pyrolysis and hydrothermal liquefaction. Different methods result in different
bio-oil compositions even from the same original biomass. Understanding which biomass source and
process results in a particular chemical makeup is of interest to those concerned with the refinement
or direct application in chemical reactions of bio-oil. This paper presents a summary of published
bio-oil production methods, origin biomass, and the resulting composition.

Keywords: bio-oil; hydrothermal liquefaction; pyrolysis; biomass

1. Introduction

As the dialogue concerning climate change and carbon neutrality deepens, the human
reliance on fossil fuels is greatly criticized. At the same time, climate change creates
new concerns, which obligate us, as an inventive and adaptive species, to find strategies
to battle adversity. This also presents a necessity to think seriously about how human
activities influence the environment. Keeping these issues in mind while designing these
new strategies is the key to carbon neutrality.

Frequent and severe forest fires are only preventable if there is a commitment to
cleaning and caring for forested areas. During this process, significant volumes of organic
matter are collected, which could be employed in new applications, such as using them as
raw material, thus turning waste into an asset. Bio-oil production is an appealing concept
for generating fuel from lignocellulosic biomatter, or other biomass, while also reducing
dependence on fossil fuels. Recent approaches to reducing dependency on fossil fuels,
such as biorefineries, may have lignocellulosic-rich biomass as a by-product [1], further
increasing bio-oil feedstock availability. Bio-oil has a higher heating value when compared
to its feedstock, and when burned, it can potentially generate a lower amount of greenhouse
gas when compared to fossil fuels [2]. Therefore, its most studied application is still as a
burning fuel, but other applications are emerging due to its composition, as is the case of
foams and resins [3]. The latter applications emphasize the potential of bio-oil as a source
of value-added chemicals.

Many sources of feedstocks have been studied [4–6] along with their applications
as fuels, chemical sources, or raw materials in direct applications. A great deal of recent
research has investigated ways to improve bio-oil performance as fuels: the use of catalysts,
feedstock pre-treatment, and bio-oil upgrading to enrich the resulting bio-oil in hydrocar-
bons, therefore making it less abundant in N- and O-containing compounds [7]. However,
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the presence of these compounds also highlights the possibility of having bio-oils as a
source of chemical species or for direct application in chemical industries.

This work aims to give a brief introduction to bio-oil as a chemical source, serving as a
referral point of the recent research on bio-oil production while commenting on the path
previous research on the subject has taken.

2. Thermochemical Processes

Bio-oil is obtained via an array of thermochemical processes. The most common
of these processes are pyrolysis and hydrothermal liquefaction [6–16]. These processes
convert a given feedstock into bio-oil, biochar, and gas, with their composition dependent
on feedstock type, pre-treatment, process, operating conditions, and later upgrading [5,8,9].

Pyrolysis processes are characterized by processing temperatures as high as 600 ◦C [10,11],
shorter reaction times, and the necessity to dry feedstock before processing. Hydrothermal
liquefaction eliminates the need for feedstock drying and utilizes water as a solvent at lower
temperatures, but may require the application of pressures from 5 to 20 MPa [12]. Thermal
liquefaction usually refers to processes, such as hydrothermal liquefaction, but utilizes organic
solvents such as ethanol and acetone. In all of these processes, catalysts are frequently em-
ployed to modulate resulting bio-oil composition and improve the yield of total bio-oil or
specific components [10].

Some authors also distinguish between light and heavy bio-oil, both making up for
the entire bio-oil fraction extracted from a biomass source. The liquid fraction resulting
from the thermochemical process is called light oil, and it is richer in phenols, ketones, and
aldehydes than its source material. The solid portion is further extracted with an organic
solvent, and a heavy oil is therefore obtained. It has a higher viscosity, associated with a
higher content of longer hydrocarbons [13]. Two phases may be present when the water
content in bio-oil exceeds a certain wt.%, thus creating the so-called water-soluble and
organic phases [14].

Most researchers choose pyrolysis processes over hydrothermal and thermal liquefac-
tion, which only represent about 30% of recent studies. In addition to resulting in different
bio-oil compositions, their associated costs are also different. One study, which compared
the economic viability of bio-oil production from palm residues, found pyrolysis to have
almost double the cost of a hydrothermal process [15]. The authors also concluded that
achieving higher bio-oil yields would reduce costs more than improving the energetic
efficiency of the applied process. Research on producing bio-oil in the last 5 years has also
mostly focused on fuel making, about 70%, when compared to other applications, as seen
in Figure 1.
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research in the last 5 years (according to a search made in Web of Science).

Previous literature has already observed that pyrolysis bio-oil research frequently uses
some sort of high-volume and low-value agricultural residue (rice husk or straw, wheat
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straw or some form of oil palm residue) as feedstock [5]. This is still somewhat true today,
as many of the works presented in this paper still make use of one of these feedstocks.
Research that focuses on other, more uncommon biomasses mostly focus on fuel production
and thus are often absent in information useful for other applications.

In Tables 1 and 2, an overview is given on the most recent studies involving the
thermo-chemical liquefaction and pyrolysis of several feedstocks to produce bio-oil. The
application and conversion yields (%) are presented for all studies.

Table 1. Summary of thermochemical liquefaction bio-oil references.

Feedstock Thermochemical
Process Application Yield (%) Ref.

Amphiroa fragilissima HTL Fuel 29 [16]
Animal manure HTL Fuel and Chemicals 31 [17]

Cellulose HTL Fuel - [18]
Corn stover HTL Fuel 29 [19]
Corn straw HTL Fuel and Chemicals 8 [20]
Cow dung HTL Fuel and Chemicals 57 [21]

Dunaliella sp HTL Fuel 13 [22]
Eucalyptus TL Chemicals 30 [23]

Eucalyptus globulus TL Fuel 96 [24]
Hay HTL Fuel - [18]

Karanja press seed cake TL Fuel 99 [25]
Lemon Peel and Spirulina

Platensis HTL Fuel 26 [26]

Lignin TL Fuel and Chemicals 63 [27]
Miscanthus HTL Fuel 26 [28]

Nostoc ellipsosporum HTL Chemicals 25 [29]
Oak wood HTL Fuel - [18]

Palm kernel shell HTL Fuel and Chemicals 16 [30]
Peanut straw HTL Fuel and Chemicals 15 [20]

Pinewood shaves TL Fuel 99 [31]
Pinus ponderosa HTL Fuel 16 [1]

Poplar HTL Fuel 20 [32]
Potato peels TL Fuel and Chemicals 80 [33]

Rhodococcus opacus HTL Fuel 27 [34]
Rice husk HTL Fuel and Chemicals 60 [21]
Rice straw CHTL Chemicals - [35]
Rice straw CHTL Fuel 67 [36]
Rice straw HTL Chemicals 48 [35]
Rice straw HTL Fuel 30 [13]
Rice straw TL Fuel 23 [37]
Rice straw HTL Fuel and Chemicals 15 [20]

Rice Straw and municipal
sewage sludge TL Fuel 32 [37]

Scenedesmus obliquus HTL Fuel 40 [38]
Sewage sludge HTL Fuel 25 [28]
Soybean straw HTL Fuel and Chemicals 16 [20]

Spirulina TL Fuel 50 [39]
Spirulina HTL Fuel 33 [28]

Spirulina platensis, pre-treated HTL Fuel 50 [40]
Switchgrass TL Fuel and Chemicals 40 [41]
Walnut shell HTL Fuel - [18]
Woodchips TL Fuel 27 [37]

Woodchips and municipal
sewage sludge TL Fuel 32 [37]

HTL—hydrothermal liquefaction; TL—thermal liquefaction; CHTL—catalytic hydrothermal liquefaction.
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Table 2. Summary of pyrolysis bio-oil references.

Feedstock Thermochemical Process Application Yield (%) Ref.

Acacia cincinnata IP Fuel 53 [42]
Acacia holosericea IP Fuel 47 [42]
Acacia mangium CP Fuel 45 [43]
Acacia sawdust P Fuel 29–45 [44]

Amphiroa fragilissima P Fuel 33 [16]
Bamboo P Fuel 47 [45]

Bamboo residues P Fuel 45 [46]
Brewery residue Co-P Fuel and Chemicals 56 [47]

Camellia oleifera shell MP Fuel 27 [48]
Cassava peel P Chemicals - [49]

Cellulose FP Chemicals 61–85 [50]
Chlorella vulgaris CP Fuel 20 [51]
Chlorella vulgaris FP Fuel and Chemicals - [52]
Coconut fibers P Chemicals - [49]
Coconut shells P Fuel 50 [46]

Coffee silverskin P Chemicals - [49]
Corncobs P Fuel 44 [46]

Corrugated cardboard P Fuel 47 [53]
Cotton seed FP Fuel [54]
Cotton seeds P Chemicals - [49]
Cotton stalk CP Fuel 53–56 [55]

Crambe seeds P Chemicals - [49]
Crofton weed P Fuel and Chemicals 29 [56]

Duckweed P Chemicals - [49]
Enteromorpha clathrate P Fuel - [57]

Eucalyptus grandis CP Fuel 12–29 [58]
Eucalyptus sawdust P Chemicals - [49]

Extracted marine chlorella sp.
residue MP Fuel 46 [59]

Food waste MP Fuel and Chemicals 30 [60]
Forest residue Co-P Fuel 23 [61]

Giant miscanthus FP Fuel 50 [62]
Hardwood P Fuel 55 [63]

Hemicellulose FP Chemicals 34–56 [50]
Imperata cylindrica P Fuel and Chemicals 37 [64]

Lactuca scariola CP Fuel 34 [65]
Larch sawdust CP Chemicals - [66]
Lemon myrtle P Fuel and Chemicals 39 [67]

Lignin FP Fuel 30 [68]
Lignin FP Chemicals 27–55 [50]

Mahua seed P Fuel 50 [69]
Mango seeds P Chemicals - [49]
Moso bamboo MP Fuel 30 [70]

Municipal solid waste IP Chemicals 11 [71]
Napier grass FP Fuel 33 [72]
Neem bark P Fuel 38 [45]

Oily sludge and rice husk Co-P Fuel 72 [73]
Olive pomace MP Fuel and Chemicals 30 [74]

Olive pruning residue, olea
europea MP Chemicals 40 [75]

Organosolv lignin P Fuel 30 [76]
Palm empty fruit bunch FP Fuel 64 [77]
Palm empty fruit bunch MP Chemicals 38 [78]

Palm kernel shell and sludge Co-P Fuel 41 [79]
Palm shell P Fuel 73 [80]

Peach cores P Chemicals - [49]
Peanut shell P Chemicals - [49]
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Table 2. Cont.

Feedstock Thermochemical Process Application Yield (%) Ref.

Pine P Fuel 48 [81]
Pine needles CP Fuel and Chemicals 51 [82]

Pineapple leaves P Chemicals - [49]
Pinewood sawdust FCo-P Fuel 72 [83]

Populus wood FP Fuel and Chemicals 63 [84]
Posidonia oceanica CP Fuel and Chemicals 51 [85]

Red cedar FP Fuel 53 [86]
Rice husk P Chemicals - [49]
Rice husk P Fuel 15 [87]
Rice husk CFP Fuel 47 [88]
Rice husk FP Fuel 48 [89]
Rice husk P Fuel 42 [45]
Rice husk P Fuel and Chemicals 75 [90]
Rice straw MP Fuel 32 [48]
Rice straw P Fuel 33 [91]
Rice straw MP Fuel and Chemicals 30 [92]
Sawdust FP Fuel 60 [62]

Scrap tire and pinewood
sawdust FCo-P Fuel 55 [83]

Scrap tire and sugarcane
bagasse Co-P Fuel 50 [93]

Sewage sludge MP Fuel and Chemicals 75 [94]
Softwood P Fuel 50 [76]
Softwood FP Fuel 31 [95]

Spent coffee grounds P Chemicals - [49]
Spruce wood FP Fuel and Chemicals 65 [84]

Sugarcane bagasse P Fuel 39 [45]
Sugarcane bagasse CP Fuel 30 [96]
Sugarcane bagasse P Chemicals - [49]
Sugarcane bagasse P Fuel 53 [91]

Sweet lime P Fuel 28 [97]
Sweet sorghum bagasse FP Chemicals 50 [98]

Switchgrass P Fuel 46 [81]
Switchgrass and pine P Fuel 45 [81]

Tobacco seeds P Chemicals 14–47 [49]
Tobacco wastes P Fuel and Chemicals 67 [99]

Tomato peel P Fuel 40 [100]
Tulip tree CP Fuel 49 [101]

Waste cooking oil MP Fuel 40 [102]
Wheat stalk FP Fuel - [103]
Wheat straw P Fuel 37 [91]
Wheat straw P Fuel 60 [104]
Wheat straw P Fuel 42 [105]

Coffee silverskin P Chemicals 15 [106]
Gelidium sesquipedale P Fuel and Chemicals 24 [107]

IP—intermediate pyrolysis; CP—catalytic pyrolysis; P—pyrolysis; Co-P—co-pyrolysis; MP—microwave pyrolysis;
FP—fast pyrolysis.

3. Thermochemical Conversion Routes of Biomass

Feedstock cellulose, hemicellulose, and lignin contents affect the resulting bio-oil
chemical composition as they individually contribute to different chemical groups, as can
be seen in Table 3. Cellulose and hemicellulose thermochemical conversion mostly results in
anhydrous sugars, furans, pyrans, light oxygenated compounds, and some phenolic species.
Lignin, in turn, produces high quantities of phenolic compounds, such as methoxyphenols,
aldehydes, ketones, and light oxygenated species [50].
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Table 3. Summary of fast pyrolysis products of cellulose, hemicellulose, and lignin. Adapted
from [50].

Feedstock

Contents (%)

Phenols
Phenolic

Aldehydes and
Ketones

Furans Anhydro-Sugars Other O
Containing

Cellulose - - 11–17 40–77 0–40
Hemicellulose 0–13 - 26–58 6–28 2–67

Lignin 44–65 25–55 - - 1–10

This is due to the depolymerization of cellulose, hemicellulose, and lignin, with follow-
ing dehydration, reduction, retro-aldol, decarboxylation and deamination reactions [88,108].
At the end stages of the reaction, oxidation, isomerization, esterification, and aromatiza-
tion may occur. During pyrolysis, these reactions occur in the gas phase, while during
hydrothermal and thermal liquefaction, they take place in the solvent.

A few authors have tried to relate lignocellulosic contents to final bio-oil composi-
tions [18,49,109–111], but correlations seem insufficient to accurately predict the bio-oil
composition for a given feedstock [50], with some arriving at the conclusion that even ash
content has an influence on final bio-oil compositions [112].

Cellulose affects the thermochemical conversion of lignin and vice versa [10]. Com-
bining various feedstock sources can result in interesting outcomes, either by improving
bio-oil yield or by causing changes in composition, as demonstrated in the work of Leng
et al. [37]. Authors were able to increase the contents of specific chemical groups beyond
the amount obtained from the isolated feedstocks and decrease others through a combina-
tion of lignocellulosic matter in varying proportions. However, others who tried similar
approaches did not achieve the same results [93]—this further highlights how biomass and
bio-oil composition have a more complex than simple correlation.

Nevertheless, it could be considered that since lignin decomposes at higher temper-
atures than cellulose and hemicellulose, increases in processing temperatures result in
higher yields of bio-oil as opposed to bio-char yield. Bio-oil portions of phenols, ketones,
and aldehydes should also increase, as they are lignin conversion products.

Since biomass such as algae [113], bacteria [114] and food waste [115] are instead rich
in proteins and lipids rather than cellulose and lignin, their thermochemical conversion
products are mostly N-containing compounds and fatty acids. In Figure 2, a general
proposal of the chemical groups that derive from biomass is shown.
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4. Bio-Oil Chemical Composition and Characteristics
4.1. General Traits

Since bio-oil is a product of lignocellulosic thermal conversion, it constitutes a blend
of phenols, aldehydes, ketones, furans, alcohols, acids, hydrocarbons, and many others
depending on its feedstock [10,116]. Its production process, operating conditions, pre-
treatments of the feedstock [117], or later upgrading techniques [118] also determine the
final composition. Table 4 summarizes typical bio-oil attributes, even though recent studies
have managed to achieve better-performing traits with increased heating values and pH
and lower water content and viscosity.

Table 4. Summary of typical bio-oil characteristics. Adapted from [119,120].

Elemental Composition wt%

Viscosity Relative
Density pH Water

Content Heating Value O N C H Ash

25–100 cP 1.1–1.2 2.8–4 15–30 wt% 16–26 MJ/kg 27–40 0.05–1 55–64 5–8 0.03–0.3%

Although naturally rich in N- and O-containing compounds, such values translate
into thermal instability and a tendency toward corrosiveness. These traits, together with
high viscosity and water content, are suboptimal for fuel applications, and thus, many seek
to reduce the amount of N and O compounds in bio-oil, further improving its behavior and
efficiency as fuel.

Many of the works in Tables 1 and 2 compare the achieved bio-oil composition with
mineral fuels or are concerned with improving thermal capabilities. Naturally, this is of
interest if the goal is its application in fuel, cracking, or fractioning processes (such as with
petroleum). Nevertheless, bio-oil has proven to have other interesting applications due
to its phenolic compounds, for example. In addition, increasing bio-oil fuel performance
involves catalysts and upgrading techniques, increasing the production cost. Moreover,
currently, bio-oil production as a fuel substitute is not considered to be economically
attractive enough to pose a serious alternative to fossil fuels [59].

Biomass is thermochemically converted into bio-oils of varying compositions with the
high dispersity of chemical species. If we could control the bio-oil chemical composition, we
would be able to manufacture bio-oil with a direct application in mind or as an intermediary
to chemicals. This could be achieved via the careful selection of feedstocks, operation
conditions and the employment of catalysts. High concentrations of specific chemical
species are present in some bio-oils, as shown in Tables 5 and 6. Though, for the same
feedstock, some chemical groups are presented in ranges, demonstrating how authors
managed to achieve different chemical makeups through variations in methodology alone.
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Table 5. Summary of approximate bio-oil compositions from works in Table 1 or others of interest.

Feedstock Process
Contents (%)

Phenols Esters Ketones Acids Alcohols Hydrocarbons Furans N-Containing Aldehydes Ref.

Cellulose HTL 13 - 21 2 - - 1 - 24 [18]
Corn straw HTL 53 - 21 4 1 1 - 3 1 [20]

Hay HTL 24 1 15 16 - - - - 16 [18]
Nostoc ellipsosporum HTL 1 3 - 8 - 25 8 - 4 [29]

Oak wood HTL 38 - 14 5 - - - - 14 [18]
Palm empty fruit

bunch HTL 7 - 16 - - - - - - [121]

Palm kernel shell HTL 81 3 - - 3 - - - - [121]
Palm mesocarp fiber HTL 89 - 5 - - - - - - [121]

Peanut straw HTL 28 26 8 1 4 6 1 [20]
Pinus ponderosa HTL 30 4 - 5 - - 1 - - [1]

Rice straw CHTL 46 19 7 1 3 11 2 - - [35]
Rice straw CHTL 28–44 - 2–12 - 5–11 - - 5–16 - [36]
Rice straw HTL 45 13 16 7 5 0.5 1 - 0.1 [35]
Rice straw HTL 25 - 9 6 9 - - - - [36]
Rice straw HTL 46–70 - 10–42 - 1–42 - - - 1–2 [122]

Rice straw HTL, heavy
oil 0–2 - 4–9 0–0.5 0–13 13–28 - 9–18 - [13]

Rice straw HTL, light
oil 14–39 0–7 8–24 2–7 0–16 0–12 0–6 0–6 3–23 [13]

Rice straw CHTL, heavy
oil 0–2 - 5–7 8–27 7–11 16–36 - 11–26 - [13]

Rice straw CHTL, light
oil 14–41 0–1 9–25 3–8 3–27 2–13 0–2 0–0.5 1–19 [13]

Rice straw HTL 34 - 35 1 1 5 - 4 2 [20]
Soybean straw HTL 29 - 50 1 - 6 - 8 2 [20]

Spirulina platensis HTL 6 20 2 1 - 7 5 37 - [40]
Walnut shell HTL 50 1 4 2 - - - - 4 [18]

HTL—hydrothermal liquefaction; CHTL—catalytic hydrothermal liquefaction.
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Table 6. Summary of approximate bio-oil compositions from works in Table 2 or others of interest.

Feedstock Process
Contents (%)

Phenols Esters Ketones Acids Alcohols Hydrocarbons Furans Anhydro-
Sugar

N-
Containing Aldehydes Author

Acacia mangium CP 35 - 18 - 13 - 4 45 - 5 [43]
Bamboo residues P 37 - 17 - 18 - 20 - - 3 [46]

Cellulose FP - - - - - - 11–17 40–77 - - [50]
Chlorella sp.

residue P 18 18 3 12 6 0.5 6 2 30 - [59]

Coconut shells P 43 - 4 - 22 - 1 - - 6 [46]
Corncobs P 40 - 6 - 31 - 6 - - - [46]

Crofton weed P 13 15 - 6 13 2 11 - - 28 [56]
Hemicellulose FP 0–13 - - - - - 26–58 6–28 - - [50]

Lignin FP 44–65 - - - - - - - - - [50]
Palm empty fruit

bunch MFP 59–73 11–16 12–19 8–9 - - - 3–8 - [78]

Palm empty fruit
bunch P 12 - - 88 - 1 - - - - [123]

Palm kernel shell FP 17–25 - - 19–28 - - - - - - [124]
Palm kernel shell MP 71 - - - - - - - - - [125]
Palm kernel shell

and sludge CO-P 12–22 - - - - - 1–5 - - - [79]

Palm shell P 22 - - 4 3 - 2 - 47 1 [126]
Pinewood sawdust CO-FP 11 - 7 6 4 - 6 5 1 8 [83]
Polyhydroxyalkanoate

bacteria P 18 - 10 46 - - - 21 - [114]

Rice husk P 8 - 6 0.2 1 - 1 - - 1 [87]
Rice straw P 8 4 25 - 28 - 17 5 - - [91]

Scrap tire and
sugarcane bagasse CO-P 52 - 12 11 11 - - - - 5 [93]

Sugarcane bagasse P 20 - - 15 4 - - - - 40 [123]
Sugarcane bagasse P 23 3 16 - - - 23 24 - - [91]

Wheat stalk FP 26–27 - 8 10–11 - - - - - - [103]
Wheat straw P 19 12 30 - 27 - 7 0.3 - - [91]

CP—catalytic pyrolysis; P—pyrolysis; CO-P—co-pyrolysis; MP—microwave pyrolysis; FP—fast pyrolysis.
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The following sections further describe the main compounds found in bio-oils from
works in Tables 5 and 6, according to their chemical group.

4.2. Phenols

Phenolic compounds frequently make up the major portion of bio-oils since they
derive from lignin. Phenol, guaiacol, cresol, eugenol, catechol, and syringol are commonly
the principal phenolic compounds found in bio-oil [127,128]. The pyrolysis of bio-oil from
palm waste enables the waste to be successfully converted in bio-oil (34% yield) with
phenol-derived compounds of up to 90% [121], with some containing phenol as the major
entity of the group, up to 65% (25% bio-oil yield) [125].

4.3. Ketones and Aldehydes

Bio-oil from sugarcane bagasse (53% yield) can contain a 40% fraction of aldehy-
des [123]. One study on pretreated sunflower seed hulls even attained 97% furfural content
in bio-oil (33% yield) [129]. Nevertheless, aldehydes usually make up less than below 25%,
often in the form of furfural, glycolaldehyde, and hydroxyacetaldehyde [127,128].

Similarly to aldehydes, ketones are often below the 25% range, but there are reports
of higher concentrations, such as in the case of a rice husk bio-oil (50% yield) with 40%
ketones content [122]. One of the most common ketones is hydroxyacetone [127,128].

4.4. Acids

Acetic acid, propanoic acid, levulinic acid, and fatty acids are acids that are commonly
present in the highest proportions in bio-oil [127,128]. The recuperation of acetic acid from
bio-oil is described by some as a viable approach to bio-oil valorization besides fuel [130],
as is the case for glycolic and formic acids [131].

Bio-oil from olive pomace (30% yield), for example, can be made up of 72% acetic acid
alone [74], followed by others such as moso bamboo bio-oil (30% yield), with 47% acetic
acid [70], bacteria bio-oil (28% yield), with 41% acetic acid [114], or even Napier grass bio
oil (33% yield), with 35% acetic acid [72]. Acids are normally present in lower levels than
phenols, ketones, or aldehydes.

4.5. Sugars and Alcohols

The most common alcohols and sugars are acetol, ethylene glycol, levoglucosan, and
cellobiosan [127,128]. Although they are mostly found in lower concentrations, it is possible
to produce bio-oils with somewhat higher amounts of alcohol or sugar. For instance, bio-oil
produced from corrugated cardboard (47% yield) achieved 20% levoglucosan content [53],
while there are also reports of alcohol levels around 40% (50% bio-oil yield) [122] and 30%
(33% bio-oil yield) [91].

4.6. N-Containing

N-containing compounds typically have a lower concentration in bio-oil, often on a
residual level, but when they are present, they can be in somewhat high amounts, mostly
when bio-oil is obtained from feedstock with elevated contents of proteins. In bio-oil
made from palm residue, amines made up almost 50% of the total content, 47% alone
corresponding to trimethylamine [126]. Other bio-oils with elevated levels of N-containing
compounds can also be found [40,59], such as the case of food waste bio-oil with 20%
2-ethoxyethylamine and 20% methyl phosphine [60]. The bio-oil yield from these sources
is below 50%.

5. Applications of Bio-Oil as Chemical Source and Its Refinement Strategies

While recent works point towards bio-oil as a chemical source of ketones, aldehydes,
and acids, most applications are related to the high contents of phenolic compounds. Bio-
oils rich in phenols and sugars tend to cross-polymerize over time [132,133], especially
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if they contain polymerization promoters in their composition (e.g., furfural) and acids
catalysts such as acetic acid [134].

In fact, there are reports of bio-oil being used to produce phenol-formaldehyde resins
and adhesives [124,135–138]. Bio-oil is considered suitable by many for phenolic resins
due to its high reactivity and low molecular weight [139] and is therefore regarded as a
renewable alternative [140]. Sweetgum hardwood bio-oil, for example, was utilized as a
partial raw material to produce phenol-formaldehyde resin adhesives with greater bonding
strength than ordinary phenol-formaldehyde resin [139].

Other works describe the utilization of bio-oil to produce polyols from which polyurethane
foams are later achieved with increased tensile strength and thermal stability and higher
biodegradability [141–143]. Bio-oil in bitumen applications is also reported to possibly increase
bitumen performance and reduced binder consumption [3,116,144–149].

Many of these more straightforward applications may sometimes still require the
preparation of bio-oil to remove water and lower weight acids [136], for example. As
sources of various chemical entities, the refinement of bio-oil and separation processes
should be applied in other industries in need of platform chemicals. Conveniently, pro-
cesses such as supercritical extraction, membrane separations, solid–liquid extractions,
solvent extraction, and others are described in existing reviews and works [127,150–152],
as is also the case for the adequate analytic characterization of bio-oil for chemical applica-
tions [153–156].

However, methodologies such as feedstock pre-treatments, the use of catalysts, or
process enhancements often enable bio-oils to be produced with improved selectivity.

Pretreatments for feedstock are also described and often result in bio-oils with more
defined chemical distribution [129,157–159], which could in turn reduce or even eliminate
the need to refine or treat bio-oil after production.

Similarly, other authors obtained more than one bio-oil fraction with different chemical
makeups. One study, which describes the hydrothermal liquefaction of rice husks, attained
two bio-oil fractions, light and heavy. The light fraction was rich in phenols, ketones,
alcohols, and aldehydes, and the heavy presented up to 36% hydrocarbon content but also
26% of N-compounds. Nevertheless, the light and heavy fractions may be deemed suitable
for use in the extraction of chemicals and for fuel applications, respectively [13].

Others managed to change pyrolysis-derived bio-oil composition through conden-
sation parameters alone, decreasing water content and increasing phenol and furfural
presence [128], or through the separation of bio-oil into different condensing tempera-
ture fractions, so-called fractional condensation [90,160–162]. Fractional condensation
allows for the separation of different chemically enriched fractions according to their vapor
pressure [152], offering the possibility to efficiently utilize the entire biomass liquefaction
condensate. Typically, lignin-derived species and sugars are obtained in higher-temperature
fractions, as opposed to acids and water, which are abundant in lower-temperature frac-
tions [163].

Heavier fractions with low water content and corrosiveness display higher heating
value, thus making them suitable for fuel applications. Mid-range fractions are rich in
phenol and aldehyde species, making them suitable for the partial substitution of phenolic
raw material in resol resins and the production of polyurethane foams. The recovery of
acids such as acetic acid is possible for the lighter, water- and acid-rich fractions [164].

With similar outcomes, there is also the possibility to generate bio-oil fractions through
pyrolysis with two or more steps [165], supercritical CO2 fractioning [166–168], or separa-
tions using ionic liquids [169,170].

6. Final Remarks and Prospects

Both pyrolysis and thermal liquefactions present advantages and disadvantages ac-
cording to the selected feedstock and desired application. Pyrolysis may require previous
drying of biomass in the case of less dry feedstocks, but it is possible to employ the pro-
cesses of fractional condensation later, thus obtaining fractions enriched with different
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chemical species and therefore suitable for different applications. This may be an adequate
choice for lignocellulosic biomass, which is usually less humid and produces bio-oils with
various chemical groups.

On the other hand, hydrothermal liquefactions may be more suitable for feedstocks
with elevated water content such as food processing waste, algae, bacteria, or even sewage
sludges. Since hydrothermal processes do not produce condensates, it is not possible to
employ fractional condensation methods, and as such, the latter separation methods may
be necessary. However, non-lignocellulosic feedstock bio-oils are usually rich in either
N-containing species or fatty acids and their esters, which may in turn require less complex
separation methods.

Naturally, it is expected that that cellulose- and hemicellulose-rich feedstocks produce
bio-oils abundant in sugars and their derivates, and in turn, lignin-rich biomass produces
bio-oil with higher contents of phenols, ketones, and aldehydes. However, there seems to
be no direct correlation between feedstock lignocellulosic composition and resulting bio-oil
chemical makeup, as the last is also heavily dependent on the chosen process, its conditions,
the employment of catalysts, and is even dependent on the chemical interactions between
species during thermal processing.

Bio-oil production is mostly approached as an alternative fuel allowing for the re-
duction in petroleum dependency while making use of organic waste, also making it a
strong waste management candidate for biomatter. However, its often-high amounts of
oxygenated compounds push the need to employ upgrading methods [171,172]. This need
places bio-oil fuel production above the viable economic cost, and this is why much recent
research focusses on the co-processing of bio-oil and fossil fuel as a cost-effective way
to transition to biofuels made from bio-oil [151,173–175]. It should be noted that bio-oil
economics and viability for fuel purposes are usually measured against fossil fuels that,
besides being an already established industry, are often subject to government subsidies.

Besides its undeniable potential as biofuel, bio-oil chemical makeup could be so
valuable that it is difficult to understand why so little research has been carried out for other
applications when compared to that of biofuel, but this is probably due to governments
pushing the need to reduce greenhouse gas emissions in fuel and transportation sectors.

While it was previously thought that the extraction of chemicals from bio-oil was not
advantageous due to low specific chemical contents and the high economic cost of sepa-
ration processes [116], recent works suggest that it is possible to obtain more component-
specific bio-oils. Additionally, even the co-processing of bio-oil may still require bio-oil
to be upgraded [176], thus raising the question whether separation processes are that
disadvantageous when compared to upgrading.

It has been shown that bio-oil composition could be somewhat modified and enhanced
through the selection of feedstock, the employment of catalysts or pretreatments, or changes
in processing parameters. The utilization of bio-oil in resin, foam, and bitumen making
also resulted in some better performing products. An application of bio-oil as a successful
insecticidal product is also described.

Additionally, via some thermochemical processes, it is also possible to obtain two
bio-oil fractions, the light and heavy. The light fraction, abundant in oxygenated com-
pounds, could certainly be further separated and value-added chemicals could be obtained,
or it could be utilized as raw material in resin making, allowing bio-based polymers to be
produced. The heavy fraction is in turn rich in hydrocarbons and low in the problematic
oxygenated compounds and water, thus making it suitable for fuel oil and possibly requir-
ing less upgrading, thus lowering costs. Other similar approaches of bio-oil fractioning
through the control of condenser temperatures or two-step conversions were also able to
separate bio-oil into fractions with different compositions.

Phenolic species are often the most sought after in the chemical valuing of bio-oil due
to their natural high concentration. However, works on bio-oil from feedstock such as algae
and food waste can also deliver considerable concentrations of other chemicals species
while utilizing waste that is often regarded as less chemically interesting.
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Bio-oil is currently produced by a handful of companies or joint ventures such as
Ensyn, Chevron, Vyterra, BTG-Bioliquids, Green fuel Nordic Oy, and Secil Group either
for fuel application or later co-processing at refineries such as Petrobras in Brazil, also for
fuel purposes.

The production of bio-oil-based chemicals appears to still be under investigation by
many of above-mentioned companies, with some even open for collaboration on the issue.
Nevertheless, Kerry has been refining bio-oil from Ensyn for many years to produce food
flavors and aromatics. The absence of bio-oil-based platform chemical industries somewhat
mirrors the current state of research on the matter, but the interest of bio-oil producing
companies on the subject further confirms the value that resides in it.

Additionally, while either bio-oil fuel or chemicals cannot, at present, be considered
economically viable, such an evaluation may not prove true in the near future, as these
assessments are tied to the time and place in which they are made. As mentioned, they are
also compared to fossil resources and industries that are often still subject to large subsidies
as opposed to bio-oils or other fossil alternatives.

There is an overall feeling that bio-oil for fuel and bio-oil for chemical applications
are both disconnected faces of the same problem that could greatly benefit from each
other if kept in mind together. Indeed, bio-oil appears to be a great alternative to fossil
fuels, but it is possible that, as is the case for petrol, it could offer much more and thus
become a well-footed competitor to fossil fuels while also acting as a serious form of
waste management.
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