Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum and Substrate
2.2. Substrate Characteristics Analysis
2.2.1. Total Solid, Volatile Solid, and Fixed Solid
2.2.2. Plant Biomass Characteristics Analysis
2.2.3. Ultimate Analysis of Substrates
2.2.4. Fermentation Mass Characteristics
2.3. Bio-Methane Potential (BMP) Assay of Waste Activated Sludge and Co-Digestion with Swine Slurry and Plant Biomass
2.4. Theoretical Methane Potential Based on Ultimate Analysis
2.5. Gas Production and Composition Analysis and Measurement
2.6. Kinetic Model
2.7. Biodegradability
2.8. Synergistic Effect
2.9. Statistical Analysis
3. Results and Discussion
3.1. Substrate Characteristics
3.2. Methane Production of Waste Activated Sludge, Swine Slurry, and Plant Biomass at Different S/I Ratio
3.3. Gompertz Kinetic Model and Co-Digestion Experiment
3.4. Synergistic Effect of Substrate Co-Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AD | Anaerobic Digestion |
BMP | Biochemical Methane Potential |
WAS | Waste Activated Sludge |
SS | Swine Slurry |
WL | Water Lily (Nymphaea spp.) |
LT | Lotus (Nelumbo nucifera) |
S/I | Substrate-to-Inoculum Ratio |
VS | Volatile Solids |
TS | Total Solids |
FS | Fixed Solids |
EMY | Experimental Methane Yield |
TMP | Theoretical Methane Potential |
C/N | Carbon-to-Nitrogen Ratio |
NDF | Neutral Detergent Fiber |
ADF | Acid Detergent Fiber |
ADL | Acid Detergent Lignin |
G0 | Maximum Methane Yield (Gompertz) |
Rmax | Maximum Methane Production Rate |
λ | Lag Phase Duration |
Ddeg | Anaerobic Biodegradability |
α | Synergy Coefficient |
References
- Manea, E.E.; Bumbac, C. Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management? Water 2024, 16, 2241. [Google Scholar] [CrossRef]
- Go, H.Y.; Kim, Y. Comparison of domestic and European Union statutes and management policies for livestock excretion. Clean Technol. 2024, 30, 365–377. [Google Scholar] [CrossRef]
- Paranjpe, A.; Saxena, S.; Jain, P. A review on performance improvement of anaerobic digestion using co-digestion of food waste and sewage sludge. J. Environ. Manag. 2023, 338, 117733. [Google Scholar] [CrossRef]
- Yang, M.; Vander Elst, M.; Smets, I.; Zhang, H.; Li, S.; Baeyens, J.; Deng, Y. Reviewing Improved Anaerobic Digestion by Combined Pre-Treatment of Waste-Activated Sludge (WAS). Sustainability 2024, 16, 6419. [Google Scholar] [CrossRef]
- Ghaedi, M.; Nasab, H.; Ehrampoush, M.H.; Ebrahimi, A.A. Evaluation of the efficiency of dry anaerobic digester in the production of biogas and fertilizer using activated sludge and plant waste. Sci. Rep. 2024, 14, 24727. [Google Scholar] [CrossRef]
- Kim, Y.S.; Yoon, Y.M.; Kim, C.H.; Giersdorf, J. Status of biogas technologies and policies in South Korea. Renew. Sustain. Energy Rev. 2012, 16, 3430–3438. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, Q.; Wu, S.; Qi, D.; Li, W.; Zuo, Z.; Dong, R. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energy 2014, 128, 175–183. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Sudiarto, S.I.A.; Febrisiantosa, A.; Ahn, D.H.; Choung, Y.W.; Suresh, A. Biochemical Methane Potential of Swine Slaughter Waste, Swine Slurry, and Its Codigestion Effect. Energies 2021, 14, 7103. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Sudiarto, S.I.A.; Suresh, A.; Jeon, Y.C. Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry. Fermentation 2024, 10, 510. [Google Scholar] [CrossRef]
- Oduor, W.W.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery. Heliyon 2022, 8, e10580. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Lu, X.; Kobayashi, T.; Li, Y.Y.; Xu, K.; Zhao, Y. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energy 2015, 148, 78–86. [Google Scholar] [CrossRef]
- Sudiarto, S.I.A.; Renggaman, A.; Choi, H.L. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. J. Environ. Manag. 2019, 231, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, R.; He, Y.; Cao, Z.; Zhou, R.; Zheng, C.; Pan, D.; Fang, H.; Wu, X. Integrating livestock and aquatic plant towards mitigating antibiotic resistance transmission from swine wastewater. npj Clean Water 2025, 8, 14. [Google Scholar] [CrossRef]
- Sudiarto, S.I.A.; Choi, H.L.; Renggaman, A. Application of Phytoremediation for Total Nitrogen and Total Phosphorus Removal from Treated Swine Wastewater and Bio-methane Potential of the Biomass. J. Korea Org. Resour. Recycl. Assoc. 2015, 23, 21–31. [Google Scholar] [CrossRef]
- Abd Rasid, N.S.; Naim, M.N.; Man, H.C.; Bakar, N.A.; Mokhtar, M.N. Evaluation of surface water treated with lotus plant; Nelumbo nucifera. J. Environ. Chem. Eng. 2019, 7, 103048. [Google Scholar] [CrossRef]
- Wang, X.; Jain, A.; Chen, B.; Wang, Y.; Jin, Q.; Yugandhar, P.; Xu, Y.; Sun, S.; Hu, F. Differential efficacy of water lily cultivars in phytoremediation of eutrophic water contaminated with phosphorus and nitrogen. Plant Physiol. Biochem. 2022, 171, 139–146. [Google Scholar] [CrossRef]
- Costa, J.C.; Gonçalves, P.R.; Nobre, A.; Alves, M.M. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour. Technol. 2012, 114, 320–326. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Keller, T.A.; Phan, D.; Parris, M.L.; Li, M.; Richardson, L.; Kopachevsky, A.M. Co-digestion of Wastewater-Grown Filamentous Algae with Sewage Sludge Improves Biomethane Production and Energy Balance Compared to Thermal, Chemical, or Thermochemical Pretreatments. Front. Energy Res. 2019, 7, 47. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Suresh, A. Underground anaerobic digester to solve the energy balance problem in temperate regions: A pilot study. Appl. Eng. Agric. 2015, 31, 643–651. [Google Scholar] [CrossRef]
- Ibro, M.K.; Ancha, V.R.; Lemma, D.B. Impacts of anaerobic co-digestion on different influencing parameters: A critical review. Sustainability 2022, 14, 9387. [Google Scholar] [CrossRef]
- Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Khadka, A.; Parajuli, A.; Dangol, S.; Thapa, B.; Sapkota, L.; Carmona-Martínez, A.A.; Ghimire, A. Effect of the substrate to inoculum ratios on the kinetics of biogas production during the mesophilic anaerobic digestion of food waste. Energies 2022, 15, 834. [Google Scholar] [CrossRef]
- Potdukhe, R.M.; Sahu, N.; Kapley, A.; Kumar, R. Co-digestion of waste activated sludge and agricultural straw waste for enhanced biogas production. Bioresour. Technol. Rep. 2021, 15, 100769. [Google Scholar] [CrossRef]
- Zarina, R.; Mezule, L. Opportunities for resource recovery from Latvian municipal sewage sludge. Heliyon 2023, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Rabii, A.; El Sayed, A.; Ismail, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. Optimizing the Mixing Ratios of Source-Separated Organic Waste and Thickened Waste Activated Sludge in Anaerobic Co-Digestion: A New Approach. Processes 2024, 12, 794. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef]
- Mottet, A.; François, E.; Latrille, E.; Steyer, J.P.; Déléris, S.; Vedrenne, F.; Carrère, H. Estimating anaerobic biodegradability indicators for waste activated sludge. J. Chem. Eng. 2010, 160, 488–496. [Google Scholar] [CrossRef]
- Honda, S.I.; Miyata, N.; Iwahori, K. Recovery of biomass cellulose from waste sewage sludge. J. Mater. Cycles Waste Manag. 2002, 4, 46–50. [Google Scholar] [CrossRef]
- Guo, H.; van Lier, J.B.; de Kreuk, M. Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system. Water Res. 2020, 173, 115617. [Google Scholar] [CrossRef]
- Shrestha, S.; Pandey, R.; Aryal, N.; Lohani, S.P. Recent advances in co-digestion conjugates for anaerobic digestion of food waste. J. Environ. Manag. 2023, 345, 118785. [Google Scholar] [CrossRef]
- Sousa, I.D.; Rosa, A.P.; Almeida, G.K.; Rocha, D.N.; Neves, T.D.; Borges, A.C. Integrated Assessment of Methane Production from the Co-Digestion of Swine Wastewater and Other Organic Wastes. Sustainability 2024, 16, 5938. [Google Scholar] [CrossRef]
- Chynoweth, D.P.; Turick, C.E.; Owens, J.M.; Jerger, D.E.; Peck, M.W. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy. 1993, 5, 95–111. [Google Scholar] [CrossRef]
- Al-Iraqi, A.R.; Gandhi, B.P.; Folkard, A.M.; Barker, P.A.; Semple, K.T. Influence of inoculum to substrate ratio and substrates mixing ratio on biogas production from the anaerobic co-digestion of Phragmites australis and food waste. Bioenergy Res. 2024, 17, 1277–1287. [Google Scholar] [CrossRef]
- Song, Q.; Hua, Y.; Yu, Y.; Chen, C.; Wu, B.; Dai, X. Impediments to bioaccessibility in the anaerobic digestion of waste activated Sludge: An in-depth review of challenges and influencing factors. Energy Environ. Sustain. 2025, 1, 100026. [Google Scholar] [CrossRef]
- Bonmati, A.; Flotats, X.; Mateu, L.; Campos, E. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci. Technol. 2001, 44, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.J.; Jang, A.M.; Yim, S.K.; Kim, I.S. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Cao, W.; Liu, R. Kinetics of methane production from swine manure and buffalo manure. Appl. Biochem. Biotechnol. 2015, 177, 985–995. [Google Scholar] [CrossRef]
- Yoon, Y.M.; Kim, S.H.; Shin, K.S.; Kim, C.H. Effects of substrate to inoculum ratio on the biochemical methane potential of piggery slaughterhouse wastes. Asian Australas. J. Anim. Sci. 2014, 27, 600. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De la Rubia, M.A.; Borja, R.; Béline, F.; Cavinato, C.; Ganesh, R. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Borowski, S.; Domański, J.; Weatherley, L. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Manag. 2014, 34, 513–521. [Google Scholar] [CrossRef]
- Kafle, G.K.; Kim, S.H.; Sung, K.I. Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 2013, 127, 326–336. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Sun, M.; Xu, X.; Zhang, B.; Sun, Y. Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 2018, 12, 26. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.R. Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere 2020, 255, 126805. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; An, X.; Shen, F.; An, W.; Zhang, Q. Anaerobic co-digestion of rice straw and pig manure pretreated with a cellulolytic microflora: Methane yield evaluation and kinetics analysis. Front. Bioeng. Biotechnol. 2021, 8, 579405. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Lues, R. Anaerobic digestion of lignocellulosic biomass: Substrate characteristics (challenge) and innovation. Fermentation 2023, 9, 755. [Google Scholar] [CrossRef]
- Santaweesuk, A.; Artnaseaw, A.; Benjapiyaporn, C. Optimization of methane production through co-digestion of pig manure with napier grass. Clean. Eng. Technol. 2025, 26, 100931. [Google Scholar] [CrossRef]
- Bjerg-Nielsen, M.; Ward, A.J.; Møller, H.B.; Ottosen, L.D.M. Influence on anaerobic digestion by intermediate thermal hydrolysis of waste activated sludge and co-digested wheat straw. J. Waste Manag. 2018, 72, 186–192. [Google Scholar] [CrossRef]
- Tian, W.; Chen, Y.; Shen, Y.; Zhong, C.; Gao, M.; Shi, D.; He, Q.; Gu, L. Effects of hydrothermal pretreatment on the mono-and co-digestion of waste activated sludge and wheat straw. Sci. Total Environ. 2020, 732, 139312. [Google Scholar] [CrossRef]
- Poddar, B.J.; Nakhate, S.P.; Gupta, R.K.; Chavan, A.R.; Singh, A.K.; Khardenavis, A.A.; Purohit, H.J. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int. J. Environ. Sci. Technol. 2022, 19, 3429–3456. [Google Scholar] [CrossRef]
- Wang, F.; Hidaka, T.; Tsumori, J. Enhancement of anaerobic digestion of shredded grass by co-digestion with sewage sludge and hyperthermophilic pretreatment. Bioresour. Technol. 2014, 169, 299–306. [Google Scholar] [CrossRef]
- Mudzanani, K.; Iyuke, S.E.; Daramola, M.O. Co-digestion of wastewater treatment sewage sludge with various biowastes: A comparative study for the enhancement of biogas production. Mater. Today Proc. 2022, 65, 2172–2183. [Google Scholar] [CrossRef]
Substrate Combination | TS (% FW) | VS (% FW) | C/N Ratio |
---|---|---|---|
Inoculum Only | 5.20 ± 0.15 | 3.10 ± 0.10 | 8.50 ± 0.30 |
WAS + Inoculum (S/I 1.0) | 5.90 ± 0.12 | 3.43 ± 0.08 | 8.11 ± 0.25 |
WAS + Inoculum (S/I 0.5) | 5.70 ± 0.11 | 3.28 ± 0.07 | 8.05 ± 0.22 |
SS + Inoculum (S/I 1.0) | 5.66 ± 0.18 | 3.45 ± 0.09 | 8.14 ± 0.20 |
SS + Inoculum (S/I 0.5) | 5.51 ± 0.16 | 3.30 ± 0.08 | 8.10 ± 0.18 |
WL + Inoculum (S/I 1.0) | 8.38 ± 0.51 | 6.55 ± 0.47 | 9.85 ± 0.45 |
WL + Inoculum (S/I 0.5) | 6.89 ± 0.42 | 4.85 ± 0.39 | 9.15 ± 0.40 |
LT + Inoculum (S/I 1.0) | 8.80 ± 0.67 | 6.83 ± 0.58 | 10.57 ± 0.55 |
LT + Inoculum (S/I 0.5) | 7.10 ± 0.54 | 5.08 ± 0.46 | 9.80 ± 0.50 |
SS + WAS (1:1) + Inoculum | 5.78 ± 0.15 | 3.47 ± 0.09 | 8.12 ± 0.23 |
SS + WAS (1:2) + Inoculum | 5.83 ± 0.14 | 3.40 ± 0.08 | 8.08 ± 0.22 |
WL + WAS (1:2) + Inoculum | 6.45 ± 0.32 | 4.08 ± 0.25 | 8.60 ± 0.30 |
LT + WAS (1:2) + Inoculum | 6.60 ± 0.35 | 4.15 ± 0.27 | 8.75 ± 0.32 |
No. | Substrate | VS Added (g) | Inoculum Added (g) | S/I Ratio |
---|---|---|---|---|
Experiment I | ||||
1 | Waste Activated Sludge (WAS) | 0.5, 0.25 | 0.5 | 0.5, 1 |
2 | Swine Slurry (SS) | 0.5, 0.25 | 0.5 | 0.5, 1 |
3 | Water Lily Shoot Biomass (WL) | 0.5, 0.25 | 0.5 | 0.5, 1 |
4 | Lotus Shoot Biomass (LT) | 0.5, 0.25 | 0.5 | 0.5, 1 |
Experiment II | ||||
5 | SS + WAS (1:1) | 0.25 | 0.5 | 0.5 |
6 | SS + WAS (1:2) | 0.25 | 0.5 | 0.5 |
7 | LT + WAS (1:2) | 0.25 | 0.5 | 0.5 |
8 | WL + WAS (1:2) | 0.25 | 0.5 | 0.5 |
Parameters | Waste Activated Sludge | Swine Slurry | Water Lily | Lotus |
---|---|---|---|---|
Total Solid (TS) (% FW) | 6.60 ± 0.01 | 4.12 ± 0.21 | 11.57 ± 0.84 | 12.41 ± 1.19 |
Volatile Solid (VS) (% FW) | 3.75 ± 0.02 | 2.79 ± 0.17 | 10.00 ± 0.86 | 10.65 ± 1.14 |
Fixed Solid (FS) (% FW) | 2.85 ± 0.02 | 1.33 ± 0.10 | 1.57 ± 0.12 | 1.76 ± 0.15 |
VS/TS | 0.57 ± 0.004 | 0.68 ± 0.01 | 0.86 ± 0.02 | 0.86 ± 0.05 |
C (% DW) | 29.43 ± 0.26 | 37.31 ± 0.33 | 42.16 ± 1.01 | 40.12 ± 1.26 |
H (% DW) | 4.26 ± 0.01 | 5.23 ± 0.01 | 5.50 ± 0.39 | 5.67 ± 0.27 |
O (% DW) | 21.43 ± 1.67 | 23.66 ± 0.69 | 37.75 ± 1.89 | 35.48 ± 1.08 |
N (% DW) | 3.81 ± 0.17 | 4.79 ± 0.13 | 3.76 ± 0.34 | 2.94 ± 0.71 |
S (% DW) | 0.79 ± 0.15 | 1.02 ± 0.06 | 0.23 ± 0.05 | 0.22 ± 0.02 |
C/N | 7.72 ± 0.41 | 7.78 ± 0.15 | 11.21 ± 0.69 | 13.64 ± 1.12 |
Cellulose (% DW) | 13.5 ± 0.24 | 9.9 ± 0.30 | 17.4 ± 1.5 | 27.9 ± 1.5 |
Hemicellulose (% DW) | 36.4 ± 5.09 | 16.9 ± 1.09 | 6.0 ± 1.4 | 9.7 ± 4.6 |
ADL (% DW) | 10.0 ± 0.18 | 4.2 ± 0.29 | 1.8 ± 0.5 | 7.3 ± 1.2 |
Parameters | WAS | SS | WL | LT | ||||
---|---|---|---|---|---|---|---|---|
Empirical formula | C10.1H17.5O5.5N1.2S0.1 | C9.8H16.5O4.7N1.2S0.1 | C47.1H74.0O32.7N3.7S0.1 | C51.6H86.0O33.1N3.7S0.1 | ||||
TMP (NmL CH4/g VSadded) | 494.03 ± 30.00 ab | 529.54 ± 9.02 a | 450.78 ± 8.05 b | 471.04 ± 5.68 ab | ||||
WAS | SS | WL | LT | |||||
S/I | 1:1 | 1:2 | 1:1 | 1:2 | 1:1 | 1:2 | 1:1 | 1:2 |
EMY (NmL CH4/g VSadded) | 259.35 ± 5.74 f | 460.88 ± 13.62 bc | 317.83 ± 10.05 e | 524.45 ± 5.78 a | 396.13 ± 7.53 d | 434.70 ± 18.30 c | 375.25 ± 11.65 d | 492.96 ± 3.59 ab |
Ddeg (%) | 52 | 93 | 60 | 99 | 88 | 96 | 80 | 104.6 |
Kinetic Parameter | SS (S/I 1:1) | SS (S/I 1:2) | WAS (S/I 1:1) | WAS (S/I 1:2) | WL (S/I 1:1) | WL (S/I 1:2) | LT (S/I 1:1) | LT (S/I 1:2) | SSAS 1 (S/I 0.5) | SSAS 2 (S/I 0.5) | WLAS (S/I 0.5) | LTAS (S/I 0.5) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rmax (NmL/g VS added/d) | 35.9 ± 10.80 a | 59.23 ± 12.86 b,B | 24.71 ± 4.80 a | 45.56 ± 5.86 ab,AB | 26.14 ± 0.22 a | 43.13 ± 1.41 ab,AB | 27.84 ± 2.03 a | 36.11 ± 0.91 ab,A | 41.14 ± 4.16 A | 45.15 ± 2.42 AB | 41.01 ± 2.24 A | 43.58 ± 0.69 AB |
λ (d) | 0.11 ± 0.19 a | 0.92 ± 0.67 ab,A | 1.84 ± 0.48 bc | 2.65 ± 0.30 cd,BC | 3.58 ± 0.61 d | 3.90 ± 0.27 d,D | 3.02 ± 0.37 cd | 3.33 ± 0.23 d,CD | 2.11 ± 0.42 B | 2.22 ± 0.16 BC | 4.15 ± 0.05 D | 3.69 ± 0.23 D |
G0 (NmL CH4/g VS added) | 293.90 ± 10.41 b | 495.58 ± 5.35 e,BC | 241.30 ± 4.63 a | 441.61 ± 13.94 d,A | 358.30 ± 5.56 c | 478.89 ± 6.22 e,B | 386.15 ± 11.89 c | 423.61 ± 3.17 d,A | 507.38 ± 12.37 BC | 506.69 ± 8.28 BC | 490.08 ± 19.38 BC | 516.21 ± 5.13 C |
EMY (NmL CH4/g VS added) | 317.83 ± 10.05 e | 524.45 ± 5.78 a,CD | 259.35 ± 5.74 f | 460.88 ± 13.62 bc,AB | 375.25 ± 11.65 d | 492.96 ± 3.59 ab,BC | 396.13 ± 7.53 d | 434.70 ± 18.30 c,A | 532.80 ± 14.36 CD | 534.36 ± 8.72 D | 510.90 ± 20.04 CD | 538.76 ± 6.52 D |
R2 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Difference of EMY and G0 (%) | 7.53 | 5.5 | 6.96 | 4.18 | 4.52 | 2.85 | 2.52 | 2.55 | 4.77 | 5.18 | 4.07 | 4.19 |
Parameters | Substrate Ratio (%VS) | G0 (mL CH4/g-VS) | CMP (mL CH4/g-VS) | α |
---|---|---|---|---|
WAS | 100 | 441.61 | 441.61 | |
SS | 100 | 495.58 | 495.58 | |
WL | 100 | 423.61 | 423.61 | |
LT | 100 | 478.89 | 478.89 | |
SSAS 1 | 50%:50% | 507.38 | 468.60 | 1.08 |
SSAS 2 | 33%:67% | 506.69 | 459.42 | 1.10 |
WLAS | 33%:67% | 516.21 | 435.67 | 1.18 |
LTAS | 33%:67% | 490.08 | 453.91 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudiarto, S.I.A.; Choi, H.L.; Renggaman, A.; Suresh, A. Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus. AgriEngineering 2025, 7, 254. https://doi.org/10.3390/agriengineering7080254
Sudiarto SIA, Choi HL, Renggaman A, Suresh A. Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus. AgriEngineering. 2025; 7(8):254. https://doi.org/10.3390/agriengineering7080254
Chicago/Turabian StyleSudiarto, Sartika Indah Amalia, Hong Lim Choi, Anriansyah Renggaman, and Arumuganainar Suresh. 2025. "Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus" AgriEngineering 7, no. 8: 254. https://doi.org/10.3390/agriengineering7080254
APA StyleSudiarto, S. I. A., Choi, H. L., Renggaman, A., & Suresh, A. (2025). Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus. AgriEngineering, 7(8), 254. https://doi.org/10.3390/agriengineering7080254