Evaluation of Antioxidant Properties of Residual Hemp Leaves Following Optimized Pressurized Liquid Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Hemp Leaf Material
2.4. Hemp Leaf Extraction
2.5. Optimization with Response Surface Methodology (RSM) and Experimental Design
2.6. Determination of Bioactive Compounds
2.6.1. Spectrophotometric Evaluation of Total Polyphenolic Content (TPC)
2.6.2. Spectrophotometric Evaluation of Total Flavonoid Content (TFC)
2.6.3. Chromatographic Measurement of Individual Phenolic Compounds
2.6.4. Evaluation of Ascorbic Acid Content (AAC)
2.7. Evaluation of Antioxidant Activity of the Extracts
2.7.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.2. DPPH Scavenging Activity Assay
2.8. Color Evaluation of the Extracts
2.9. Statistical Analysis
3. Results and Discussion
3.1. Extraction Parameter Optimization
3.2. Model Analysis
3.3. Impact of Extraction Parameters on Assays Through Pareto Plot Analysis
3.4. Partial Least Squares (PLS) Analysis
3.5. Analysis of Optimized Extracts
3.5.1. Extensive Bioactive Compound and Antioxidant Capacity Determination
3.5.2. Color Analysis
3.5.3. Individual Polyphenol Quantification
3.6. Correlation Analyses in Optimized Extracts
3.6.1. Multiple Factor Analysis (MFA)
3.6.2. Multivariate Correlation Analysis (MCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kornpointner, C.; Sainz Martinez, A.; Marinovic, S.; Haselmair-Gosch, C.; Jamnik, P.; Schröder, K.; Löfke, C.; Halbwirth, H. Chemical Composition and Antioxidant Potential of Cannabis sativa L. Roots. Ind. Crops Prod. 2021, 165, 113422. [Google Scholar] [CrossRef]
- De Vita, S.; Finamore, C.; Chini, M.G.; Saviano, G.; De Felice, V.; De Marino, S.; Lauro, G.; Casapullo, A.; Fantasma, F.; Trombetta, F.; et al. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. Plants 2022, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Judžentienė, A.; Garjonytė, R.; Būdienė, J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp (Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023, 28, 4928. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.S.; Lanaridi, O.; Stagel, K.; Halbwirth, H.; Schnürch, M.; Bica-Schröder, K. Extraction Techniques for Bioactive Compounds of Cannabis. Nat. Prod. Rep. 2023, 40, 676–717. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.-Y.; Li, S.-H.; Ma, W.; Wu, D.-T.; Li, H.-B.; Xiao, A.-P.; Liu, L.-L.; Zhu, F.; Gan, R.-Y. Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. TrAC Trends Anal. Chem. 2022, 149, 116554. [Google Scholar] [CrossRef]
- Mpakos, D.; Chatzimitakos, T.; Athanasiadis, V.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Optimization of Pulsed Electric Field-Based Extraction of Bioactive Compounds from Cannabis sativa Leaves. Analytica 2024, 5, 90–106. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Menexis, N.; Iakovidis, D.; Makris, D.P.; Goula, A. A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. Recycling 2018, 3, 15. [Google Scholar] [CrossRef]
- Moreno-Sanz, G.; Ferreiro Vera, C.; Sánchez-Carnerero, C.; Nadal Roura, X.; Sánchez de Medina Baena, V. Biological Activity of Cannabis sativa L. Extracts Critically Depends on Solvent Polarity and Decarboxylation. Separations 2020, 7, 56. [Google Scholar] [CrossRef]
- Pattnaik, F.; Nanda, S.; Mohanty, S.; Dalai, A.K.; Kumar, V.; Ponnusamy, S.K.; Naik, S. Cannabis: Chemistry, Extraction and Therapeutic Applications. Chemosphere 2022, 289, 133012. [Google Scholar] [CrossRef]
- Iftikhar, A.; Zafar, U.; Ahmed, W.; Shabbir, M.A.; Sameen, A.; Sahar, A.; Bhat, Z.F.; Kowalczewski, P.Ł.; Jarzębski, M.; Aadil, R.M. Applications of Cannabis sativa L. in Food and Its Therapeutic Potential: From a Prohibited Drug to a Nutritional Supplement. Molecules 2021, 26, 7699. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A Comprehensive Ethnopharmacological Review of a Medicinal Plant with a Long History. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization. AgriEngineering 2024, 6, 1300–1318. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef] [PubMed]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus Green Extraction Techniques—A Comparative Perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Kalompatsios, D.; Athanasiadis, V.; Mantiniotou, M.; Lalas, S.I. Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties. Appl. Sci. 2024, 14, 10460. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Investigation of the Polyphenol Recovery of Overripe Banana Peel Extract Utilizing Cloud Point Extraction. Eng 2023, 4, 3026–3038. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Cesa, S.; Carradori, S.; Bellagamba, G.; Locatelli, M.; Casadei, M.A.; Masci, A.; Paolicelli, P. Evaluation of Processing Effects on Anthocyanin Content and Colour Modifications of Blueberry (Vaccinium Spp.) Extracts: Comparison between HPLC-DAD and CIELAB Analyses. Food Chem. 2017, 232, 114–123. [Google Scholar] [CrossRef]
- Mezzomo, N.; Ferreira, S.R.S. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. J. Chem. 2016, 2016, 3164312. [Google Scholar] [CrossRef]
- Thoo, Y.; Ng, S.Y.; Khoo, M.; Mustapha, W.; Ho, C. A Binary Solvent Extraction System for Phenolic Antioxidants and Its Application to the Estimation of Antioxidant Capacity in Andrographis paniculata Extracts. Int. Food Res. J. 2013, 20, 1103–1111. [Google Scholar]
- Athanasiadis, V.; Chatzimitakos, T.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Antioxidant-Rich Extracts from Lemon Verbena (Aloysia citrodora L.) Leaves through Response Surface Methodology. Oxygen 2024, 4, 1–19. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Preparative Extraction and Separation of Phenolic Compounds. In Natural Products; Ramawat, K., Mérillon, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2013–2045. [Google Scholar]
- Zhou, J.; Wang, M.; Carrillo, C.; Zhu, Z.; Brncic, M.; Berrada, H.; Barba, F.J. Impact of Pressurized Liquid Extraction and pH on Protein Yield, Changes in Molecular Size Distribution and Antioxidant Compounds Recovery from Spirulina. Foods 2021, 10, 2153. [Google Scholar] [CrossRef] [PubMed]
- Anticona, M.; Blesa, J.; Lopez-Malo, D.; Frigola, A.; Esteve, M.J. Effects of Ultrasound-Assisted Extraction on Physicochemical Properties, Bioactive Compounds, and Antioxidant Capacity for the Valorization of Hybrid Mandarin Peels. Food Biosci. 2021, 42, 101185. [Google Scholar] [CrossRef]
- Milardović, S.; Iveković, D.; Grabarić, B.S. A Novel Amperometric Method for Antioxidant Activity Determination Using DPPH Free Radical. Bioelectrochemistry 2006, 68, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple Pharmacognostic Characterization on Hemp Commercial Cultivars: Focus on Inflorescence Water Extract Activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Mazzara, E.; Torresi, J.; Fico, G.; Papini, A.; Kulbaka, N.; Dall’Acqua, S.; Sut, S.; Garzoli, S.; Mustafa, A.M.; Cappellacci, L.; et al. A Comprehensive Phytochemical Analysis of Terpenes, Polyphenols and Cannabinoids, and Micromorphological Characterization of 9 Commercial Varieties of Cannabis sativa L. Plants 2022, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Muniz, V.R.G.D.F.; Ribeiro, I.S.; Beckmam, K.R.L.; Godoy, R.C.B.D. The Impact of Color on Food Choice. Braz. J. Food Technol. 2023, 26, e2022088. [Google Scholar] [CrossRef]
- Babiker, E.E.; Uslu, N.; Al Juhaimi, F.; Mohamed Ahmed, I.A.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of Roasting on Antioxidative Properties, Polyphenol Profile and Fatty Acids Composition of Hemp (Cannabis sativa L.) Seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed]
- El Khediri, S.; Fakhet, W.; Moulahi, T.; Khan, R.; Thaljaoui, A.; Kachouri, A. Improved Node Localization Using K-Means Clustering for Wireless Sensor Networks. Comput. Sci. Rev. 2020, 37, 100284. [Google Scholar] [CrossRef]
Design Point | Independent Variables | Responses | |||||
---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | FRAP (μmol AAE/g dw) | ||||||
X1 (C, %) | X2 (T, °C) | X3 (t, min) | Actual | Predicted | Actual | Predicted | |
1 | 0 (50) | 0 (100) | 0 (15) | 12.18 ± 0.57 | 12.05 | 57.36 ± 1.38 | 59.39 |
2 | −1 (0) | −1 (40) | 0 (15) | 7.84 ± 0.58 | 7.95 | 44.84 ± 1.08 | 52.36 |
3 | 0 (50) | −1 (40) | 1 (25) | 12.10 ± 0.64 | 10.76 | 64.19 ± 4.69 | 54.41 |
4 | 0 (50) | −1 (40) | −1 (5) | 11.63 ± 0.35 | 10.76 | 64.91 ± 4.74 | 54.41 |
5 | 1 (100) | 1 (160) | 0 (15) | 7.76 ± 0.45 | 5.92 | 29.72 ± 0.92 | 21.41 |
6 | 1 (100) | 0 (100) | 1 (25) | 4.33 ± 0.24 | 4.63 | 15.82 ± 0.44 | 16.42 |
7 | 1 (100) | −1 (40) | 0 (15) | 2.16 ± 0.12 | 3.34 | 6.73 ± 0.42 | 11.44 |
8 | 0 (50) | 0 (100) | 0 (15) | 12.09 ± 0.64 | 12.05 | 56.43 ± 2.77 | 59.39 |
9 | 1 (100) | 0 (100) | −1 (5) | 4.27 ± 0.27 | 4.63 | 13.41 ± 0.50 | 16.42 |
10 | 0 (50) | 1 (160) | −1 (5) | 13.24 ± 0.74 | 13.34 | 61.94 ± 3.72 | 64.38 |
11 | −1 (0) | 0 (100) | −1 (5) | 8.57 ± 0.50 | 9.24 | 55.70 ± 3.01 | 57.34 |
12 | 0 (50) | 1 (160) | 1 (25) | 11.12 ± 0.32 | 13.34 | 53.49 ± 3.32 | 64.38 |
13 | 0 (50) | 0 (100) | 0 (15) | 11.98 ± 0.53 | 12.05 | 57.44 ± 1.26 | 59.39 |
14 | −1 (0) | 0 (100) | 1 (25) | 8.64 ± 0.54 | 9.24 | 53.42 ± 3.10 | 57.34 |
15 | −1 (0) | 1 (160) | 0 (15) | 11.92 ± 0.24 | 10.53 | 75.40 ± 3.47 | 62.33 |
Design Point | Independent Variables | Responses | |||||
---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | FRAP (μmol AAE/g dw) | ||||||
X1 (C, %) | X2 (T, °C) | X3 (t, min) | Actual | Predicted | Actual | Predicted | |
1 | 0 (50) | 0 (50) | 0 (60) | 19.50 ± 0.88 | 19.54 | 92.56 ± 2.04 | 92.19 |
2 | −1 (0) | −1 (20) | 0 (60) | 12.44 ± 0.29 | 11.98 | 83.78 ± 3.27 | 85.91 |
3 | 0 (50) | −1 (20) | 1 (90) | 18.13 ± 1.21 | 18.51 | 97.80 ± 3.42 | 93.02 |
4 | 0 (50) | −1 (20) | −1 (30) | 16.81 ± 0.50 | 17.41 | 98.74 ± 6.32 | 97.25 |
5 | 1 (100) | 1 (80) | 0 (60) | 7.34 ± 0.40 | 7.74 | 40.90 ± 0.94 | 38.29 |
6 | 1 (100) | 0 (50) | 1 (90) | 7.25 ± 0.41 | 7.49 | 20.57 ± 0.84 | 20.51 |
7 | 1 (100) | −1 (20) | 0 (60) | 8.40 ± 0.32 | 7.75 | 11.87 ± 0.88 | 16.00 |
8 | 0 (50) | 0 (50) | 0 (60) | 19.46 ± 1.36 | 19.54 | 92.34 ± 5.26 | 92.19 |
9 | 1 (100) | 0 (50) | −1 (30) | 6.14 ± 0.24 | 6.16 | 26.20 ± 0.86 | 24.74 |
10 | 0 (50) | 1 (80) | −1 (30) | 19.90 ± 0.54 | 19.46 | 96.73 ± 5.03 | 100.41 |
11 | −1 (0) | 0 (50) | −1 (30) | 12.85 ± 0.64 | 12.68 | 75.29 ± 2.86 | 75.51 |
12 | 0 (50) | 1 (80) | 1 (90) | 19.78 ± 0.45 | 19.11 | 92.65 ± 3.24 | 96.18 |
13 | 0 (50) | 0 (50) | 0 (60) | 19.53 ± 1.11 | 19.54 | 92.63 ± 2.96 | 92.19 |
14 | −1 (0) | 0 (50) | 1 (90) | 12.05 ± 0.54 | 12.10 | 69.02 ± 4.00 | 71.28 |
15 | −1 (0) | 1 (80) | 0 (60) | 14.06 ± 0.35 | 14.64 | 74.54 ± 3.06 | 69.93 |
Factor | PLE | STE | ||
---|---|---|---|---|
TPC | FRAP | TPC | FRAP | |
Stepwise regression coefficients | ||||
Intercept | 12.049 * | 59.394 * | 19.542 * | 92.192 * |
X1—solvent concentration | −2.306 * | −20.460 * | −2.784 * | −25.390 * |
X2—temperature | 1.2888 * | 4.985 | 0.6625 * | 1.5788 |
X3—extraction time | - | - | 0.1888 | −2.115 |
X12 | −5.112 * | −22.510 * | −9.015 * | −44.180 * |
X22 | - | - | - | 4.526 * |
X32 | - | - | −0.920 * | - |
X1X2 | - | - | −0.670 | 9.5675 * |
X1X3 | - | - | 0.4775 | - |
X2X3 | - | - | −0.360 | - |
ANOVA | ||||
F-value (model) | 36.85 | 28.77 | 117.19 | 160.62 |
F-value (lack of fit) | 6.49 | 18.57 | 481.01 | 788.03 |
p-Value (model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
p-Value (lack of fit) | 0.0207 | 0.0014 | 0.0021 | 0.0013 |
R2 | 0.9095 | 0.8870 | 0.9936 | 0.9918 |
Adjusted R2 | 0.8848 | 0.8561 | 0.9852 | 0.9856 |
RMSE | 1.1780 | 7.9394 | 0.6292 | 3.6797 |
PRESS | 33.046 | 1504.01 | 25.015 | 712.4 |
CV | 37.235 | 44.171 | 36.268 | 43.153 |
DF (total) | 14 | 14 | 14 | 14 |
Technique | Independent Variables | PLS Model Values | |||
---|---|---|---|---|---|
X1 (C, %) | X2 (T, °C) | X3 (t, min) | TPC (mg GAE/g dw) | FRAP (μmol AAE/g dw) | |
PLE | 32 | 160 | 5 | 13.51 | 68.83 |
STE | 40 | 80 | 45 | 20.44 | 100.75 |
Technique | TPC 1 | FRAP 2 | DPPH 3 | TFC 4 | AAC 5 |
---|---|---|---|---|---|
1st cycle PLE | 15.41 ± 0.52 c | 79.20 ± 5.62 b | 61.47 ± 1.23 c | 9.68 ± 0.49 c | 1.42 ± 0.09 a |
2nd cycle PLE | 3.65 ± 0.22 d | 11.89 ± 0.36 c | 11.98 ± 0.52 d | 3.13 ± 0.11 d | n.d. |
3rd cycle PLE | 1.36 ± 0.03 e | 4.39 ± 0.28 c | 2.38 ± 0.11 e | 0.64 ± 0.04 e | n.d. |
PLE (SUM cycles) | 20.42 ± 0.74 a | 95.47 ± 2.10 a | 75.83 ± 1.52 b | 13.45 ± 0.43 a | 1.42 ± 0.09 a |
STE | 18.81 ± 0.77 b | 100.96 ± 4.85 a | 85.64 ± 5.31 a | 11.2 ± 0.53 b | 0.62 ± 0.02 b |
Phenolic Compounds (mg/g) | 1st Cycle PLE | 2nd Cycle PLE | 3rd Cycle PLE | PLE (SUM Cycles) | STE |
---|---|---|---|---|---|
Non-Flavonoids | |||||
Catechol | 0.21 ± 0.01 a | n.d. | n.d. | 0.21 ± 0.01 a | n.d. |
Pyrogallol | 0.23 ± 0.01 c | 0.19 ± 0.01 c | 0.10 ± 0.00 c | 0.52 ± 0.02 b | 2.44 ± 0.16 a |
Phenol | 0.32 ± 0.01 c | 0.08 ± 0.00 d | 0.06 ± 0.00 d | 0.47 ± 0.03 b | 0.75 ± 0.03 a |
Pyrocatechuic acid | 0.23 ± 0.01 b | 0.17 ± 0.01 c | 0.08 ± 0.00 d | 0.53 ± 0.02 a | n.d. |
Caffeic acid | 0.76 ± 0.03 b | 0.17 ± 0.01 c | 0.07 ± 0.00 c | 0.89 ± 0.03 b | 2.28 ± 0.11 a |
Homovanilinic acid | 0.44 ± 0.01 c | 0.06 ± 0.00 d | n.d. | 0.57 ± 0.04 b | 1.09 ± 0.06 a |
Syringic acid | 1.36 ± 0.09 b | 0.27 ± 0.01 c | 0.08 ± 0.00 c | 1.60 ± 0.10 b | 2.99 ± 0.22 a |
p-Coumaric acid | 0.29 ± 0.01 b | n.d. | n.d. | 0.39 ± 0.01 a | n.d. |
Ferulic acid | 0.35 ± 0.02 b | 0.09 ± 0.00 c | n.d. | 0.53 ± 0.03 a | n.d. |
SUM Non-Flavonoids | 4.19 ± 0.24 c | 1.03 ± 0.04 d | 0.38 ± 0.02 d | 5.72 ± 0.29 b | 9.55 ± 0.57 a |
Flavonoids | |||||
Cyanidin-3-glucoside chloride | 0.06 ± 0.00 b | 0.03 ± 0.00 b | 0.01 ± 0.00 b | 0.09 ± 0.01 b | 1.58 ± 0.07 a |
Rutin | 3.40 ± 0.23 b | 2.50 ± 0.14 c | 0.19 ± 0.00 e | 6.16 ± 0.19 a | 1.99 ± 0.13 d |
Luteolin-7-glucoside | 3.80 ± 0.08 b | 1.16 ± 0.08 d | 0.24 ± 0.02 e | 5.28 ± 0.21 a | 2.65 ± 0.16 c |
Apigenin-7-O-glucoside | 0.73 ± 0.03 b | 0.18 ± 0.01 c | 0.01 ± 0.00 d | 0.87 ± 0.04 a | 0.76 ± 0.04 b |
Fisetin | 0.36 ± 0.03 c | 0.15 ± 0.01 d | 0.06 ± 0.00 d | 0.58 ± 0.03 b | 1.89 ± 0.11 a |
Quercetin | 0.37 ± 0.01 c | 0.18 ± 0.00 d | 0.08 ± 0.00 d | 0.64 ± 0.02 b | 2.43 ± 0.09 a |
SUM Flavonoids | 8.72 ± 0.43 c | 4.20 ± 0.24 d | 0.58 ± 0.03 e | 13.62 ± 0.50 a | 11.29 ± 0.61 b |
Total identified | 12.91 ± 0.67 b | 5.22 ± 0.28 c | 0.96 ± 0.05 d | 19.34 ± 0.79 a | 20.84 ± 1.18 a |
Parameters | Bioactive Compounds | Antioxidant Activity | Color | Non-Flavonoids | Flavonoids | Centroid |
---|---|---|---|---|---|---|
Bioactive compounds | – | 0.929 | 0.6363 | 0.8077 | 0.9716 | 0.9611 |
Antioxidant activity | – | 0.7262 | 0.7565 | 0.8473 | 0.9381 | |
Color | – | 0.6016 | 0.6295 | 0.7876 | ||
Non-Flavonoids | – | 0.8423 | 0.8889 | |||
Flavonoids | – | 0.9511 | ||||
Centroid | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Mantiniotou, M.; Kalompatsios, D.; Makrygiannis, I.; Alibade, A.; Lalas, S.I. Evaluation of Antioxidant Properties of Residual Hemp Leaves Following Optimized Pressurized Liquid Extraction. AgriEngineering 2025, 7, 1. https://doi.org/10.3390/agriengineering7010001
Athanasiadis V, Mantiniotou M, Kalompatsios D, Makrygiannis I, Alibade A, Lalas SI. Evaluation of Antioxidant Properties of Residual Hemp Leaves Following Optimized Pressurized Liquid Extraction. AgriEngineering. 2025; 7(1):1. https://doi.org/10.3390/agriengineering7010001
Chicago/Turabian StyleAthanasiadis, Vassilis, Martha Mantiniotou, Dimitrios Kalompatsios, Ioannis Makrygiannis, Aggeliki Alibade, and Stavros I. Lalas. 2025. "Evaluation of Antioxidant Properties of Residual Hemp Leaves Following Optimized Pressurized Liquid Extraction" AgriEngineering 7, no. 1: 1. https://doi.org/10.3390/agriengineering7010001
APA StyleAthanasiadis, V., Mantiniotou, M., Kalompatsios, D., Makrygiannis, I., Alibade, A., & Lalas, S. I. (2025). Evaluation of Antioxidant Properties of Residual Hemp Leaves Following Optimized Pressurized Liquid Extraction. AgriEngineering, 7(1), 1. https://doi.org/10.3390/agriengineering7010001