Martins, G.A.; Baesso, M.M.; Devechio, F.d.F.d.S.; Tech, A.R.B.; Regazzo, J.R.; Ricci, C.E.N.; Leão, M.d.L.
Using Machine Learning and RGB Images to Assess Nitrogen and Potassium Status in Sorghum (Sorghum bicolor L.) Under Field Conditions. AgriEngineering 2025, 7, 367.
https://doi.org/10.3390/agriengineering7110367
AMA Style
Martins GA, Baesso MM, Devechio FdFdS, Tech ARB, Regazzo JR, Ricci CEN, Leão MdL.
Using Machine Learning and RGB Images to Assess Nitrogen and Potassium Status in Sorghum (Sorghum bicolor L.) Under Field Conditions. AgriEngineering. 2025; 7(11):367.
https://doi.org/10.3390/agriengineering7110367
Chicago/Turabian Style
Martins, Guilherme Augusto, Murilo Mesquita Baesso, Fernanda de Fátima da Silva Devechio, Adriano Rogério Bruno Tech, Jamile Raquel Regazzo, Carlos Eduardo Nunes Ricci, and Murilo de Lima Leão.
2025. "Using Machine Learning and RGB Images to Assess Nitrogen and Potassium Status in Sorghum (Sorghum bicolor L.) Under Field Conditions" AgriEngineering 7, no. 11: 367.
https://doi.org/10.3390/agriengineering7110367
APA Style
Martins, G. A., Baesso, M. M., Devechio, F. d. F. d. S., Tech, A. R. B., Regazzo, J. R., Ricci, C. E. N., & Leão, M. d. L.
(2025). Using Machine Learning and RGB Images to Assess Nitrogen and Potassium Status in Sorghum (Sorghum bicolor L.) Under Field Conditions. AgriEngineering, 7(11), 367.
https://doi.org/10.3390/agriengineering7110367