The Impact of Vibrations on the Hand–Arm System and Body of Agricultural Tractor Operators in Relation to Operational Parameters, Approach: Analytical Hierarchical Process (AHP)
Abstract
:1. Introduction
- Vibrations affecting the operator’s hand–arm system (the daily exposure limit value, normalized to an eight-hour reference period, is 5 ms−2, and the daily exposure warning value is 2.5 ms−2).
- Vibrations affecting the operator’s torso (the daily exposure limit value, normalized to an eight-hour reference period, is 1.15 ms−2, and the daily exposure warning value is 0.5 ms−2).
- Insertion of anti-vibration systems (with a ranking in percentage of 29.2%);
- Changes to the geometry and/or materials of the handles reaching 23.5%;
- Application of strategies for perfect repeatability of properties (20.2%);
- Changes to the expected conditions of use for workers (13.3%);
- Changes to other components (8.1%);
- Changes to the mechanics of the machine (5.7%).
2. Materials and Methods
- (t)—current frequency of measured acceleration (ms−2);
- τ—integration time for continuous averaging;
- t—time (s);
- t0—observation time (s).
- MTVV—maximum transient vibration value (ms−2).
- x-axis: longitudinal, in the direction of travel—forward (positive)/backward (negative);
- y-axis: lateral, at right angles to the direction of travel (left/right);
- z-axis: vertical, upwards perpendicular to the floor (positive)/downwards perpendicular to the floor (negative).
- T0 is the reference duration, 8 h (28,800 s).
- n is the number of operations.
2.1. Theoretical Model for Optimizing Tractor Speed and Tire Pressure
2.2. Formalized Theoretical Model
- VHA(v,p,s): vibration level for the hand–arm system.
- VWB(v,p,s): vibration level for the whole body.
- α, β: weights representing the relative importance of reducing vibrations for each system.
- β0: intercept.
- β1, β2, β3: coefficients for main effects (speed, pressure, surface).
- β12, β13: interaction coefficients between variables.
- ϵ: residual error.
2.3. General Recommendation Based on Theoretical and Formalized Theoretical Model for Optimizimg Tractor Speed and Tire Pressure
3. Results
3.1. Relationship Between Grouped Agrotechnical Surfaces and Other Independent Variables on Hand–Arm System Vibrations in the x-Axis Direction
Variants | F | Pr > F | R2 | C.V. (%) | |
---|---|---|---|---|---|
B1C1 | 138.57 | <0.0001 | 0.802980 | 23.69865 | 1.248333 |
B1C2 | 100.91 | <0.0001 | 0.747987 | 23.51933 | 1.023056 |
B1C3 | 0.08 | 0.7838 | 0.002245 | 21.36400 | 1.116944 |
B2C1 | 116.10 | <0.0001 | 0.773484 | 26.01350 | 1.110000 |
B2C2 | 70.61 | <0.0001 | 0.674985 | 28.51435 | 0.945833 |
B2C3 | 0.55 | 0.4627 | 0.015970 | 23.49500 | 1.114167 |
B3C1 | 105.16 | <0.0001 | 0.755684 | 26.09971 | 0.995556 |
B3C2 | 188.91 | <0.0001 | 0.847471 | 18.18881 | 0.908889 |
B3C3 | 0.18 | 0.6749 | 0.005236 | 23.78212 | 0.972222 |
B4C1 | 31.73 | <0.0001 | 0.482700 | 34.43180 | 1.059167 |
B4C2 | 43.30 | <0.0001 | 0.560163 | 29.21920 | 0.896111 |
B4C3 | 0.37 | 0.5450 | 0.010875 | 23.69694 | 1.033056 |
B5C1 | 12.81 | 0.0011 | 0.273586 | 39.31974 | 1.094722 |
B5C2 | 2.75 | 0.1066 | 0.074777 | 42.84920 | 0.983889 |
B5C3 | 29.16 | <0.0001 | 0.461667 | 12.47938 | 1.093056 |
B6C1 | 2.72 | 0.1081 | 0.074141 | 43.66584 | 1.143333 |
B6C2 | 0.05 | 0.8328 | 0.001329 | 52.36972 | 1.068611 |
B6C3 | 33.66 | <0.0001 | 0.497498 | 24.30758 | 1.200833 |
B1 speed of movement 1 kmh−1 B2 speed of movement 2 kmh−1 B3 speed of movement 3 kmh−1 F; F-test value R2; coefficient of determination | B4 speed of movement 4 kmh−1 B5 speed of movement 5 kmh−1 B6 speed of movement 6 kmh−1 Pr > F; p-value (probability) C.V.; coefficient of variation | C1 tire pressure 1.9 bar C2 tire pressure 2.4 bar C3 tire pressure 2.9 bar ; mean value of hand–arm vibration in the x-axis direction, ms−2 |
3.2. Relationship Between Grouped Agrotechnical Surfaces and Other Independent Variables on Hand–Arm System Vibrations in the y-Axis Direction
Variants | F | Pr > F | R2 | C.V. (%) | |
---|---|---|---|---|---|
B1C1 | 86.50 | <0.0001 | 0.717851 | 29.84622 | 0.433889 |
B1C2 | 39.47 | <0.0001 | 0.537251 | 48.29240 | 0.412500 |
B1C3 | 22.80 | <0.0001 | 0.401362 | 42.70676 | 0.479722 |
B2C1 | 94.54 | <0.0001 | 0.735493 | 28.14218 | 0.396667 |
B2C2 | 46.14 | <0.0001 | 0.575734 | 40.46236 | 0.392778 |
B2C3 | 14.66 | 0.0005 | 0.301322 | 30.65624 | 0.483889 |
B3C1 | 0.00 | 0.9964 | 0.000001 | 65.70610 | 0.391944 |
B3C2 | 1.14 | 0.2932 | 0.032435 | 44.70775 | 0.466667 |
B3C3 | 0.18 | 0.6749 | 0.005236 | 23.78212 | 0.972222 |
B4C1 | 3.07 | 0.0890 | 0.082710 | 68.66542 | 0.611667 |
B4C2 | 1.81 | 0.1873 | 0.050567 | 58.27954 | 0.616111 |
B4C3 | 4.66 | 0.0380 | 0.120619 | 40.89716 | 0.632500 |
B5C1 | 6.85 | 0.0132 | 0.167630 | 74.76111 | 0.781944 |
B5C2 | 7.33 | 0.0105 | 0.177398 | 74.57970 | 0.815833 |
B5C3 | 10.17 | 0.0031 | 0.230209 | 69.04360 | 0.792778 |
B6C1 | 9.38 | 0.0043 | 0.216146 | 80.12540 | 0.905000 |
B6C2 | 11.12 | 0.0021 | 0.246506 | 85.41954 | 0.903889 |
B6C3 | 19.08 | 0.0001 | 0.359437 | 59.81058 | 1.022222 |
B1 speed of movement 1 kmh−1 B2 speed of movement 2 kmh−1 B3 speed of movement 3 kmh−1 F: F-test value R2: coefficient of determination | B4 speed of movement 4 kmh−1 B5 speed of movement 5 kmh−1 B6 speed of movement 6 kmh−1 Pr > F: p-value (probability) C.V.: coefficient of variation | C1 tire pressure 1.9 bar C2 tire pressure 2.4 bar C3 tire pressure 2.9 bar : mean value of hand–arm vibration in the y-axis direction, ms−2 |
3.3. Relationship of Grouped Agrotechnical Surfaces and Other Independent Variables with Hand–Arm Vibrations in the z-Axis Direction
Variants | F | Pr > F | R2 | C.V. (%) | |
---|---|---|---|---|---|
B1C1 | 30.66 | <0.0001 | 0.474159 | 21.18047 | 0.102500 |
B1C2 | 52.22 | <0.0001 | 0.605673 | 23.91855 | 0.067500 |
B1C3 | 13.41 | 0.0008 | 0.282796 | 53.27910 | 0.086389 |
B2C1 | 2.96 | 0.0942 | 0.080185 | 30.54959 | 0.100833 |
B2C2 | 2.82 | 0.1024 | 0.076540 | 30.42157 | 0.090000 |
B2C3 | 3.29 | 0.0787 | 0.088129 | 22.44285 | 0.081111 |
B3C1 | 65.54 | <0.0001 | 0.658436 | 25.87920 | 0.135000 |
B3C2 | 48.19 | <0.0001 | 0.586334 | 34.71631 | 0.140833 |
B3C3 | 14.76 | 0.0005 | 0.302715 | 20.98422 | 0.116944 |
B4C1 | 6.15 | 0.0183 | 0.153162 | 44.18610 | 0.134444 |
B4C2 | 5.88 | 0.0208 | 0.147353 | 42.71466 | 0.140000 |
B4C3 | 10.03 | 0.0032 | 0.227848 | 22.32411 | 0.120000 |
B5C1 | 63.27 | <0.0001 | 0.650448 | 54.48019 | 0.155833 |
B5C2 | 80.26 | <0.0001 | 0.702426 | 56.26769 | 0.191944 |
B5C3 | 19.92 | <0.0001 | 0.369466 | 83.60035 | 0.184444 |
B6C1 | 45.66 | <0.0001 | 0.573213 | 68.68984 | 0.239167 |
B6C2 | 53.03 | <0.0001 | 0.609342 | 78.16220 | 0.245556 |
B6C3 | 23.69 | <0.0001 | 0.410690 | 119.6096 | 0.258889 |
B1 speed of movement 1 kmh−1 B2 speed of movement 2 kmh−1 B3 speed of movement 3 kmh−1 F: F-test value R2: coefficient of determination | B4 speed of movement 4 kmh−1 B5 speed of movement 5 kmh−1 B6 speed of movement 6 kmh−1 Pr > F: p-value (probability) C.V.: coefficient of variation | C1 tire pressure 1.9 bar C2 tire pressure 2.4 bar C3 tire pressure 2.9 bar : mean value of hand–arm vibration in the z-axis direction, ms−2 |
3.4. The Relationship of Grouped Agrotechnical Surfaces and Other Independent Variables with Whole Body Vibrations in the x-Axis Direction
Variants | F | Pr > F | R2 | C.V. (%) | |
---|---|---|---|---|---|
B1C1 | 31.32 | <0.0001 | 0.479488 | 46.69061 | 0.125833 |
B1C2 | 34.03 | <0.0001 | 0.500195 | 108.4327 | 0.394444 |
B1C3 | 28.60 | <0.0001 | 0.456843 | 115.1667 | 0.387500 |
B2C1 | 16.07 | 0.0003 | 0.321013 | 85.85998 | 0.263611 |
B2C2 | 140.81 | <0.0001 | 0.805503 | 49.98170 | 0.487222 |
B2C3 | 151.39 | <0.0001 | 0.816601 | 47.78166 | 0.489722 |
B3C1 | 16.48 | 0.0003 | 0.326489 | 94.73067 | 0.347500 |
B3C2 | 585.27 | <0.0001 | 0.945097 | 23.22971 | 0.530556 |
B3C3 | 653.96 | <0.0001 | 0.950578 | 20.41095 | 0.559722 |
B4C1 | 16.69 | 0.0003 | 0.329266 | 97.97840 | 0.383333 |
B4C2 | 389.76 | <0.0001 | 0.919765 | 25.91458 | 0.566667 |
B4C3 | 503.17 | <0.0001 | 0.936705 | 22.26402 | 0.597500 |
B5C1 | 17.28 | 0.0002 | 0.336956 | 89.83134 | 0.426389 |
B5C2 | 386.60 | <0.0001 | 0.919164 | 25.23964 | 0.607222 |
B5C3 | 397.56 | <0.0001 | 0.921216 | 23.21176 | 0.629722 |
B6C1 | 19.09 | 0.0001 | 0.359622 | 91.55669 | 0.491944 |
B6C2 | 226.57 | <0.0001 | 0.869519 | 32.07237 | 0.670833 |
B6C3 | 300.76 | <0.0001 | 0.898436 | 26.50157 | 0.673611 |
B1 speed of movement 1 kmh−1 B2 speed of movement 2 kmh−1 B3 speed of movement 3 kmh−1 F: F-test value R2: coefficient of determination | B4 speed of movement 4 kmh−1 B5 speed of movement 5 kmh−1 B6 speed of movement 6 kmh−1 Pr > F: p-value (probability) C.V.: coefficient of variation | C1 tire pressure 1.9 bar C2 tire pressure 2.4 bar C3 tire pressure 2.9 bar : mean value of whole body vibration in the x-axis direction, ms−2 |
3.5. Relationship of Grouped Agrotechnical Surfaces and Other Independent Variables with Whole Body Vibrations in the y-Axis Direction
Variants | F | Pr > F | R2 | C.V. (%) | |
---|---|---|---|---|---|
B1C1 | 12.54 | 0.0012 | 0.269488 | 13.11371 | 0.093889 |
B1C2 | 24.72 | <0.0001 | 0.420949 | 87.26454 | 0.172222 |
B1C3 | 20.32 | <0.0001 | 0.374057 | 82.43183 | 0.131944 |
B2C1 | 8.04 | 0.0076 | 0.191295 | 62.69665 | 0.133889 |
B2C2 | 94.06 | <0.0001 | 0.734507 | 47.78531 | 0.207500 |
B2C3 | 61.48 | <0.0001 | 0.643906 | 52.57738 | 0.176667 |
B3C1 | 17.53 | 0.0002 | 0.340240 | 101.2328 | 0.321389 |
B3C2 | 585.27 | <0.0001 | 0.945097 | 23.22971 | 0.530556 |
B3C3 | 29.75 | <0.0001 | 0.466680 | 77.23342 | 0.275556 |
B4C1 | 16.23 | 0.0003 | 0.323165 | 109.8494 | 0.540000 |
B4C2 | 48.05 | <0.0001 | 0.585610 | 76.35622 | 0.503889 |
B4C3 | 41.92 | <0.0001 | 0.552187 | 77.55695 | 0.458333 |
B5C1 | 16.67 | 0.0003 | 0.329005 | 111.6145 | 0.670556 |
B5C2 | 41.43 | <0.0001 | 0.549259 | 87.52851 | 0.652222 |
B5C3 | 38.50 | <0.0001 | 0.531035 | 86.98481 | 0.611389 |
B6C1 | 15.87 | 0.0003 | 0.318182 | 105.8862 | 0.758056 |
B6C2 | 42.65 | <0.0001 | 0.556426 | 79.10860 | 0.768056 |
B6C3 | 39.86 | <0.0001 | 0.539661 | 79.17441 | 0.748333 |
B1 speed of movement 1 kmh−1 B2 speed of movement 2 kmh−1 B3 speed of movement 3 kmh−1 F: F-test value R2: coefficient of determination | B4 speed of movement 4 kmh−1 B5 speed of movement 5 kmh−1 B6 speed of movement 6 kmh−1 Pr > F: p-value (probability) C.V.: coefficient of variation | C1 tire pressure 1.9 bar C2 tire pressure 2.4 bar C3 tire pressure 2.9 bar : mean value of whole body vibration in the y-axis direction, ms−2 |
3.6. The Relationship of Grouped Agrotechnical Surfaces and Other Independent Variables with Whole Body Vibrations in the Direction of the z-Axis
Variants | F | Pr > F | R2 | C.V. (%) | |
---|---|---|---|---|---|
B1C1 | 30.66 | <0.0001 | 0.474159 | 21.18047 | 0.102500 |
B1C2 | 0.88 | 0.3550 | 0.025212 | 49.39178 | 0.063611 |
B1C3 | 2.84 | 0.1009 | 0.077168 | 28.83101 | 0.080000 |
B2C1 | 28.70 | <0.0001 | 0.457731 | 44.92170 | 0.198333 |
B2C2 | 4.08 | 0.0513 | 0.107155 | 66.13250 | 0.175556 |
B2C3 | 0.02 | 0.9006 | 0.000465 | 58.13911 | 0.177222 |
B3C1 | 23.42 | <0.0001 | 0.407871 | 63.11796 | 0.293611 |
B3C2 | 7.09 | 0.0118 | 0.172541 | 71.81273 | 0.261944 |
B3C3 | 3.10 | 0.0873 | 0.083529 | 60.70315 | 0.260278 |
B4C1 | 23.68 | <0.0001 | 0.410537 | 65.85860 | 0.310000 |
B4C2 | 8.35 | 0.0067 | 0.197170 | 83.87689 | 0.280556 |
B4C3 | 2.41 | 0.1300 | 0.066139 | 71.29949 | 0.276944 |
B5C1 | 21.05 | <0.0001 | 0.382357 | 71.16268 | 0.366389 |
B5C2 | 7.09 | 0.0118 | 0.172511 | 94.98799 | 0.325278 |
B5C3 | 5.63 | 0.0235 | 0.142058 | 78.92956 | 0.376944 |
B6C1 | 16.92 | 0.0002 | 0.332351 | 75.12901 | 0.510556 |
B6C2 | 12.26 | 0.0013 | 0.265058 | 102.3807 | 0.507222 |
B6C3 | 9.43 | 0.0042 | 0.217198 | 89.91699 | 0.483056 |
B1 speed of movement 1 kmh−1 B2 speed of movement 2 kmh−1 B3 speed of movement 3 kmh−1 F: F-test value R2: coefficient of determination | B4 speed of movement 4 kmh−1 B5 speed of movement 5 kmh−1 B6 speed of movement 6 kmh−1 Pr > F: p-value (probability) C.V.: coefficient of variation | C1 tire pressure 1.9 bar C2 tire pressure 2.4 bar C3 tire pressure 2.9 bar : mean value of whole body vibration in the z-axis direction, ms−2 |
3.7. Summary of Results
- Hand–Arm Vibration (VHA)
- Whole Body Vibration (VWB)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grubišić, A.; Guljaš, I. Uzajamni utjecaj aktivnosti ljudi i vibracija međukatnih konstrukcija. Elektron. Časopis Građev. Fak. Osijek 2010, 1, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Anđelović, M.; Jovanović, J. Medicina Rada; Medicine Faculty in Niš, University of Niš: Niš, Serbia, 2009; ISBN 86-80599-52-2. [Google Scholar]
- Griffin, M.J. Handbook of Human Vibration; Academic Press: Cambridge, MA, USA, 1996; ISBN 978-0-12-303041-2. [Google Scholar]
- Rački, Z. The relationship between white fingers, cold-test and digital plethysmography in loggers working with different motor saws. Arh. Hig. Rada Toksikol. 1984, 35, 343–353. [Google Scholar] [PubMed]
- Brunetti, J.; D’Ambrogio, W.; Fregolent, A. Analysis of the Vibrations of Operators’ Seats in Agricultural Machinery Using Dynamic Substructuring. Appl. Sci. 2021, 11, 4749. [Google Scholar] [CrossRef]
- Mehta, C.R.; Shyam, M.; Singh, P.; Verma, R.N. Ride Vibration on Tractor-Implement System. Appl. Ergon. 2000, 31, 323–328. [Google Scholar] [CrossRef]
- Lines, J.; Stiles, M.; Whyte, R. Whole Body Vibration During Tractor Driving. J. Low Freq. Noise Vib. Act. Control. 1995, 14, 87–104. [Google Scholar] [CrossRef]
- Barač, Ž.; Marković, M.; Heffer, G.; Jurišić, M.; Duvnjak, V.; Jurić, T.; Plaščak, I.; Baličević, P. Influence of an Uneven Surface on the Vibration Occurrence Affecting the Tractor Operator. Teh. Glas. 2019, 13, 192–196. [Google Scholar] [CrossRef]
- HRN ISO 2631-1:1999/A1:2019/Hrvatski Normativni Dokument/HRN4You—Hrvatski Zavod Za Norme. Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+2631-1%3A1999%2FA1%3A2019 (accessed on 10 December 2022).
- Sanders, M.S.; McCormick, E.J. Human Factors in Engineering and Design; McGraw-Hill: New York, NY, USA, 1987; ISBN 13-9780070449039. Available online: https://www.abebooks.com/9780070449039/Human-Factors-Engineering-Design-Sanders-0070449031/plp (accessed on 27 November 2024).
- Neugebauer, G.; Jancurova, L.; Martin, J.; Manek, T. Opasnosti Od Vibracija Koje Se Prenose Na Cijelo Tijelo i Na Šake-Ruke; International Social Security Association: Geneva, Switzerland, 2010; ISBN 978-3-941441-52-1. [Google Scholar]
- HZZO. Ozljede na Radu i Profesionalne Bolesti, Specifična Zdravstvena Zaštita. Available online: http://hzzo.hr/ozljede-na-radu-i-profesionalne-bolesti-specificna-zdravstvena-zastita (accessed on 27 November 2024).
- Poplašen, D.; Kerner, I. Vibracije koje se prenose na šake i ruke. Sigur. Časopis Za Sigur. U Radn. Životn. Okolini 2013, 55, 389–392. [Google Scholar]
- Goglia, V.; Suchomel, J.; Žgela, J. Izloženost vibracijama šumarskih radnika u svjetlu directive 2002/44/EC. Šumar. List 2012, 5–6, 283–289. [Google Scholar]
- Singh, G.K. Effect of Whole-Body Vibration on Vehicle Operators: A Review. Int. J. Sci. Res. (IJSR) 2012, 3, 320–323. [Google Scholar]
- Fahy, F.; Thompson, D. (Eds.) Fundamentals of Sound and Vibration, 2nd ed.; CRC Press: London, UK, 2016; ISBN 978-0-429-17647-0. [Google Scholar]
- Gomez-Gil, J.; Gomez-Gil, F.J.; Martin-de-Leon, R. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations. Sensors 2014, 14, 19713–19730. [Google Scholar] [CrossRef]
- Pobedin, A.V.; Dolotov, A.A.; Shekhovtsov, V.V. Decrease of the Vibration Load Level on the Tractor Operator Working Place by Means of Using of Vibrations Dynamic Dampers in the Cabin Suspension. Procedia Eng. 2016, 150, 1252–1257. [Google Scholar] [CrossRef]
- Shinde, A.; Jadhav, S.G. Vibration Measurement and Vibration Reduction of Steering Wheel of an Agricultural Tractor. Int. J. Sci. Res. (IJSR) 2013, 5, 44–48. [Google Scholar]
- Petrović, P.; Bracanović, Z.; Vukas, S. Oscillatory Appearance on Agricultural of Tractors. Poljopr. Teh. 2005, 30, 15–23. [Google Scholar]
- Beheshti, M.H.; Ghandhari, P. Assessment of Noise Exposure in Operator Cultivator Tiller. Int. J. Occup. Hyg. 2015, 7, 197–201. [Google Scholar]
- Ministarstvo Gospodarstva, Rada I Poduzetništva. Pravilnik o Zaštiti Radnika Od Rizika Zbog Izloženosti Vibracijama Na Radu. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2008_12_155_4248.html (accessed on 10 January 2025).
- Deboli, R.; Calvo, A.; Preti, C. The Use of a Capacitive Sensor Matrix to Determine the Grip Forces Applied to the Olive Hand Held Harvesters. In Proceedings of the International Conference “Innovation Technology to Empower Safety, Health and Welfare in Agriculture and Agro-food Systems”, Ragusa, Italy, 15–17 September 2008. [Google Scholar]
- Servadio, P.; Marsili, A.; Belfiore, N.P. Analysis of Driving Seat Vibrations in High Forward Speed Tractors. Biosyst. Eng. 2007, 97, 171–180. [Google Scholar] [CrossRef]
- Cheng, J.; Chi, R.; Mao, E. Influence of Hanging Farm Implement on Vibration of Tractor with Electro-Hydraulic Hitch System. Trans. Chin. Soc. Agric. Eng. 2015, 31, 24–32. [Google Scholar] [CrossRef]
- Langer, T.H.; Ebbesen, M.K.; Kordestani, A. Experimental Analysis of Occupational Whole-Body Vibration Exposure of Agricultural Tractor with Large Square Baler. Int. J. Ind. Ergon. 2015, 47, 79–83. [Google Scholar] [CrossRef]
- De Almeida, S.V.; Sperotto, F.C.S.; Doimo, L.d.S.; Correia, T.P.d.S.; dos Santos, J.E.G.; Silva, P.R.A. Analysis of Vibration Levels in Agricultural Tractor with and without Cabin. Afr. J. Agric. Res. 2015, 10, 4945–4949. [Google Scholar] [CrossRef]
- Barač, Ž.; Plaščak, I.; Jurić, T.; Jurišić, M.; Heffer, G.; Nikolić, A. Proizvedena Razina Traktorskih Vibracija Pri Različitim Agrotehničkim Podlogama Koje Utječu Na Trup Rukovatelja. In Proceedings of the 9th International Scientific/Professional Conference Agriculture in Nature and Environment Protection, Vukovar, Croatia, 6–8 June 2016; pp. 82–85. [Google Scholar]
- Barač, Ž.; Plaščak, I.; Jurišić, M.; Zimmer, D.; Vidaković, I.; Laslo, J. Utjecaj Različitih Agrotehničkih Podloga Na Proizvedene Vibracije Koje Utječu Na Sustav Ruka-Šaka Rukovatelja. In Proceedings of the 10th International Scientific/Professional Conference Agriculture in Nature and Environment Protection, Vukovar, Croatia, 5–7 June 2017; pp. 187–190. [Google Scholar]
- Dewangan, K.N.; Tewari, V.K. Characteristics of Hand-Transmitted Vibration of a Hand Tractor Used in Three Operational Modes. Int. J. Ind. Ergon. 2009, 39, 239–245. [Google Scholar] [CrossRef]
- Dewangan, K.N.; Rakheja, S.; Marcotte, P.; Shahmir, A. Effects of Elastic Seats on Seated Body Apparent Mass Responses to Vertical Whole Body Vibration. Ergonomics 2015, 58, 1175–1190. [Google Scholar] [CrossRef]
- Barač, Ž.; Vidaković, I.; Zimmer, D.; Ermenić, V. Odnos Agrotehničkih Zahvata Na Proizvedenu Razinu Vibracija Te Njihov Utjecaj Na Sustav Ruka-Šaka Rukovatelja Traktora. In Proceedings of the 52. Hrvatskog i 12. Međunarodnog Simpozija Agronoma, Dubrovnik, Croatia, 12–17 February 2017. [Google Scholar]
- Barač, Ž.; Plaščak, I.; Jurišić, M.; Heffer, G.; Vidaković, I.; Marković, M.; Zimmer, D. The impact of vibration on operator whole body at agrotehnical operations. Glas. Zašt. Bilja 2017, 40, 8–14. [Google Scholar] [CrossRef]
- Scarlett, A.J.; Price, J.S.; Stayner, R.M. Whole-Body Vibration: Evaluation of Emission and Exposure Levels Arising from Agricultural Tractors. J. Terramech. 2007, 44, 65–73. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Bisaglia, C. Whole-Body Vibration in Farming: Background Document for Creating a Simplified Procedure to Determine Agricultural Tractor Vibration Comfort. Agriculture 2017, 7, 84. [Google Scholar] [CrossRef]
- Deboli, R.; Calvo, A.; Preti, C. Comparison between ISO 5008 and Field Whole Body Vibration Tractor Values. J. Agric. Eng. 2012, 43, e8. [Google Scholar] [CrossRef]
- Vallone, M.; Bono, F.; Quendler, E.; Febo, P.; Catania, P. Risk Exposure to Vibration and Noise in the Use of Agricultural Track-Laying Tractors. Ann. Agric. Environ. Med. AAEM 2016, 23, 591–597. [Google Scholar] [CrossRef]
- Tewari, V.K.; Vidhu, K.P.; Arudra, A.K.; Kumari, S. Reduction of Hand Transmitted and Whole Body Vibrations Experienced by Tractor Operators by Using Piezo Crystal Material. Agric. Eng. Int. CIGR J. 2013, 15, 209–220. [Google Scholar]
- Calvo, A.; Deboli, R.; Preti, C. Operators’ Exposure to Noise and Vibration in the Grass Cut Tasks: Comparison between Private and Public Yards. Agric. Eng. Int. CIGR J. 2016, 18, 213–225. [Google Scholar]
- Deboli, R.; Calvo, A.; Preti, C. Whole-Body Vibration: Measurement of Horizontal and Vertical Transmissibility of an Agricultural Tractor Seat. Int. J. Ind. Ergon. 2017, 58, 69–78. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, W. The WASPAS and AHP Optimization Methods Applied on Vibro-Diagnostic Models for Rotational Machines. Eng. Comput. 2022, 38, 2389–2406. [Google Scholar] [CrossRef]
- Carra, S.; Monica, L.; Vignali, G. Reduction of Workers’ Hand-Arm Vibration Exposure through Optimal Machine Design: AHP Methodology Applied to a Case Study. Saf. Sci. 2019, 120, 706–727. [Google Scholar] [CrossRef]
- He, S.; Tang, T.; Ye, M.; Xu, E.; Deng, J.; Tang, R. A Domain Association Hierarchical Decomposition Optimization Method for Cab Vibration Control of Commercial Vehicles. Measurement 2019, 138, 497–513. [Google Scholar] [CrossRef]
- Som, S.; Singh, L.P. Evaluation of Ergonomic Assessment Tools Using Fuzzy AHP. In Proceedings of the Recent Advances in Operations Management and Optimization, Jalandhar, India, 10–12 March 2023; Sachdeva, A., Goyal, K.K., Garg, R.K., Davim, J.P., Eds.; Springer Nature: Singapore, 2024; pp. 213–219. [Google Scholar]
- HRN ISO 5008:2015/Hrvatski Normativni Dokument/HRN4You—Hrvatski Zavod Za Norme. Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+5008%3A2015 (accessed on 10 December 2022).
- HRN ISO 2631-4:2010/Hrvatski Normativni Dokument/HRN4You—Hrvatski Zavod Za Norme. Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+2631-4%3A2010 (accessed on 10 December 2022).
- HRN EN ISO 5349-1:2008/Hrvatski Normativni Dokument/HRN4You—Hrvatski Zavod Za Norme. Available online: https://repozitorij.hzn.hr/norm/HRN+EN+ISO+5349-1%3A2008 (accessed on 10 December 2022).
- HRN EN ISO 5349-2:2008/A1:2015/Hrvatski Normativni Dokument/HRN4You—Hrvatski Zavod Za Norme. Available online: https://repozitorij.hzn.hr/norm/HRN+EN+ISO+5349-2%3A2008%2FA1%3A2015 (accessed on 10 December 2022).
- Deboli, R.; Calvo, A.; Preti, C. Whole Body Vibration (WBV): Comparison among Fied Dana and Standard Test Track (ISO 5008) in Different Operative Conditions. In Proceedings of the 33 CIOSTA—CIGR V Conference Technology and Management to Ensure Sustainable Agriculture, Agro-System, Forestry and Safety, Reggio Calabria, Italy, 17–19 June 2009; pp. 1–10. [Google Scholar]
- Barač, Ž.; Plaščak, I.; Jurić, T.; Jurišić, M.; Heffer, G.; Zimmer, D.; Vidaković, I.; Radočaj, D.; Majstorović, S. Utjecaj Vibracija Na Sustav Ruka-Šaka Pri Radu Traktora IMT 539. In Proceedings of the 12th International Scientific/Professional Conference Agriculture in Nature and Environment Protection, Osijek, Croatia, 27–29 May 2019; pp. 295–299. [Google Scholar]
Measuring range | Sensor (1 mV/ms−2) | Whole body vibration 0.10–12.00/1.0–120.0/10–1200/1000/6000 ms−2peak; acceleration 0.10–12.00/1.0–120.0/10–1200/1000/6000 ms−2peak; speed 0.001–0.120/0.010–1200/0.10–0.12/1.00/60.00 ms−1peak; shift 0.001–0.120/0.010–1200/0.10–0.12/1.00/60.00 mmpeak. |
Sensor (10 mV/ms−2) | Whole body vibration 0.010–1200/0.10–12.00/1.0–120.0/10/600 ms−2peak; acceleration 0.010–1200/0.10–12.00/1.0–120.0/10/600 ms−2peak; speed 0.10–12.00/1.0–120.0/10–1200/100/6000 ms−1peak; shift 0.10–12.00/1.0–120.0/10–1200/100/6000 ms−1peak. | |
Screen display mode | Working RMS (1 s), maximum working RMS (MTVV), interval RMS (do 10 h), value of the estimated vibration quantity (eVDV), total vibration value (Ahv), highest value (1 s), maximum of the highest value and crest factor | |
Weighted filters | Wb, Wc, Wd, We, Wg, Wh, Wj, Wk, Wm | |
Screen | Graphic LCD display with 32 × 120 dots and LED backlight, 3 vibration values with units and operating mode | |
Sensor input | 3 IEPE inputs, plug type Binder 711, female, 4 pins | |
IEPE power supply | 3 constant current sources, 2 A, total voltage 20 V | |
Recommended sensors | KS943B.10 for measuring hand–arm system (1 mV/s−2) KB103SV-100 for whole body vibration measurement (1 mV/s−2) | |
Memory | Flash memory for 1000 to 3000 measured values, depending on the recording mode | |
Recording modes | Manually using the SAVE button or Logging mode, time-controlled from 1 s to 10 h | |
Operating temperature range | −20 °C to 40 °C | |
Dimensions | 165 × 92 × 31 mm3 |
Aspect | Obtained Results | Previous Studies | Comparison/Insights |
---|---|---|---|
Hand–Arm System Vibrations (HAs) | |||
x-axis | Did not exceed the safety threshold (2.5 ms−2); significant differences at lower speeds and pressures. | Higher vibrations in the x-axis reported during transportation and soil tillage, especially for single-axle tractors [32]. | Vibration levels in the x-axis are consistent with earlier studies, though soil tillage was not analyzed in this study. |
x-axis | Fewest statistically significant differences; minimal vibration variation across speeds and pressures. | Lower vibration levels in the y-axis compared to the x-axis and z-axis, particularly for mulching and spraying operations [21]. | Agreement that y-axis vibrations are generally less significant than x-axis vibrations. |
z-axis | Increased significantly at higher speeds and pressures; remained below safety thresholds. | Highest vibrations in the z-axis during soil tillage operations (up to 8.07 ms−2) [38]. | Vibrations in this study are lower, likely due to different operational tasks and tractor configurations. |
Whole Body Vibrations (WBs) | |||
x-axis | Vibrations exceeded the daily exposure warning threshold (0.5 ms−2) at higher speeds and pressures. | Significant increases observed with tractor speeds on rough tracks; horizontal axes (x, y) show highest values [39]. | Consistent findings, though the absolute vibration levels are lower in this study. |
y-axis | Higher at prescribed pressures; vibrations increased with speed but remained below limits. | y-axis vibrations on test tracks were generally lower than x-axis vibrations [34]. | Agreement on the y-axis showing lower vibrations compared to the x-axis. |
z-axis | Increased vibrations with speed; rough surfaces caused the most significant impacts. | Similar findings in earlier studies: rough surfaces and higher speeds correlate with significant increases [30]. | Strong agreement on the impact of rough surfaces and speed on z-axis vibrations. |
Impact of Speed | |||
Lower Speeds (1–2 kmh−1) | Minimal vibrations across all axes and surface types. | Lower speeds consistently reported to reduce vibrations, particularly in agricultural operations [27,28]. | Agreement on the benefits of lower speeds for minimizing vibrations. |
Higher Speeds (5–6 kmh−1) | Significant increase in vibration levels across all axes, especially at higher pressures. | Vibrations increase proportionally with speed; impacts are more pronounced on rough terrains [30,40]. | Findings are consistent across studies regarding the relationship between speed and vibration levels. |
Impact of Tire Pressure | |||
Low Pressure (C1C1) | Reduced vibrations on all axes and surface types. | Lower pressures shown to reduce vibrations in previous studies, with minimal impact on operational efficiency [34]. | Strong agreement on the damping effect of low tire pressure. |
High Pressure (C3C3) | Increased vibrations significantly at higher speeds. | Higher pressures amplified vibrations in all axes, particularly on rough terrains [39]. | Consistent findings on the amplifying effect of high tire pressure. |
Impact of Surface Type | |||
Smooth Surfaces (GL) | Lower vibrations compared to rough surfaces; vibrations below thresholds at all speeds and pressures. | Smooth surfaces consistently associated with lower vibrations across previous studies [27,28]. | Agreement on smooth surfaces as a key factor in reducing vibration levels. |
Rough Surfaces (GR) | Significantly higher vibrations across all axes, especially at higher speeds and pressures. | Rough surfaces increase vibrations substantially; worst results observed on field roads and test tracks [40]. | Strong alignment on rough surfaces being the most challenging for minimizing vibrations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barač, Ž.; Plaščak, I.; Jurić, T.; Marković, M. The Impact of Vibrations on the Hand–Arm System and Body of Agricultural Tractor Operators in Relation to Operational Parameters, Approach: Analytical Hierarchical Process (AHP). AgriEngineering 2025, 7, 56. https://doi.org/10.3390/agriengineering7030056
Barač Ž, Plaščak I, Jurić T, Marković M. The Impact of Vibrations on the Hand–Arm System and Body of Agricultural Tractor Operators in Relation to Operational Parameters, Approach: Analytical Hierarchical Process (AHP). AgriEngineering. 2025; 7(3):56. https://doi.org/10.3390/agriengineering7030056
Chicago/Turabian StyleBarač, Željko, Ivan Plaščak, Tomislav Jurić, and Monika Marković. 2025. "The Impact of Vibrations on the Hand–Arm System and Body of Agricultural Tractor Operators in Relation to Operational Parameters, Approach: Analytical Hierarchical Process (AHP)" AgriEngineering 7, no. 3: 56. https://doi.org/10.3390/agriengineering7030056
APA StyleBarač, Ž., Plaščak, I., Jurić, T., & Marković, M. (2025). The Impact of Vibrations on the Hand–Arm System and Body of Agricultural Tractor Operators in Relation to Operational Parameters, Approach: Analytical Hierarchical Process (AHP). AgriEngineering, 7(3), 56. https://doi.org/10.3390/agriengineering7030056