Innovation on Swine Semen Storage: Bacteriostatic Coating vs. Conventional Blister in Commercial Swine Semen Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Note
2.2. Study Strategy
2.3. Procedures
2.3.1. Semen Quality Assessment-Protocol in Computer-Assisted Semen Analysis
2.3.2. Experiment 1-Bacteriostatic Efficacy of the Bacteriostatic Coating Blister and In Vitro Quality Assessment of Semen Dose Storage
- (a)
- Bacteriostatic Coating Blister Plus Antibiotic: Doses were diluted in BTS extender at 34 °C, supplemented with 0.25 g/L gentamicin sulfate, and stored in a blister with a bacteriostatic coating.
- (b)
- Bacteriostatic Coating Blister Without Antibiotic: Doses were diluted in BTS extender at 34 °C without antibiotics and stored in a blister with a bacteriostatic coating.
- (c)
- Control with Antibiotic: Doses were diluted in BTS extender at 34 °C, supplemented with 0.25 g/L gentamicin sulfate, and packaged in conventional GTB BAG II blisters (Ref 022331; IMV Technologies, L’Aigle, France).
- (d)
- Control Without Antibiotic: Doses were diluted in BTS extender at 34 °C without antibiotics and packaged in conventional blisters.
Bacteriostatic Efficacy of BactiBag®
In Vitro Quality Assessment of Semen Dose Storage
2.3.3. Experiment 2–Field Assessment of Bacteriostatic Coating Blister
Preparation of Insemination Doses
Storage Efficacy of Bacteriostatic Coating Blister on Semen Quality
- 0: No agglutination
- 1: 5–10% agglutination
- 2: 10–20% agglutination
- 3: 20–30% agglutination
- 4: 30–40% agglutination
- 5: 40–50% agglutination
Reproductive Performance-Insemination, Pregnancy Diagnosis, and Birth
2.4. Statistical Analysis
3. Results
3.1. Experiment 1-Bacteriostatic Effects of Bacteriostatic Coating Blister with or Without Antibiotics on Bacterial Contamination
3.2. Experiment 1-Bacteriostatic Effects of Bacteriostatic Coating Blister with or Without Antibiotic on Sperm Quality
3.3. Experiment 2-Impact of Storage Bag on Swine Semen Quality Under Commercial Conditions
3.3.1. Total and Progressive Motility
3.3.2. Sperm Kinematics
3.3.3. Agglutination
3.3.4. In Vivo Trial–Impact of Storage Bag on Reproductive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Insemination |
ALH | Amplitude of Lateral Head Displacement |
BCF | Beat Cross Frequency |
BTS | Beltsville Thawing Solution |
CASA | Computer-Assisted Semen Analysis |
CFU/mL | Colony-Forming Units per milliliter |
EDTA | Ethylenediaminetetraacetic Acid Disodium Salt Dihydrate |
LIN | Linearity |
PBS | Phosphate Buffered Saline |
PCAI | Post-Cervical Artificial Insemination |
ROS | Reactive Oxygen Species |
STR | Straightness |
TNB | Total Number of Piglets Born |
VAP | Average Path Velocity |
VCL | Curvilinear Velocity |
VSL | Straight-Line Velocity |
References
- Viana, C.H.C.; Jorge-Neto, P.N.; Marques, M.G. Inseminação artificial em suínos no Brasil: Biotecnologias e atualidades do mercado. Suinocultura Ind. 2020, 3, 16–21. [Google Scholar] [CrossRef]
- Schulze, M.; Nitsche-Melkus, E.; Jakop, U.; Jung, M.; Waberski, D. New Trends in Production Management in European Pig AI Centers. Theriogenology 2019, 137, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of Preserved Boar Semen for Artificial Insemination: Past, Present and Future Challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef]
- Morgan, H.L.; Eid, N.; Khoshkerdar, A.; Watkins, A.J. Defining the Male Contribution to Embryo Quality and Offspring Health in Assisted Reproduction in Farm Animals. Anim. Reprod. 2020, 17, e20200018. [Google Scholar] [CrossRef]
- Zhu, L.; Marjani, S.L.; Jiang, Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species—Filling in the Picture with Epigenomic Analyses. Front. Genet. 2021, 12, 557934. [Google Scholar] [CrossRef]
- Jung, M.; Rüdiger, K.; Schulze, M. In Vitro Measures for Assessing Boar Semen Fertility. Reprod Domest. Anim. 2015, 50, 20–24. [Google Scholar] [CrossRef]
- Callegari, M.A.; Pierozan, C.R.; Dias, C.P.; Souza, K.L.D.; Foppa, L.; Gasa, J.; da Silva, C.A. Brazilian Panorama of Pig Breeding Sector: A Cross-Sectional Study about Specific Aspects of Biosecurity, Facilities, Management, Feeding, and Performance. Semin. Ciênc. Agrár. 2020, 41, 587–606. [Google Scholar] [CrossRef]
- Wiebke, M.; Hensel, B.; Nitsche-Melkus, E.; Jung, M.; Schulze, M. Cooled Storage of Semen from Livestock Animals (Part I): Boar, Bull, and Stallion. Anim. Reprod. Sci. 2022, 246, 106822. [Google Scholar] [CrossRef]
- Zou, C.-X.; Yang, Z.-M. Evaluation on Sperm Quality of Freshly Ejaculated Boar Semen During In Vitro Storage Under Different Temperatures. Theriogenology 2000, 53, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.J.; Núñez-Montero, K.; Bruna, P.; García, M.; Leal, K.; Barrientos, L.; Weber, H. Bacteria and Boar Semen Storage: Progress and Challenges. Antibiotics 2022, 11, 1796. [Google Scholar] [CrossRef] [PubMed]
- Maroto Martín, L.O.; Muñoz, E.C.; De Cupere, F.; Van Driessche, E.; Echemendia-Blanco, D.; Rodríguez, J.M.M.; Beeckmans, S. Bacterial Contamination of Boar Semen Affects the Litter Size. Anim. Reprod. Sci. 2010, 120, 95–104. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Peltoniemi, O.; Tanskanen, T.; Kareskoski, M. One Health Challenges for Pig Reproduction. Mol. Reprod. Devel 2023, 90, 420–435. [Google Scholar] [CrossRef]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Mühldorfer, K.; Schröter, F.; Schäfer, J.; Greber, K.; Jung, M.; Schulze, M. Low Temperature Preservation of Porcine Semen: Influence of Short Antimicrobial Lipopeptides on Sperm Quality and Bacterial Load. Sci. Rep. 2020, 10, 13225. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Ammon, C.; Rüdiger, K.; Jung, M.; Grobbel, M. Analysis of Hygienic Critical Control Points in Boar Semen Production. Theriogenology 2015, 83, 430–437. [Google Scholar] [CrossRef]
- Pizzutto, C.S.; Colbachini, H.; Jorge-Neto, P.N. One Conservation: The Integrated View of Biodiversity Conservation. Anim. Reprod. 2021, 18, e20210024. [Google Scholar] [CrossRef] [PubMed]
- Pizzutto, C.S.; de Araújo, G.R.; Csermak, A.C., Jr.; Jorge-Neto, P.N.; Luczinski, T.C.; Deco-Souza, T. de Uma visão integrada das biotecnologias reprodutivas com o conceito de One Conservation. RBRA 2021, 45, 241–245. [Google Scholar] [CrossRef]
- Waberski, D.; Luther, A.-M. Boar Semen Storage at 5 °C for the Reduction of Antibiotic Use in Pig Insemination: Pathways from Science into Practice. Anim. Reprod. Sci. 2024, 269, 107486. [Google Scholar] [CrossRef] [PubMed]
- Reckinger, F.; Luther, A.-M.; Verspohl, J.; Artavia, J.L.; Waberski, D. Pre-cooling of boar semen before transport in a hot environment enhances biosafety. Front. Microbiol. 2025, 16, 1611562. [Google Scholar] [CrossRef] [PubMed]
- Basioura, A.; Tsakmakidis, I.A.; Morrell, J.M.; Ntallaris, T. Artificial Insemination of Boar Semen Doses Prepared with a Low-Density Colloid Under Field Conditions. Front. Vet. Sci. 2025, 12, 1611751. [Google Scholar] [CrossRef]
- Ngo, C.; Suwimonteerabutr, J.; Morrell, J.M.; Tummaruk, P. Sow Reproductive Performance Following Artificial Insemination with Semen Doses Processed Using Single Layer Centrifugation Without Antibiotics in the Tropics. Theriogenology 2024, 226, 194–201. [Google Scholar] [CrossRef]
- Martínez-Pastor, F.; Lacalle, E.; Martínez-Martínez, S.; Fernández-Alegre, E.; Álvarez-Fernández, L.; Martinez-Alborcia, M.-J.; Bolarin, A.; Morrell, J.M. Low Density Porcicoll Separates Spermatozoa from Bacteria and Retains Sperm Quality. Theriogenology 2021, 165, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Núñez-González, A.; Crespo-Félez, I.; Martínez-Martínez, S.; Martínez Alborcia, M.-J.; Fernández-Alegre, E.; Dominguez, J.C.; Gutiérrez-Martín, C.B.; Martínez-Pastor, F. Removal of Bacteria from Boar Semen Using a Low-Density Colloid. Theriogenology 2019, 126, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Drobnis, E.Z.; Crowe, L.M.; Berger, T.; Anchordoguy, T.J.; Overstreet, J.W.; Crowe, J.H. Cold Shock Damage Is Due to Lipid Phase Transitions in Cell Membranes: A Demonstration Using Sperm as a Model. J. Exp. Zool. 1993, 265, 432–437. [Google Scholar] [CrossRef]
- Menezes, T.D.A.; Mellagi, A.P.G.; Da Silva Oliveira, G.; Bernardi, M.L.; Wentz, I.; Ulguim, R.D.R.; Bortolozzo, F.P. Antibiotic-Free Extended Boar Semen Preserved under Low Temperature Maintains Acceptable In-Vitro Sperm Quality and Reduces Bacterial Load. Theriogenology 2020, 149, 131–138. [Google Scholar] [CrossRef]
- Waberski, D.; Luther, A.-M.; Grünther, B.; Jäkel, H.; Henning, H.; Vogel, C.; Peralta, W.; Weitze, K.F. Sperm Function In Vitro and Fertility after Antibiotic-Free, Hypothermic Storage of Liquid Preserved Boar Semen. Sci. Rep. 2019, 9, 14748. [Google Scholar] [CrossRef]
- Gączarzewicz, D.; Udała, J.; Piasecka, M.; Błaszczyk, B.; Stankiewicz, T. Bacterial Contamination of Boar Semen and Its Relationship to Sperm Quality Preserved in Commercial Extender Containing Gentamicin Sulfate. Pol. J. Vet. Sci. 2016, 19, 451–459. [Google Scholar] [CrossRef]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M.C. Storage of Boar Semen. Anim. Reprod. Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef]
- Yeste, M. State-of-the-Art of Boar Sperm Preservation in Liquid and Frozen State. Anim. Reprod. 2017, 14, 69–81. [Google Scholar] [CrossRef]
- Knox, R.V. Artificial Insemination in Pigs Today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef]
- Gòdia, M.; Ramayo-Caldas, Y.; Zingaretti, L.M.; Darwich, L.; López, S.; Rodríguez-Gil, J.E.; Yeste, M.; Sánchez, A.; Clop, A. A Pilot RNA-Seq Study in 40 Pietrain Ejaculates to Characterize the Porcine Sperm Microbiome. Theriogenology 2020, 157, 525–533. [Google Scholar] [CrossRef]
- Prieto-Martínez, N.; Bussalleu, E.; Garcia-Bonavila, E.; Bonet, S.; Yeste, M. Effects of Enterobacter Cloacae on Boar Sperm Quality during Liquid Storage at 17 °C. Anim. Reprod. Sci. 2014, 148, 72–82. [Google Scholar] [CrossRef]
- Santos, C.S.; Silva, A.R. Current and Alternative Trends in Antibacterial Agents Used in Mammalian Semen Technology. Anim. Reprod. 2020, 17, e20190111. [Google Scholar] [CrossRef]
- Schulze, M.; Jakop, U.; Schröter, F.; Herrmann, C.; Leiding, C.; Müller, K.; Jung, M.; Czirják, G.Á. Antibacterial Defense in Bull and Boar Semen: A Putative Link to the Microbiome and Reproductive Strategy? Theriogenology 2020, 157, 335–340. [Google Scholar] [CrossRef]
- Kellerman, C.; Malaluang, P.; Hansson, I.; Eliasson Selling, L.; Morrell, J.M. Antibiotic Resistance Patterns in Cervical Microbes of Gilts and Sows. Animals 2022, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Grobbel, M.; Müller, K.; Junkes, C.; Dathe, M.; Rüdiger, K.; Jung, M. Challenges and Limits Using Antimicrobial Peptides in Boar Semen Preservation. Reprod Domest. Anim. 2015, 50, 5–10. [Google Scholar] [CrossRef]
- Jäkel, H.; Scheinpflug, K.; Mühldorfer, K.; Gianluppi, R.; Lucca, M.S.; Mellagi, A.P.G.; Bortolozzo, F.P.; Waberski, D. In Vitro Performance and in Vivo Fertility of Antibiotic-Free Preserved Boar Semen Stored at 5 °C. J. Anim. Sci. Biotechnol. 2021, 12, 9. [Google Scholar] [CrossRef]
- Morrell, J.M. Antimicrobials in Boar Semen Extenders A Risk/Benefit Analysis. J. Antimicrob. 2016, 2, 107. [Google Scholar] [CrossRef]
- Kuster, C.E.; Althouse, G.C. The Impact of Bacteriospermia on Boar Sperm Storage and Reproductive Performance. Theriogenology 2016, 85, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.-M.; Nguyen, T.Q.; Verspohl, J.; Waberski, D. Antimicrobially Active Semen Extenders Allow the Reduction of Antibiotic Use in Pig Insemination. Antibiotics 2021, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Ngo, C.; Suwimonteerabutr, J.; Prapasarakul, N.; Morrell, J.M.; Tummaruk, P. Bacteriospermia and Its Antimicrobial Resistance in Relation to Boar Sperm Quality During Short-Term Storage with or without Antibiotics in a Tropical Environment. Porc. Health Manag. 2023, 9, 21. [Google Scholar] [CrossRef]
- Schmitt, E.; Gorges, J.-C. Bag for Packaging Diluted Animal Semen Suitable for Artificial Insemination, in Particular of Porcine Species; and System Comprising Same. U.S. Patent US10123861B2, 13 November 2018. [Google Scholar]
- Camugli, S.; Eterpi, M.; Gavin-Plagne, L.; Gonzalez, A.; Gorges, J.-C.; De Vanssay, A.; Schmitt, É. Bactibag®: An Opportunity to Reduce the Use of Antibiotics in Boar Semen Processing. Theriogenology 2019, 137, 128. [Google Scholar] [CrossRef]
- Ajao, C.; Andersson, M.A.; Teplova, V.V.; Nagy, S.; Gahmberg, C.G.; Andersson, L.C.; Hautaniemi, M.; Kakasi, B.; Roivainen, M.; Salkinoja-Salonen, M. Mitochondrial Toxicity of Triclosan on Mammalian Cells. Toxicol. Rep. 2015, 2, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Lopez Rodriguez, A.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar Management and Semen Handling Factors Affect the Quality of Boar Extended Semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of Computer-Assisted Semen Analysis to Explain Variations in Pig Fertility. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef]
- Inanç, M.E.; Çil, B.; Tekin, K.; Alemdar, H.; Daşkin, A. The Combination of CASA Kinetic Parameters and Fluorescein Staining as a Fertility Tool in Cryopreserved Bull Semen. Turk. J. Vet. Anim. Sci. 2018, 42, 452–458. [Google Scholar] [CrossRef]
- Hackerova, L.; Pilsova, A.; Pilsova, Z.; Zelenkova, N.; Tymich Hegrova, P.; Klusackova, B.; Chmelikova, E.; Sedmikova, M.; Simonik, O.; Postlerova, P. Boar Sperm Motility Assessment Using Computer-Assisted Sperm Analysis: Current Practices, Limitations, and Methodological Challenges. Animals 2025, 15, 305. [Google Scholar] [CrossRef]
- Althouse, G.C.; Kuster, C.E.; Clark, S.G.; Weisiger, R.M. Field Investigations of Bacterial Contaminants and Their Effects on Extended Porcine Semen. Theriogenology 2000, 53, 1167–1176. [Google Scholar] [CrossRef]
- Delgado-Bermúdez, A.; Bonet, S.; Yeste, M.; Pinart, E. Long-Term Storage of Boar Seminal Doses Contaminated with Proteus Vulgaris: A Dose-Dependent Effect on Sperm Motility and Sperm-Bacteria Interaction. Anim. Reprod. Sci. 2020, 216, 106349. [Google Scholar] [CrossRef]
- Harayama, H.; Okada, K.; Miyake, M. Involvement of Cytoplasmic Free Calcium in Boar Sperm: Head-to-Head Agglutination Induced by a Cell-Permeable Cyclic Adenosine Monophosphate Analog. J. Androl. 2003, 24, 91–99. [Google Scholar] [CrossRef]
- Schulze, M.; Jung, M.; Hensel, B. Science-based Quality Control in Boar Semen Production. Mol. Reprod. Dev. 2023, 90, 612–620. [Google Scholar] [CrossRef]
- Hernández-Caravaca, I.; Izquierdo-Rico, M.J.; Matás, C.; Carvajal, J.A.; Vieira, L.; Abril, D.; Soriano-Úbeda, C.; García–Vázquez, F.A. Reproductive Performance and Backflow Study in Cervical and Post-Cervical Artificial Insemination in Sows. Anim. Reprod. Sci. 2012, 136, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F.; Behan, J.R. Intrauterine Insemination of Sows with Reduced Sperm Numbers: Results of a Commercially Based Field Trial. Theriogenology 2002, 57, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.P.; Saacke, R.G.; Barbato, G.F.; Waberski, D. Measuring Male-to-Male Differences in Fertility or Effects of Semen Treatments. Annu. Rev. Anim. Biosci. 2018, 6, 255–286. [Google Scholar] [CrossRef] [PubMed]
Storage Time (Hours) | Group | ||||
---|---|---|---|---|---|
BB + A (n = 22) | BB − A (n = 22) | CB + A (n = 22) | CB − A (n = 22) | ||
Bacterial Proliferation (log) | 72 | 0.08 ± 0.27 a | 0.74 ± 0.90 ab | 0.08 ± 0.19 a | 1.64 ± 1.82 b |
120 | 0.365 ± 0.59 a | 1.71 ± 1.18 b | 0.195 ± 0.35 a | 2.04 ± 1.67 b |
Sperm Parameters | Storage Time (Hours) | Group | p Value | |||
---|---|---|---|---|---|---|
BB + A (n = 10) | BB − A (n = 10) | CB + A (n = 10) | CB − A (n = 10) | |||
Total Motility, % | 72 | 87.8 ± 11.9 | 85.8 ± 11.6 | 81.7 ± 18.4 | 83.1 ± 9.3 | NS |
120 | 73.9 ± 21.4 | 81.3 ± 13.8 | 73.7 ± 17.1 | 79.1 ± 15.1 | NS | |
Progressive Motility, % | 72 | 42.4 ± 18.5 | 35.7 ± 14.2 | 31.0 ± 7.0 | 27.6 ± 7.1 | NS |
120 | 35.4 ± 21.7 | 24 ± 16.1 | 23.3 ± 15.9 | 21.7 ± 6.9 | NS | |
ALH, µm | 72 | 6.87 ± 0.80 | 6.75 ± 0.80 | 6.03 ± 0.60 | 6.27 ± 1.18 | NS |
120 | 6.88 ± 0.67 | 5.92 ± 2.16 | 5.39 ± 1.07 | 4.89 ± 0.87 | NS | |
BCF, Hz | 72 | 34.2 ± 2.84 | 34.7 ± 3.21 | 34.0 ± 2.72 | 35.0 ± 4.34 | NS |
120 | 38.2 ± 5.85 | 34.9 ± 4.04 | 37.3 ± 6.28 | 40.6 ± 7.69 | NS | |
VCL, µm/s | 72 | 128.0 ± 29.0 | 121.0 ± 25.0 | 110.0 ± 18.6 | 108.0 ± 25.6 | NS |
120 | 123.0 ± 27.6 | 105.0 ± 49.3 | 91.5 ± 27.0 | 87.0 ± 15.3 | NS | |
VAP, µm/s | 72 | 61.4 ± 15.5 | 57.4 ± 11.8 | 53.3 ± 6.3 | 49.5 ± 10.8 | NS |
120 | 57.3 ± 17.1 | 48.8 ± 23.4 | 42.9 ± 14.4 | 40.5 ± 1.3 | NS | |
VSL, µm/s | 72 | 40.5 ± 11.7 | 37.2 ± 9.0 | 35.6 ± 6.3 | 30.8 ± 4.7 | NS |
120 | 36.5 ± 11.0 | 30.9 ± 11.6 | 27.8 ± 10.2 | 27.9 ± 4.6 | NS | |
STR, VSL/VAP % | 72 | 67.0 ± 7.0 | 66.0 ± 6.3 | 69.4 ± 8.5 | 64.8 ± 11.2 | NS |
120 | 63.1 ± 3.6 | 67.7 ± 12.3 | 68.8 ± 3.3 | 69.1 ± 11.7 | NS | |
LIN, % | 72 | 35.2 ± 6.7 | 34.2 ± 6.5 | 37.7 ± 10.8 | 33.5 ± 11.7 | NS |
120 | 31.6 ± 4.2 | 36.2 ± 13.1 | 35.7 ± 5.5 | 37.1 ± 13.0 | NS |
Storage Point | Group | n | Total Motility, % | p Value | Progressive Motility, % | p Value |
---|---|---|---|---|---|---|
D0 | BB | 137 | 87.5 ± 9.05 | * | 75.8 ± 11.2 | * |
CB | 134 | 88.7 ± 6.77 | * | 77.0 ± 9.93 | * | |
D24 | BB | 136 | 81.5 ± 10.0 | NS | 63.0 ± 13.4 | NS |
CB | 132 | 80.0 ± 10.8 | NS | 62.0 ± 14.5 | NS | |
D72 | BB | 135 | 81.2 ± 11.4 | NS | 60.3 ± 14.1 | NS |
CB | 133 | 79.3 ± 12.8 | NS | 58.5 ± 15.7 | NS | |
D120 | BB | 137 | 82.6 ± 10.2 | NS | 64.3 ± 12.2 | NS |
CB | 134 | 79.4 ± 12.8 | NS | 59.4 ± 14.7 | NS | |
D168 | BB | 135 | 79.7 ± 12.1 | NS | 61.6 ± 13.4 | NS |
CB | 131 | 77.6 ± 15.2 | NS | 58.1 ± 15.8 | NS |
Sperm Kinematics Parameter | Bacteriostatic Blister | Conventional Blister | p-Value |
---|---|---|---|
ALH (µm) | 8.27 ± 1.52 | 7.93 ± 1.57 | <0.001 |
VCL (µm/s) | 191.7 ± 38.0 | 187.3 ± 40.6 | 0.023 |
BCF (Hz) | 36.1 ± 2.65 | 36.6 ± 2.76 | <0.001 |
LIN (%) | 33.1 ± 7.90 | 34.1 ± 8.74 | 0.021 |
Storage Time Points | ALH | BCF | ||
---|---|---|---|---|
CB | BB | CB | BB | |
D0 | 8.48 ± 2.07 ab | 8.33 ± 2.12 abc | 34.7 ± 3.16 d | 34.7 ± 3.12 d |
D24 | 7.56 ± 1.49 d | 7.93 ± 1.30 cd | 37.7 ± 2.34 a | 36.8 ± 2.60 b |
D72 | 7.80 ± 1.26 cd | 8.26 ± 1.21 abc | 37.9 ± 2.31 a | 36.9 ± 2.47 b |
D120 | 7.83 ± 1.34 cd | 8.22 ± 1.33 bc | 37.1 ± 2.39 ab | 36.3 ± 2.23 c |
D168 | 7.98 ± 1.44 c | 8.85 ± 1.14 a | 36.4 ± 2.36 c | 35.2 ± 1.95 d |
Performance Parameters | Conventional Blister | Bacteriostatic Blister |
---|---|---|
Sows (n) | 679 | 817 |
Pregnancy rate (day 30) | 93.5% (635/679) | 93% (760/817) |
Farrowing rate | 92.7% (630/679) | 92.4% (755/817) |
Average Number of Piglets Born per Litter | 16.1 ± 3.88 | 16.0 ± 4.13 |
Average Number of Live-Born Piglets per Litter | 14.5 ± 3.77 | 14.4 ± 3.85 |
Average Total Litter Weight (kg) | 19.6 ± 5.12 | 19.2 ± 5.08 |
Performance Parameters | Conventional Blister | Bacteriostatic Blister |
---|---|---|
Gilts (n) | 343 | 353 |
Pregnancy rate (day 30) | 95% (326/343) | 99.1% (350/353) |
Farrowing rate | 93.2% (320/343) | 94.6% (334/353) |
Average Number of Piglets Born per Litter | 14.7 ± 3.53 | 14.9 ± 4.07 |
Average Number of Live-Born Piglets per Litter | 13.6 ± 3.31 | 13.7 ± 3.58 |
Average Total Litter Weight (kg) | 18.1 ± 4.26 | 18.1 ± 4.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, J.d.; Jorge-Neto, P.N.; Madruga, É.L.; Oliveira, M.G.D.d.; Fruhling, G.; Braga, J.V.; Poletto, R.; Zanella, R. Innovation on Swine Semen Storage: Bacteriostatic Coating vs. Conventional Blister in Commercial Swine Semen Production. AgriEngineering 2025, 7, 338. https://doi.org/10.3390/agriengineering7100338
Camargo Jd, Jorge-Neto PN, Madruga ÉL, Oliveira MGDd, Fruhling G, Braga JV, Poletto R, Zanella R. Innovation on Swine Semen Storage: Bacteriostatic Coating vs. Conventional Blister in Commercial Swine Semen Production. AgriEngineering. 2025; 7(10):338. https://doi.org/10.3390/agriengineering7100338
Chicago/Turabian StyleCamargo, Janine de, Pedro Nacib Jorge-Neto, Érika Lopes Madruga, Maria Gessica Daniel de Oliveira, Gilson Fruhling, José Victor Braga, Rosangela Poletto, and Ricardo Zanella. 2025. "Innovation on Swine Semen Storage: Bacteriostatic Coating vs. Conventional Blister in Commercial Swine Semen Production" AgriEngineering 7, no. 10: 338. https://doi.org/10.3390/agriengineering7100338
APA StyleCamargo, J. d., Jorge-Neto, P. N., Madruga, É. L., Oliveira, M. G. D. d., Fruhling, G., Braga, J. V., Poletto, R., & Zanella, R. (2025). Innovation on Swine Semen Storage: Bacteriostatic Coating vs. Conventional Blister in Commercial Swine Semen Production. AgriEngineering, 7(10), 338. https://doi.org/10.3390/agriengineering7100338