Quantifying Nesting Behavior Metrics of Broiler Breeder Hens with Computationally Efficient Image Processing Algorithms and Big Data Analytics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Overview of the Algorithm
2.3. Image Processing
2.4. Nesting Behavior Metric Quantification
2.5. Statistical Analysis
3. Results and Discussion
3.1. Accuracy and Processing Speed for the Image Processing Algorithms
3.2. Total Time Spent in a Nest Slot
3.3. Number of Visits to a Nest Slot
3.4. Hourly Time Spent by Birds in Each Nest Slot
3.5. Frequency of Birds Simultaneously Using Nest Slots
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture. Poultry—Production and Value 2023 Summary. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/m039k491c/b2775j31b/9k4213149/plva0424.pdf (accessed on 10 June 2024).
- van den Oever, A.C.M.; Kemp, B.; Rodenburg, T.B.; van de Ven, L.J.F.; Bolhuis, J.E. Gregarious nesting in relation to floor eggs in broiler breeders. Animal 2021, 15, 100030. [Google Scholar] [CrossRef] [PubMed]
- Riber, A.B. Development with age of nest box use and gregarious nesting in laying hens. Appl. Anim. Behav. Sci. 2010, 123, 24–31. [Google Scholar] [CrossRef]
- Appleby, M.C.; Hughes, B.O. Welfare of laying hens in cages and alternative systems: Environmental, physical and behavioural aspects. World’s Poult. Sci. J. 1991, 47, 109–128. [Google Scholar] [CrossRef]
- Meijsser, F.M.; Hughes, B.O. Comparative analysis of pre-laying behaviour in battery cages and in three alternative systems. Br. Poult. Sci. 1989, 30, 747–760. [Google Scholar] [CrossRef]
- Williams, L. Understanding Nesting Behavior: Managing for Fewer Floor Eggs in Layers. Available online: https://www.thepoultrysite.com/articles/understinding-nesting-behavior-managing-for-fewer-floor-eggs-in-layers (accessed on 10 June 2024).
- Oliveira, J.; Xin, H.; Wang, K.; Zhao, Y. Evaluation of nesting behavior of individual laying hens in an enriched colony housing by using RFID technology. Int. J. Agric. Biol. Eng. 2019, 12, 7. [Google Scholar] [CrossRef]
- Fraser, D.; Nicol, C.J. Preference and motivation research. CABI 2011, 183–199. [Google Scholar] [CrossRef]
- Producers, U.E. 2024 Cage-Free Housing Animal Welfare Guidelines for U.S. Egg Laying Flocks. Available online: https://uepcertified.com/wp-content/uploads/2023/10/CF-UEP-Guidelines_2024.pdf (accessed on 10 June 2024).
- Hunniford, M.E.; Torrey, S.; Bédécarrats, G.; Duncan, I.J.H.; Widowski, T.M. Evidence of competition for nest sites by laying hens in large furnished cages. Appl. Anim. Behav. Sci. 2014, 161, 95–104. [Google Scholar] [CrossRef]
- Hernández, A.; Hernández-Martínez, A.; Nicolás, L.; Torres, R.; Montoya, B. Competitive events during nest-building influence offspring growth and behaviour, but not testosterone deposition in the egg yolk in Western Bluebirds (Sialia mexicana). IBIS 2022, 164, 1049–1062. [Google Scholar] [CrossRef]
- Emma, O.F. Contributing Factors to Floor Egg Issues. 2018. Available online: https://www.nuffieldscholar.org/sites/default/files/reports/2018_AU_Emma-Oflaherty_Contributing-Factors-To-Floor-Egg-Issues.pdf (accessed on 10 June 2024).
- Bécot, L.; Bédère, N.; Coton, J.; Burlot, T.; Le Roy, P. Nest preference and laying duration traits to select against floor eggs in laying hens. Genet. Sel. Evol. 2023, 55, 8. [Google Scholar] [CrossRef]
- van den Brand, H.; Sosef, M.P.; Lourens, A.; van Harn, J. Effects of floor eggs on hatchability and later life performance in broiler chickens. Poult. Sci. 2016, 95, 1025–1032. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Chickens and Eggs. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/fb494842n/kh04g886t/70796t10f/ckeg1123.pdf (accessed on 10 June 2024).
- Li, G.; Hui, X.; Zhao, Y.; Zhai, W.; Purswell, J.; Porter, Z.; Poudel, S.; Jia, L.; Zhang, B.; Chesser, G. Effects of ground robot manipulation on hen floor egg reduction, production performance, stress response, bone quality, and behavior. PLoS ONE 2022, 17, e0267568. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, A.; Murillo, A.C.; Gerry, A.C.; Keogh, E.J. Time Series Classification: Lessons Learned in the (Literal) Field while Studying Chicken Behavior. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5962–5964. [Google Scholar] [CrossRef]
- Florentino Pereira, D.; de Alencar Nääs, I.; Jorge de Moura, D. Digital monitoring of broiler breeder behavior for assessment of thermal welfare. In Proceedings of the Computers in Agriculture and Natural Resources, Orlando, FL, USA, 24–26 July 2006. [Google Scholar] [CrossRef]
- Supriyanto, E.; Isnanto, R.; Purnomo, S.H. Computer Vision in Chicken Monitoring System Using Machine Learning: A General Review. E3S Web Conf. 2023, 448, 02014. [Google Scholar] [CrossRef]
- Toshio, W.; Atsushi, S.; Kouhei, K. Dairy cattle monitoring using wireless acceleration-sensor networks. In Proceedings of the SENSORS, 2008 IEEE, Lecce, Italy, 26–29 October 2008; pp. 526–529. [Google Scholar] [CrossRef]
- Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O’Neill, C.J. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors 2009, 9, 3586–3603. [Google Scholar] [CrossRef]
- Kwong, K.H.; Goh, H.G.; Michie, C.; Andonovic, I.; Stephen, B.; Trevor Mottram, T.; Ross, D. Wireless Sensor Networks for Beef and Dairy Herd Management. In Proceedings of the 2008 American Society of Agricultural and Biological Engineers Annual International Meeting (ASABE AIM), Providence, RI, USA, 29 June–2 July 2008. [Google Scholar] [CrossRef]
- Nadimi, E.S.; Søgaard, H.T.; Bak, T. ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees. Biosyst. Eng. 2008, 100, 167–176. [Google Scholar] [CrossRef]
- Yin, L.; Liu, C.; Hong, T.; Zhou, H.; Kwong, K.H. Design of system for monitoring dairy cattle’s behavioral features based on wireless sensor networks. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2010, 26, 203–208. [Google Scholar]
- Badia-Melis, R.; Garcia-Hierro, J.; Ruiz-Garcia, L.; Jiménez-Ariza, T.; Robla Villalba, J.I.; Barreiro, P. Assessing the dynamic behavior of WSN motes and RFID semi-passive tags for temperature monitoring. Comput. Electron. Agric. 2014, 103, 11–16. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Managuli, M.; Malipatil, S.; Bagyalakshmi, K.; Salake, S.; Kadalagi, P.; Patil, S. IoT Based Poultry Farm Smart Management System. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Hu, Y.M.; Chen, L.C.; Guo, L.H.; Duan, W.J.; Wang, L. Monitoring behavior of poultry based on RFID radio frequency network. Int. J. Agric. Biol. Eng. 2016, 9, 139–147. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Hailey, R.; Zhang, N.; Liang, Y.; Purswell, J.L. An ultra-high frequency radio frequency identification system for studying individual feeding and drinking behaviors of group-housed broilers. Animal 2019, 13, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-R.; Chen, Y.-X. An RFID-Based Smart Nest Box: An Experimental Study of Laying Performance and Behavior of Individual Hens. Sensors 2018, 18, 859. [Google Scholar] [CrossRef]
- Jung Kyu Park, E.Y.P. Real-Time Monitoring System for Tracking and Identification of Poultry Based on RFID. Math. Stat. Eng. Appl. 2022, 71, 446–455. [Google Scholar] [CrossRef]
- Harrison, N.D.; Kelly, E.L. Affordable RFID loggers for monitoring animal movement, activity, and behaviour. PLoS ONE 2022, 17, e0276388. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, W.J.; Andrews, K.M. PIT Tagging: Simple Technology at Its Best. BioScience 2004, 54, 447–454. [Google Scholar] [CrossRef]
- Galimberti, F.; Sanvito, S.; Boitani, L. Marking of southern elephant seals with Passive Integrated Transponders. Mar. Mammal Sci. 2006, 16, 500–504. [Google Scholar] [CrossRef]
- Michel, R.; Bruno, D.; Jean-Pierre, L.S. Effects of Backpack Radio-Transmitters on Female Barrow’s Goldeneyes. Waterbirds 2006, 29, 115–120. [Google Scholar] [CrossRef]
- Siegford, J.; Berezowski, J.; Biswas, S.; Daigle, C.; Gebhardt-Henrich, S.; Hernandez, C.; Thurner, S.; Toscano, M. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology. Animals 2016, 6, 10. [Google Scholar] [CrossRef]
- Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [Google Scholar] [CrossRef]
- Chen, B.; Medini, T.; Shrivastava, A. SLIDE: In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems. In Proceedings of the Machine Learning and Systems 2 (MLSys 2020), Austin, TX, USA, 2–4 March 2020. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Purswell, J.L.; Du, Q.; Chesser, G.D.; Lowe, J.W. Analysis of feeding and drinking behaviors of group-reared broilers via image processing. Comput. Electron. Agric. 2020, 175, 105596. [Google Scholar] [CrossRef]
- Kashiha, M.A.; Green, A.R.; Sales, T.G.; Bahr, C.; Berckmans, D.; Gates, R.S. Performance of an image analysis processing system for hen tracking in an environmental preference chamber. Poult. Sci. 2014, 93, 2439–2448. [Google Scholar] [CrossRef]
- Chang, D.I.; Lim, S.S.; Zheng, S.Y.; Lee, S.J. Development of Image Processing Technique for Monitoring of Layer Rearing. In Proceedings of the 2005 American Society of Agricultural and Biological Engineers Annual Meeting, Tampa, FL, USA, 17–20 July 2005. [Google Scholar] [CrossRef]
- Figueiredo, G.F.; Dawson, M.D.; Benson, E.; Wicklen, G.L.; Gedamu, N. Advancement in Whole House Machine Vision Based Poultry Behavior Analysis. In Proceedings of the 2004 American Society of Agricultural and Biological Engineers Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar] [CrossRef]
- Gonzalez, C.; Pardo, R.; Farina, J.; Valdés, M.; Rodriguez-Andina, J.J.; Portela, M. Real-time monitoring of poultry activity in breeding farms. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 3574–3579. [Google Scholar] [CrossRef]
- Leroy, T.; Vranken, E.; Van Brecht, A.; Struelens, E.; Sonck, B.; Berckmans, D. A computer vision method for on-line behavioral quantification of individually caged poultry. Trans. ASABE 2006, 49, 795–802. [Google Scholar] [CrossRef]
- Tompkins, Y.H.; Chen, C.; Sweeney, K.M.; Kim, M.; Voy, B.H.; Wilson, J.L.; Kim, W.K. The effects of maternal fish oil supplementation rich in n-3 PUFA on offspring-broiler growth performance, body composition and bone microstructure. PLoS ONE 2022, 17, e0273025. [Google Scholar] [CrossRef]
- Aviagen. Ross 708 Parent Stock Performance Objectives. Available online: https://aviagen.com/assets/Tech_Center/Ross_PS/Ross708-ParentStock-PerformanceObjectives-2021-EN.pdf (accessed on 25 September 2024).
- Doornweerd, J.E.; Veerkamp, R.; Klerk, B.; Sluis, M.; Bouwman, A.C.; Ellen, E.D.; Kootstra, G. Tracking individual broilers on video in terms of time and distance. Poult. Sci. 2023, 103, 103185. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.; Cressman, M.; Cramer, M.; Pairis-Garcia, M. Validation of alternative behavioral observation methods in young broiler chickens. Poult. Sci. 2019, 98, 6225–6231. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, S.-R.; Lee, S.-J. Effects of Light Color on Energy Expenditure and Behavior in Broiler Chickens. Asian-Australas. J. Anim. Sci. 2014, 27, 1044–1049. [Google Scholar] [CrossRef]
- Yang, P.; Furukawa, Y.; Imaishi, M.; Kubo, M.; Ueda, A. Computer vision-based visualization and quantification of body skeletal movements for investigation of traditional skills: The production of Kizumi winnowing baskets. ROBOMECH J. 2024, 11, 1–9. [Google Scholar] [CrossRef]
- Adobe. A Beginner’s Guide to Video Resolution. Available online: https://www.adobe.com/creativecloud/video/discover/video-resolution.html (accessed on 25 September 2024).
- IBM. Internet Connection and Recommended Encoding Settings. Available online: https://support.video.ibm.com/hc/en-us/articles/207852117-Internet-connection-and-recommended-encoding-settings (accessed on 25 September 2024).
- FFMPEG. Available online: https://www.ffmpeg.org (accessed on 25 September 2024).
- OpenCV. Available online: https://docs.opencv.org/4.x/index.html (accessed on 25 September 2024).
- Sergeant, D.; Boyle, R.; Forbes, M. Computer visual tracking of poultry. Comput. Electron. Agric. 1998, 21, 1–18. [Google Scholar] [CrossRef]
- OpenCV. Template Matching. Available online: https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html (accessed on 10 June 2024).
- Welch, B.L. The generalization of ‘students’ problem when several different population variances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef]
- Games, P.A.; Howell, J.F. Pairwise Multiple Comparison Procedures with Unequal N’s and/or Variances: A Monte Carlo Study. J. Educ. Stat. 1976, 1, 113–125. [Google Scholar] [CrossRef]
- Chloupek, P.; Voslarova, E.; Chloupek, J.; Bedanova, I.; Pistekova, V.; Vecerek, V. Stress in Broiler Chickens Due to Acute Noise Exposure. Acta Vet. Brno 2009, 78, 93–98. [Google Scholar] [CrossRef]
- Freire, R.; Appleby, M.C.; Hughes, B.O. Effects of social interactions on pre-laying behaviour in hens. Appl. Anim. Behav. Sci. 1998, 56, 47–57. [Google Scholar] [CrossRef]
- van den Oever, A.; Rodenburg, B.; Bolhuis, J.; Ven, L.; Hasan, M.; van Aerle, S.; Kemp, B. Relative preference for wooden nests affects nesting behaviour of broiler breeders. Appl. Anim. Behav. Sci. 2019, 222, 104883. [Google Scholar] [CrossRef]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Moe, R.O. Air Quality in Alternative Housing Systems may have an Impact on Laying Hen Welfare. Part II—Ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.L.; Gil, M.G.; Dávila, S.G. Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds. Appl. Anim. Behav. Sci. 2005, 91, 75–84. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Purswell, J.L.; Magee, C. Effects of feeder space on broiler feeding behaviors. Poult. Sci. 2021, 100, 101016. [Google Scholar] [CrossRef] [PubMed]
Nest Slot | Accuracy (%) | Processing Speed (fps) |
---|---|---|
0 | 99.00 ± 1.19 | 6506 ± 1045 |
1 | 99.32 ± 0.95 | 3573 ± 416 |
2 | 99.36 ± 1.06 | 2817 ± 437 |
3 | 98.54 ± 1.62 | 3093 ± 529 |
4 | 97.50 ± 9.17 | 1414 ± 104 |
5 | 94.13 ± 0.92 | 1096 ± 342 |
Nest Slot | Before Feeders Were Lifted | After Feeders Were Lifted |
---|---|---|
0 | −204.82 | −41.4 |
1 | 0.74 | −174.3 |
2 | −156.44 | −204.36 |
3 | −179.56 | −141.84 |
4 | −227.02 | −60.17 |
5 | 74.61 | −25.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandiga, A.; Li, G.; Wilson, J.L.; Liu, T.; Bodempudi, V.U.C.; Mason, J.H. Quantifying Nesting Behavior Metrics of Broiler Breeder Hens with Computationally Efficient Image Processing Algorithms and Big Data Analytics. AgriEngineering 2024, 6, 3672-3685. https://doi.org/10.3390/agriengineering6040209
Mandiga A, Li G, Wilson JL, Liu T, Bodempudi VUC, Mason JH. Quantifying Nesting Behavior Metrics of Broiler Breeder Hens with Computationally Efficient Image Processing Algorithms and Big Data Analytics. AgriEngineering. 2024; 6(4):3672-3685. https://doi.org/10.3390/agriengineering6040209
Chicago/Turabian StyleMandiga, Aravind, Guoming Li, Jeanna L. Wilson, Tianming Liu, Venkat Umesh Chandra Bodempudi, and Jacob Hunter Mason. 2024. "Quantifying Nesting Behavior Metrics of Broiler Breeder Hens with Computationally Efficient Image Processing Algorithms and Big Data Analytics" AgriEngineering 6, no. 4: 3672-3685. https://doi.org/10.3390/agriengineering6040209
APA StyleMandiga, A., Li, G., Wilson, J. L., Liu, T., Bodempudi, V. U. C., & Mason, J. H. (2024). Quantifying Nesting Behavior Metrics of Broiler Breeder Hens with Computationally Efficient Image Processing Algorithms and Big Data Analytics. AgriEngineering, 6(4), 3672-3685. https://doi.org/10.3390/agriengineering6040209