Integrated Model to Reduce the Maneuver Time of the Harvester and Infield Wagon in Sugarcane Harvest
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sugarcane Harvesting Operation and the New Optimized Maneuvering Approach: An Overview
- i.
- Which maneuvering technique (Conventional or P-optimized) has the greatest impact on sugarcane production due to machine trampling?
- ii.
- Are there significant differences in fuel consumption between the evaluated techniques?
- iii.
- What is the relationship between the infield wagon’s displacement speed (in the P-optimized maneuver) and field productivity?
- iv.
- Is there a limit to the number of maneuvering spots for the P-optimized technique to remain economically viable?
- v.
- How does the economic performance of the evaluated maneuver patterns differ between flat and sloped areas?
2.2. Experimental Study
2.2.1. Harvester Maneuver
2.2.2. Conventional Infield Wagon Maneuver
Statistical Process Control (SPC)
- UCL: upper control limit;
- LCL: lower control limit;
- : mean of the variable;
- σ: standard deviation.
Maneuver Simultaneity Index (MSI)
- MSI: simultaneity index between machine maneuvers in field operation (%); Tmin A: maneuver time first completed by a given machine (s); and Tmax B: machine maneuver time accompanying machine A (s).
2.2.3. P-Optimized Maneuver
2.3. Case Study
2.3.1. Simulation of Infield Wagon Maneuvering Techniques
- V: infield wagon displacement speed (km h−1); Tt: turning time at the maneuvering spot (s); nr: number of sugarcane rows to maneuvering spot (reference system); Cs: space cultivation (m).
2.3.2. Economic Analysis
Sugarcane Production
Fuel Consumption
Operational Field Capacity (FC)
- FC = operational field capacity (USD h−1); Ra = revenue obtained from production in the harvest area (USD); Time = available time, sum of productive time and maneuver time (h).
3. Results and Discussion
3.1. Study of Times and Motions of Agricultural Machines in the Conventional Maneuver
3.2. Optimization Results
3.3. Considerations About the Model and Future Researchs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldemberg, J.; Mello, F.F.C.; Cerri, C.E.P.; Davies, C.A.; Cerri, C.C. Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy 2014, 69, 14–18. [Google Scholar] [CrossRef]
- Amaral, l.R.; Molin, J.P.; Portz, G.; Finazzi, F.B.; Cortinove, L. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precis. Agric. 2015, 16, 15–28. [Google Scholar] [CrossRef]
- Santoro, E.; Soler, E.M.; Cherri, A.C. Route optimization in mechanized sugarcane harvesting. Comput. Electron. Agric. 2017, 141, 140–146. [Google Scholar] [CrossRef]
- Gírio, L.A.S.; Silva, R.P.; Menezes, P.C.; Carneiro, F.M.; Zerbato, C.; Ormond, A.T. Quality of multi-row harvesting in sugarcane plantations established from pre-sprouted seedlings and billets. Ind. Crops Prod. 2019, 142, 111831. [Google Scholar] [CrossRef]
- Nilsson, R.S.; Zhou, K. Method and benchmarking framework for coverage path planning in arable farming. Biosyst. Eng. 2020, 198, 248–265. [Google Scholar] [CrossRef]
- Gürsoy, S. Soil compaction due to increased machinery intensity in agricultural production: Its main causes, effects and management. In Technology in Agriculture; IntechOpen: Rijeka, Croatia, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Bochtis, D.; Vougioukas, S. Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosyst. Eng. 2008, 101, 1–12. [Google Scholar] [CrossRef]
- Spekken, M.; Molin, J.P.; Romanelli, T.L. Cost of boundary manoeuvres in sugarcane production. Biosyst. Eng. 2015, 129, 112–126. [Google Scholar] [CrossRef]
- Edwards, G.T.C.; Hinge, J.; Nielsen, N.S.; Henriksen, A.V.; Sorensen, C.A.G.; Green, O. Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations. Biosyst. Eng. 2017, 153, 149–157. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Hubner, R.; Griepentrog, H.W. Automatic determination of headland turning from auto-steering position data for minimising the infield non-working time. Comput. Electron. Agric. 2018, 152, 398–400. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S. Reducing field work time using fleet routing optimization. Biosyst. Eng. 2018, 169, 1–10. [Google Scholar] [CrossRef]
- Paniago, A.L. Potential Application of Lean Thinking in Agricultural Activities: Case Studies. Ph.D. Thesis, Luiz de Queiroz College of Agriculture, Piracicaba, Brasil, 2017. [Google Scholar]
- Benedini, S.M.; Conde, J. Systematization of the area for mechanized sugarcane harvesting. Rev. Coplana 2008, 23, 23–25. [Google Scholar]
- Coelho, M.F. Quality Planning in the Process of Mechanized Sugarcane Harvesting. Master’s Thesis, Luiz de Queiroz College of Agriculture, Piracicaba, Brasil, 2009. [Google Scholar]
- Melo, M.O.; Rosa, J.H.M. Cutting, transshipment, and transportation (CTT): Use of transshipment in mechanized harvesting and its impacts on CTT. In Agricultural Processes and Mechanization of Sugarcane; Belardo, G.C., Cassia, M.T., Silva, R.P., Eds.; SBEA Publishing: Jaboticabal, Brazil, 2015; Chapter 18. [Google Scholar]
- Ripoli, T.C.; Paranhos, S.B. Colheita. Harvesting. In Sugarcane, Cultivation and Utilization, 1st ed.; Paranhos, S.B., Ed.; Cargill Foundation: Campinas, Brazil, 1987; pp. 517–597. [Google Scholar]
- Ripoli, T.C.; Ripoli, M.L.C. Sugarcane Biomass: Harvesting, Energy, and Environment, 2nd ed.; Barros & Marques Desktop Publishing: Piracicaba, Brazil, 2009; 333p. [Google Scholar]
- Rosa, L.V.; Voltarelli, M.A.; Ormond, A.T.S.; Silva, R.P.; Tavares, T.O. Engine load profile of sugarcane harvesters before and after adjustments. Rev. Energ. Agric. 2015, 31, 129–137. [Google Scholar] [CrossRef]
- Paula, V.D.; Molin, J.P. Assessing damage caused by accidental vehicle traffic on sugarcane ratoon. Appl. Eng. Agric. 2013, 29, 161–169. [Google Scholar] [CrossRef]
- Machmudah, A.; Shanmugavel, M.; Parman, S.; Manan, T.S.A.; Dutykh, D.; Beddu, S.; Rajabi, A. Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism. Drones 2022, 6, 69. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Silva, R.P.; Zerbato, C.; Menezes, P.C.; Kazama, E.H.; Paixao, C.S.S.; Voltarelli, M.A. Use of real-time extend GNSS for planting and inverting peanuts. Precis. Agric. 2019, 19, 1–17. [Google Scholar] [CrossRef]
- Bastian-Pinto, C.; Brandão, L.; Hahn, W. Flexibility as a source of value in the production of alternative fuels: The ethanol case. Energy Econ. 2009, 31, 411–422. [Google Scholar] [CrossRef]
- Lebedev, A.; Shuliak, M.; Lebedev, S.; Khalin, S.; Haidai, T.; Kholodov, A.; Shaposhnyk, V. Determining conditions for providing maximum traction efficiency of tractor as part of a soil tillage unit. East.-Eur. J. Enterp. Technol. 2024, 1, 6–14. [Google Scholar] [CrossRef]
- Ishikawa, K.; Loftus, J.H. Introduction to Quality Control; 3A Corporation: Tokyo, Japan, 1990. [Google Scholar]
- Linhares, M.; Sette, R.C., Jr.; Campos, F.; Minoru, F.Y. Eficiência e desempenho operacional de máquinas harvester e forwarder na colheita floresta. Pesqui. Agropecuária Trop. 2012, 42, 212–219. [Google Scholar] [CrossRef]
- Majdan, R.; Abrahám, R.; Tkáč, Z.; Drlička, R.; Matejková, E.; Kollárová, K.; Mareček, J. Static lateral stability of tractor with rear wheel ballast weights: Comparison of ISO 16231-2 (2015) with experimental data regarding tyre deformation. Appl. Sci. 2021, 11, 381. [Google Scholar] [CrossRef]
- Cervi, R.G.; Esperancini, M.S.T.; Silva, O.F.; Isler, P.R.; Oliveira, P.A. Evaluation of operational performance in sugarcane (Saccharum spp.) harvesting and transshipment. Energ. Agric. 2015, 30, 232–241. [Google Scholar] [CrossRef]
- Gimenes, G.R.; Rone, B.O.; Silva, A.F.; Reis, L.C.; Reis, T.E.S. Mapping of slopes for the operation of agricultural harvesters in Bandeirantes Municipality (PR). Ciências Agrárias 2017, 38, 97–108. [Google Scholar] [CrossRef]
- Santos, N.B.; Teixeira, M.M.; Fernandes, H.C.; Junior, C.D.G. Estimated repair and maintenance cost of sugarcane (Saccharum spp.) harvester. Rev. Científica 2017, 45, 214–217. [Google Scholar] [CrossRef]
- Ramos, C.R.G.; Lanças, K.P.; Souza Santos, R.; Martins, M.B.; Sandi, J. Efficiency and energy demand of a sugarcane harvester in plots of different lengths. Energ. Agric. 2016, 31, 121–128. [Google Scholar] [CrossRef]
Maneuver Pattern | Description |
---|---|
Harvester maneuver in flat area (HF) | These are the reverse maneuvers (Section 2.1). At the end of the cane row, the harvester retracts the elevator from the machine and executes the maneuver in three steps, forming a triangular (or “T”) shape within the road space. |
Harvester maneuver in sloped area (HS) | The harvester performs the maneuver in more than three steps. As the maneuver is executed, the operator moves the elevator (lateral component) against the slope to balance the machine. |
Sudden harvester maneuver (SHM) | The operator rotates the harvester around its axis using the joystick (control lever located in the cab). This maneuver is performed continuously rather than in stages and can only be executed on flat areas due to the risk of tipping. |
Fuel Consumption (L h−1) | |||
---|---|---|---|
Maneuvering | Waiting 1 | Effective Harvest | |
Harvester | 15.0 | 10.0 | 41.1 |
Infield wagon | 13.63 | 3.3 | 13.0 |
Maneuvering Technique | Time Spent Maneuvering (h) | Total Operation Time (h) | F. E. (%) * |
---|---|---|---|
Conventional | 8.15 | 110.75 | 92.63 |
P-optimized | 6.67 | 109.27 | 93.89 |
Conventional | 11.38 | 114.00 | 90.00 |
P-optimized | 11.38 | 114.00 | 90.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêa, L.N.; dos Santos, A.F.; Furlani, C.E.A.; Rolim, G.d.S.; Vieira, I.C.d.O.; dos Santos Silva, B.; Siansi, F.L.; da Silva, R.P. Integrated Model to Reduce the Maneuver Time of the Harvester and Infield Wagon in Sugarcane Harvest. AgriEngineering 2025, 7, 25. https://doi.org/10.3390/agriengineering7020025
Corrêa LN, dos Santos AF, Furlani CEA, Rolim GdS, Vieira ICdO, dos Santos Silva B, Siansi FL, da Silva RP. Integrated Model to Reduce the Maneuver Time of the Harvester and Infield Wagon in Sugarcane Harvest. AgriEngineering. 2025; 7(2):25. https://doi.org/10.3390/agriengineering7020025
Chicago/Turabian StyleCorrêa, Lígia Negri, Adão Felipe dos Santos, Carlos Eduardo Angeli Furlani, Glauco de Souza Rolim, Igor Cristian de Oliveira Vieira, Breno dos Santos Silva, Frederico Luiz Siansi, and Rouverson Pereira da Silva. 2025. "Integrated Model to Reduce the Maneuver Time of the Harvester and Infield Wagon in Sugarcane Harvest" AgriEngineering 7, no. 2: 25. https://doi.org/10.3390/agriengineering7020025
APA StyleCorrêa, L. N., dos Santos, A. F., Furlani, C. E. A., Rolim, G. d. S., Vieira, I. C. d. O., dos Santos Silva, B., Siansi, F. L., & da Silva, R. P. (2025). Integrated Model to Reduce the Maneuver Time of the Harvester and Infield Wagon in Sugarcane Harvest. AgriEngineering, 7(2), 25. https://doi.org/10.3390/agriengineering7020025