Treatment of Ferruginous Water in the Performance of Drip Irrigation Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Water Analysis Results
3.2. Flow Rate Variation of the Dripper Models Throughout the Evaluations
3.3. Distribution Uniformity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solé-Torres, C.; Lamm, F.R.; Duran-Ros, M.; Arbat, G.; de Cartagena, F.R.; Puig-Bargués, J. Assessment of microirrigation field distribution uniformity procedures for pressure-compensating emitters under potential clogging conditions. Trans. ASABE 2021, 64, 1063–1071. [Google Scholar] [CrossRef]
- Ramachandrula, V.R.; Kasa, R.R. Prevention and treatment of drip emitter clogging: A review of various innovative methods. Water Pract. Technol. 2022, 17, 2059–2070. [Google Scholar] [CrossRef]
- Wei, Q.; Shi, Y.; Lu, G.; Dong, W.; Huang, S. Rapid evaluations of anticlogging performance of drip emitters by laboratorial short-cycle tests. J. Irrig. Drain. Eng. 2008, 134, 298–304. [Google Scholar] [CrossRef]
- Shi, K.; Lu, T.; Zheng, W.; Zhang, X.; Zhangzhong, L. A review of the category, mechanism, and controlling methods of chemical clogging in drip irrigation system. Agriculture 2022, 12, 202. [Google Scholar] [CrossRef]
- Shen, Y.; Puig-Bargués, J.; Li, M.; Xiao, Y.; Li, Q.; Li, Y. Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water. Agric. Water Manag. 2022, 270, 107738. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.S.; Wu, Y.; Jia, F.; Li, S.; Zhou, B.; Li, Y. Effects of microorganisms on clogging process and clogging substances accumulation of drip irrigation emitters using the high-sediment water sources. Irrig. Sci. 2022, 40, 845–856. [Google Scholar] [CrossRef]
- Pereira, D.J.S.; Lavanholi, R.; de Araújo, A.C.; de Camargo, A.P.; Ait-Mouheb, N.; Frizzone, J.A.; Molle, B. Evaluating sensitivity to clogging by solid particles in irrigation emitters: Assessment of a laboratory protocol. J. Irrig. Drain. Eng. 2020, 146, 04020033. [Google Scholar] [CrossRef]
- Singh, D.; Patel, N.; Singh, N.; Rosin, K.G.; Yadav, D.; Singh, S.; Gupta, A.K.; Kumawat, A.; Sharma, V.K.; Kumar, M. Emitter Clogging and Hydraulic Performance of Drip System under Different Water Qualities and Placement Techniques. Food Sci. Eng. 2021, 2, 112–125. [Google Scholar] [CrossRef]
- Duran-Ros, M.; Puig-Bargués, J.; Arbat, G.; Barraga, J.; de Cartagena, F.R. Effect of filter, emitter and location on clogging when using effluents. Agric. Water Manag. 2009, 96, 67–79. [Google Scholar] [CrossRef]
- Liu, H.; Huang, G. Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent. Agric. Water Manag. 2009, 96, 745–756. [Google Scholar] [CrossRef]
- da Silva Mendes, J.; Chaves, L.H.G.; de Brito Chaves, I. Qualidade da água para consumo humano em comunidades rurais do município de Congo, PB. Rev. Ciência Agronômica 2008, 39, 333–342. [Google Scholar]
- Nakayama, F.S.; Boman, B.J.; Pitts, D.J. Maintenance. In Microirrigation for Crop Production; Lamm, F.R., Ayars, J.E., Nakayama, F.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 289–430. [Google Scholar]
- Vieira, G.H.S.; Mantovani, E.C.; da Silva, J.G.F.; Ramos, M.M.; Silva, C.M. Recuperação de gotejadores obstruídos devido à utilização de águas ferruginosas. Rev. Bras. Eng. Agrícola Ambient. 2004, 8, 1–6. [Google Scholar] [CrossRef]
- Costa, C.C. Estudo da Susceptibilidade de Tubos Gotejadores ao Entupimento por Precipitados Químicos de Ferro. Master’s Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2000. [Google Scholar]
- Coelho, R.D.; Teixeira, M.B.; de Melo, R.F.; de Paulo, M.C. Caracterização hidráulica de gotejadores autocompensantes expostos à aplicação dinâmica de cloro livre (Parte II). Irriga 2008, 13, 411–425. [Google Scholar] [CrossRef]
- Hou, P.; Xiao, Y.; Muhammad, T.; Zhou, B.; Song, P.; Zhou, Y.; Han, S.; Wen, J.; Li, Y. Multi-factorial failure of pressure-compensating emitters in drip fertigation systems: An in-situ sampling investigation. Agric. Water Manag. 2023, 275, 108036. [Google Scholar] [CrossRef]
- Rebosura, M., Jr.; Salehin, S.; Pikaar, I.; Keller, J.; Sharma, K.; Yuan, Z. The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. J. Hazard. Mater. 2021, 402, 124051. [Google Scholar] [CrossRef]
- Yazid, E.A.; Wafi, A.; Saraswati, A. Techniques for reducing iron (Fe) content in groundwater: An article review. J. Islam. Pharm. 2021, 6, 40–45. [Google Scholar] [CrossRef]
- Azevedo Neto, J.M. Técnica de Abastecimento e Tratamento de Água, 3rd ed.; CETESB/ASCETESB: São Paulo, Brazil, 1987; Volume 2, 320p. [Google Scholar]
- Matos, A.T. Solid Waste and Wastewater Analysis Manual; UFV Press: Viçosa, Brazil, 2015; 149p. (In Portuguese) [Google Scholar]
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide For Management; Utah State University: Logan, UT, USA, 1978; 271p. [Google Scholar]
- Denículi, W.; Bernardo, S.; Thiébaut, J.T.L.; Sediyama, G.C. Uniformidade de distribuição de água, em condições de campo num sistema de irrigação por gotejamento. Rev. Ceres 1980, 27, 155–162. [Google Scholar]
- Keller, J.; Karmeli, D. Trickle Irrigation Design; Rain Bird Sprinkler Manufacturing: Glendora, CA, USA, 1975; 133p. [Google Scholar]
- Cararo, D.C.; Botrel, T.A.; Hills, D.J.; Leverenz, H.L. Analysis of clogging in drip emitters during wastewater irrigation. Appl. Eng. Agric. 2006, 22, 251–257. [Google Scholar] [CrossRef]
- SAEG: System for Statistical Analysis, Version 9.1: Fundação Arthur Bernardes—UFV—Viçosa. 2007. Available online: https://arquivo.ufv.br/saeg/ (accessed on 6 January 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna. 2024. Available online: https://www.R-project.org (accessed on 10 October 2024).
- Ford, H.W. Iron Ochre and Related Sludge Deposits in Subsurface Drain Lines; Cooperative Extension Service University of Florida: Gainesville, FL, USA, 1993; Circular 671; 8p. [Google Scholar]
- Cordeiro, E.D.A. Influência do Tratamento de Água Ferruginosa no Desempenho de Sistema de Irrigação por Gotejamento. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2002. [Google Scholar]
- Hernandez, F.B.T.; Petinari, R.A. Qualidade de água para irrigação localizada. In Proceedings of the XXVII Congresso Brasileiro de Engenharia Agrícola, Lavras, Brazil, Anais, 1998; pp. 58–60. [Google Scholar]
- de Souza, J.A.; Cordeiro, É.D.A.; Costa, É.L.D. Aplicação de hipoclorito de sódio para recuperação de gotejadores entupidos em irrigação com água ferruginosa. Rev. Bras. Eng. Agrícola Ambient. 2006, 10, 5–9. [Google Scholar] [CrossRef]
- Teixeira, M.B.; Coelho, R.D.; de Mélo, R.F. Avaliação de danos químicos em membranas de compensação de gotejadores, causados pela aplicação dinâmica de dose extrema de cloro livre (Parte I). Irriga 2008, 13, 392–410. [Google Scholar] [CrossRef]
- Lequette, K.; Ait-Mouheb, N.; Adam, N.; Muffat-Jeandet, M.; Bru-Adan, V.; Wery, N. Effects of the chlorination and pressure flushing of drippers fed by reclaimed wastewater on biofouling. Sci. Total Environ. 2021, 758, 143598. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhong, H.; Ling, G.; Hu, X.; Wang, W. Response of emitter clogging characteristics to fertilizer type and concentration based on fertigation. Irrig. Sci. 2023, 41, 769–782. [Google Scholar] [CrossRef]
- Resende, R.S.; Coelho, D.R.; Piedade, S.M.S. Suscetibilidade de gotejadores ao entupimento de causa biológica. Rev. Bras. Eng. Agrícola Ambient. 2000, 4, 368–375. [Google Scholar] [CrossRef]
- Martins, C.C.; Soares, A.A.; Ramos, M.M.; Reis, E.F.d. Aplicação de cloro orgânico no tratamento de tubogotejador utilizado na irrigação com água ferruginosa. Acta Sci. Agron. 2010, 32, 1–5. [Google Scholar] [CrossRef]
- Ravina, I.; Paz, E.; Sofer, Z.; Marcu, A.; Shisha, A.; Sagi, G. Control of emitter clogging in drip irrigation with reclaimed wastewater. Irrig. Sci. 1992, 13, 129–139. [Google Scholar] [CrossRef]
- Ribeiro, P.A.D.A.; Coelho, R.D.; Teixeira, M.B. Entupimento de tubos gotejadores convencionais com aplicação de cloreto de potássio (branco e vermelho) via duas qualidades de água. Eng. Agrícola 2010, 30, 279–287. [Google Scholar] [CrossRef]
Model | Type | Flow Rate (L h−1) | Internal Diameter (mm) | Outer Diameter (mm) | Pressure (kPa) | Dripper Spacing (m) |
---|---|---|---|---|---|---|
G1 | Tape | 0.74 | 15.8 | – | 68.67–98.1 | 0.20 |
G2 | SC 1 | 2.30 | 13.7 | 16.0 | 49.05–392.4 | 0.75 |
G3 | SC | 3.40 | 13.7 | 16.0 | 58.86–392.4 | 1.00 |
G4 | SC | 2.30 | 13.7 | 16.0 | 58.86–392.4 | 0.75 |
G5 | SC | 2.10 | 14.8 | 16.0 | 49.05–343.3 | 0.75 |
Iron Content in Irrigation Water (mg L−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time of Operation (h) | Water Source | System 2 | System 3 | System 4 | ||||||
1 | 2, 3 and 4 | F * | Dr | St | F | Dr | St | F | Dr | |
0 | <0.1 | 2.8 | 2.6 | 2.2 | 2.2 | 2.2 | 2.2 | 2.3 | 2.2 | 1.9 |
50 | <0.1 | 4.0 | 3.9 | 3.7 | 3.3 | 3.4 | 3.4 | 3.8 | 3.4 | 3.4 |
100 | <0.1 | 2.6 | 2.5 | 2.5 | 2.3 | 2.1 | 2.1 | 1.8 | 1.8 | 1.7 |
150 | <0.1 | 3.0 | 2.8 | 2.0 | 2.4 | 2.4 | 2.3 | 2.8 | 2.7 | 2.5 |
200 | <0.1 | 3.2 | 2.7 | 1.8 | 2.6 | 2.6 | 2.4 | 3.0 | 3.0 | 3.0 |
250 | <0.1 | 2.8 | 2.6 | 1.6 | 2.5 | 2.5 | 2.3 | 2.9 | 3.3 | 3.1 |
Sources of Variation | Degrees of Freedom | Sum of Squares | Mean Square | F | Significance at 5% |
---|---|---|---|---|---|
System | 3 | 4.6671 | 1.5557 | 65.72 | * |
Residue (a) | 12 | 0.2840 | 0.0236 | ||
Model | 4 | 803.5583 | 200.8896 | 17.777.84 | * |
Valve | 1 | 0.03184 | 0.03118 | 2.81 | * |
Model × valve | 4 | 0.2071 | 0.0517 | 4.57 | * |
Model × assessment | 12 | 5.4318 | 0.4526 | 39.96 | * |
System × valve | 3 | 0.0089 | 0.0029 | 0.26 | |
Model × syst. × val. | 12 | 0.1231 | 0.0102 | 0.91 | |
Residue (b) | 108 | 1.2234 | 0.0113 | ||
Assessment | 6 | 5.0612 | 0.8435 | 125.09 | * |
Ass. × syst. | 18 | 1.2732 | 0.0707 | 10.49 | * |
Ass. × model | 24 | 2.5159 | 0.1048 | 15.54 | * |
Ass. × val. | 6 | 0.1985 | 0.0330 | 4.90 | * |
Ass. × model × val. | 24 | 0.4098 | 0.01707 | 2.53 | * |
Ass. × model × syst. | 72 | 4.3111 | 0.0598 | 8.87 | * |
Ass. × syst. × val. | 18 | 0.4748 | 0.02637 | 3.91 | * |
Ass. × val. × syst. × mod | 72 | 0.4784 | 0.0066 | 0.98 | |
Residue (c) | 720 | 4.8551 | 0.0067 | ||
Total | 1119 |
Model | System | Time (h) | ||||||
---|---|---|---|---|---|---|---|---|
2 | 50 | 100 | 150 | 200 | 250 | 300 | ||
G1 | S1 | 0.82 a | 0.73 a | 0.71 a | 0.62 a | 0.71 a | 0.68 a | 0.58 a |
S2 | 0.87 a | 0.77 a | 0.46 b | 0.36 b | 0.37 b | 0.36 b | 0.37 b | |
S3 | 0.85 a | 0.77 a | 0.71 a | 0.63 a | 0.66 a | 0.68 a | 0.46 ab | |
S4 | 0.80 a | 0.75 a | 0.77 a | 0.75 a | 0.79 a | 0.71 a | 0.60 a | |
G2 | S1 | 2.26 a | 2.24 a | 2.25 a | 2.23 a | 2.24 ab | 2.21 ab | 2.09 c |
S2 | 2.23 a | 2.29 a | 2.28 a | 2.32 a | 2.35 a | 2.35 a | 2.49 a | |
S3 | 2.34 a | 2.22 a | 2.29 a | 2.33 a | 2.25 ab | 2.27 ab | 2.29 b | |
S4 | 2.32 a | 2.23 a | 2.22 a | 2.21 a | 2.16 b | 2.14 b | 2.06 c | |
G3 | S1 | 3.39 a | 3.50 a | 3.38 a | 3.25 ab | 3.39 a | 3.31 a | 3.19 ab |
S2 | 3.31 a | 3.40 a | 3.16 b | 3.15 b | 3.08 b | 2.94 b | 2.80 c | |
S3 | 3.41 a | 3.48 a | 3.42 a | 3.34 a | 3.20 ab | 3.25 a | 3.32 a | |
S4 | 3.46 a | 3.54 a | 3.34 a | 3.33 a | 3.32 a | 3.32 a | 3.12 b | |
G4 | S1 | 2.42 a | 2.33 c | 2.51 a | 2.15 c | 2.50 ab | 2.37 b | 2.31 b |
S2 | 2.25 b | 2.17 c | 2.26 b | 2.27 bc | 2.35 bc | 2.19 c | 2.21 b | |
S3 | 2.48 a | 2.67 b | 2.41 ab | 2.40 b | 2.27 c | 2.42 ab | 2.56 a | |
S4 | 2.51 a | 2.92 a | 2.52 a | 2.60 a | 2.58 a | 2.54 a | 2.58 a | |
G5 | S1 | 2.17 a | 2.12 ab | 2.01 a | 1.96 a | 1.97 a | 1.97 a | 1.61 b |
S2 | 2.05 a | 1.99 b | 1.75 b | 1.53 b | 1.80 b | 1.62 b | 1.54 b | |
S3 | 2.20 a | 2.13 ab | 2.01 a | 1.97 a | 1.88 ab | 2.00 a | 1.89 a | |
S4 | 2.20 a | 2.17 a | 2.12 a | 2.08 a | 2.03 a | 1.90 a | 1.77 a |
Sources of Variation | Degrees of Freedom | Sum of Squares | Mean Square | F | Significance at 5% |
---|---|---|---|---|---|
System | 3 | 26,461.34 | 8820.44 | 906.14 | * |
Residue (a) | 4 | 71.12 | 17.78 | ||
Model | 4 | 17,821.44 | 4455.36 | 457.71 | * |
Assessment | 6 | 10,713.06 | 1785.51 | 183.43 | * |
Assessment × model | 24 | 7087.25 | 295.30 | 30.34 | * |
Assessment × system | 18 | 11,621.65 | 645.64 | 66.33 | * |
Model ×system | 12 | 21,432.39 | 1786.03 | 183.48 | * |
Assess. × model × syst. | 72 | 9660.39 | 134.17 | 13.78 | * |
Residue (b) | 136 | 1323.83 | 9.73 | ||
Total | 279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeiro, E.d.A.; Mantovani, E.C.; Vieira, G.H.S.; Silva, J.G.F.d.; Haddade, I.R.; Lo Monaco, P.A.V. Treatment of Ferruginous Water in the Performance of Drip Irrigation Systems. AgriEngineering 2025, 7, 26. https://doi.org/10.3390/agriengineering7020026
Cordeiro EdA, Mantovani EC, Vieira GHS, Silva JGFd, Haddade IR, Lo Monaco PAV. Treatment of Ferruginous Water in the Performance of Drip Irrigation Systems. AgriEngineering. 2025; 7(2):26. https://doi.org/10.3390/agriengineering7020026
Chicago/Turabian StyleCordeiro, Elio de Almeida, Everardo Chartuni Mantovani, Gustavo Haddad Souza Vieira, José Geraldo Ferreira da Silva, Ismail Ramalho Haddade, and Paola Alfonsa Vieira Lo Monaco. 2025. "Treatment of Ferruginous Water in the Performance of Drip Irrigation Systems" AgriEngineering 7, no. 2: 26. https://doi.org/10.3390/agriengineering7020026
APA StyleCordeiro, E. d. A., Mantovani, E. C., Vieira, G. H. S., Silva, J. G. F. d., Haddade, I. R., & Lo Monaco, P. A. V. (2025). Treatment of Ferruginous Water in the Performance of Drip Irrigation Systems. AgriEngineering, 7(2), 26. https://doi.org/10.3390/agriengineering7020026