Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Temperature Programmed Reduction (TPR)
2.2. Attainable Region Approach (AR)
2.3. Achieving the MB-AR in Extent of Reaction Space
2.4. Plotting the AR in a G-H Space
2.5. Importance of the G-H AR in Understanding Cobalt Reduction Reaction
3. Results
3.1. Material Balance Attainable Region
3.2. G-H Attainable Region at 25 °C
3.3. G-H Attainable Region at Higher Temperatures
4. Discussion
What This Means in FTS Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gorimbo, J. Use of Stability Diagrams to Predict Catalyst Speciation during Fischer Tropsch Reduction stage: A Mini-Review. Catal. Sci. Technol. 2018, 8, 2022–2029. [Google Scholar] [CrossRef]
- Jacobs, G.; Ji, Y.; Davis, B.H.; Cronauer, D.; Kropf, A.J.; Marshall, C.L. Fischer—Tropsch Synthesis: Temperature Programmed EXAFS/XANES Investigation of the Influence of Support Type, Cobalt Loading, and Noble Metal Promoter Addition to the Reduction Behavior of Cobalt Oxide Particles. Appl. Catal. A Gen. 2007, 333, 177–191. [Google Scholar] [CrossRef]
- Kumar, N.; Payzant, E.A.; Jothimurugesan, K.; Spivey, J.J. Combined in Situ XRD and in Situ XANES Studies on the Reduction Behavior of a Rhenium Promoted Cobalt Catalyst. Phys. Chem. Chem. Phys. 2011, 13, 14735–14741. [Google Scholar] [CrossRef]
- Phaahlamohlaka, T.N.; Kumi, D.O.; William, M.; Forbes, R.; Jewell, L.L.; Billing, D.G.; Coville, N.J. Effects of Co and Ru intimacy in Fischer-Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of the Hydrogen Spillover Processes Effects of Co and Ru Intimacy in Fischer-Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of. ACS Catal. 2016, 7, 1568–1578. [Google Scholar] [CrossRef] [Green Version]
- Sempuga, B.C.; Hausberger, B.; Patel, B.; Hildebrandt, D.; Glasser, D. Classification of Chemical Processes: A graphical Approach to Process Synthesis to Improve Reactive Process Work Efficiency. Ind. Eng. Chem. Res. 2010, 49, 8227–8237. [Google Scholar] [CrossRef]
- Hildebrandt, D.; Glasser, D.; Crowe, C.M. Geometry of the Attainable Region Generated by Reaction and Mixing: With and without Constraints. Ind. Eng. Chem. Res. 1990, 29, 49–58. [Google Scholar] [CrossRef]
- Patel, B. Fundamental Targets for the Synthesis and Evaluation of Chemical Processes. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2007. [Google Scholar]
- Qiao, Z.; Wang, Z.; Zhang, C.; Yuan, S.; Zhu, Y.; Wang, J. PVAm–PIP/PS Composite Membrane with High Performance for CO2/N2 Separation. AIChE J. 2012, 59, 215–228. [Google Scholar] [CrossRef]
- Okonye, L.U.; Hildebrandt, D.; Glasser, D.; Patel, B. Attainable Regions for a Reactor: Application of ΔH-ΔG Plot. Chem. Eng. Res. Des. 2012, 90, 1590–1609. [Google Scholar] [CrossRef]
- Yin, F. A Simpler Method for Finding Independent Reactions. Chem. Eng. Commun. 1989, 83, 117–127. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables, 4th ed.; NIST: Gaithersburg, MD, USA, 1998. [CrossRef]
- UCDSB. Available online: http://Www2.Ucdsb.on.ca/Tiss/Stretton/Database/Inorganic_thermo.Htm (accessed on 27 September 2020).
- Holmes, R.D.; O’Neill, H.S.C.; Arculus, R.J. Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO, and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes from 900–1400 K. Geochim. Cosmochim. Acta 1986, 50, 2439–2452. [Google Scholar] [CrossRef]
- Du Plessis, H.E.; Forbes, R.P.; Barnard, W.; Erasmus, W.J.; Steuwer, A. In Situ Reduction Study of Cobalt Model Fischer-Tropsch Synthesis Catalysts. Phys. Chem. Chem. Phys. 2013, 15, 11640–11645. [Google Scholar] [CrossRef]
- UCDSB. Inorganic Compounds: Physical and Thermochemical Data. Available online: http://www2.ucdsb.on.ca/tiss/stretton/database/inorganic_thermo.htm (accessed on 15 September 2020).
- Lin, H.Y.; Chen, Y.W. The Mechanism of Reduction of Cobalt by Hydrogen. Mater. Chem. Phys. 2004, 85, 171–175. [Google Scholar] [CrossRef]
- Olusola, O.J.; Sudip, M. Temperature Programme Reduction (TPR) Studies of Cobalt Phases in Alumina Supported Cobalt Catalysts. J. Pet. Technol. Altern. Fuels 2016, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Van Steen, E.; Claeys, M.; Dry, M.E.; Van De Loosdrecht, J.; Viljoen, E.L.; Visagie, J.L. Stability of Nanocrystals: Thermodynamic Analysis of Oxidation and Re-Reduction of Cobalt in Water/Hydrogen Mixtures. J. Phys. Chem. B 2005, 109, 3575–3577. [Google Scholar] [CrossRef] [PubMed]
- Khodakov, A.Y.; Lynch, J.; Bazin, D.; Rebours, B.; Zanier, N.; Moisson, B.; Chaumette, P. Reducibility of Cobalt Species in Silica-Supported Fischer-Tropsch Catalysts. J. Catal. 1997, 168, 16–25. [Google Scholar] [CrossRef]
Co | H | O | Compounds |
---|---|---|---|
3 | 0 | 4 | Co3O4 |
1 | 0 | 0 | Co |
0 | 2 | 0 | H2 |
1 | 0 | 1 | CoO |
0 | 2 | 1 | H2O |
Co | H | O | Compounds |
---|---|---|---|
0 | 0 | 0 | Co3O4-3Co-4(H2O-H2) |
1 | 0 | 0 | Co |
0 | 1 | 0 | 1/2H2 |
0 | 0 | 0 | CoO-Co-(H2O-H2) |
0 | 0 | 1 | H2O-H2 |
Initial Moles | Change | Moles |
---|---|---|
NoCo3O4 | −ε1 | NoCo3O4 − ε1 ≥ 0 |
NoH2 | −4ε1 − ε2 | NoH2 − 4ε1 − ε2 ≥ 0 |
NoCo | +3ε1 + ε2 | NoCo + 3ε1 + ε2≥ 0 |
NoH2O | +4ε1 + ε2 | NoH2O + 4ε1 + ε2 ≥ 0 |
NoCoO | −ε2 | NoCoO − ε2≥ 0 |
Material Balance | ∆H kJ/mol | ∆G kJ/mol | |
---|---|---|---|
25 °C | A | −233.05 | −174.6 |
B | −89.33 | −105.8 | |
Feed | 0 | 0 | |
200 °C | A | −64.86 | −105.5 |
B | −40.8 | −88.39 | |
320 °C | A | −70.58 | −82.34 |
B | −39.59 | −82.5 | |
400 °C | A | −70.94 | −66.37 |
B | −38.51 | −78.61 | |
600 °C | A | −83.91 | −28.04 |
B | −41.31 | −68.81 | |
800 °C | A | −95.44 | 9.44 |
B | −46.99 | −59.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorimbo, J.; Muvhiiwa, R.; Llane, E.; Hildebrandt, D. Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach. Reactions 2020, 1, 115-129. https://doi.org/10.3390/reactions1020010
Gorimbo J, Muvhiiwa R, Llane E, Hildebrandt D. Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach. Reactions. 2020; 1(2):115-129. https://doi.org/10.3390/reactions1020010
Chicago/Turabian StyleGorimbo, Joshua, Ralph Muvhiiwa, Ephraim Llane, and Diane Hildebrandt. 2020. "Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach" Reactions 1, no. 2: 115-129. https://doi.org/10.3390/reactions1020010
APA StyleGorimbo, J., Muvhiiwa, R., Llane, E., & Hildebrandt, D. (2020). Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach. Reactions, 1(2), 115-129. https://doi.org/10.3390/reactions1020010