Growth Performance of Sabia Grass Irrigated by Drippers Installed in Subsurface
Abstract
:1. Introduction
2. Materials and Methods
- -
- Root length (RL): the distance from the soil surface to the deepest root of the Sabia grass seedling in centimeters was measured using a ruler.
- -
- Shoot length (SL): the height in centimeters of the Sabia grass seedling was measured using a ruler.
- -
- Seedling fresh mass (SFM): all seedlings were collected and weighed on a precision scale (0.1 mg), and SFM in mg pl−1 was obtained by dividing the total mass by the number of seedlings evaluated.
- -
- Seedling dry mass (SDM): Seedlings were dried in a forced air circulation oven at 65 °C for 72 h and then weighed using a precision scale (0.1 mg). SDM, expressed in milligrams per plant, was calculated by dividing the total mass by the number of seedlings assessed.
3. Results and Discussion
3.1. Water Consumption
3.2. Seed Germination
3.3. Seed Vigor
3.4. Seedling Emergence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Associação Brasileira das Indústrias Exportadoras de Carne (ABIEC). Perfil da Pecuária no Brasil—Relatório Annual. 2018. Available online: https://abiec.com.br/wp-content/uploads/sumario2019portugues.pdf (accessed on 19 May 2024).
- Reis, M.M.; Santos, L.D.T.; Oliveira, F.G.; Santos, M.V. Irrigação de pastagens tropicais: Desafios e perspectivas. Rev. Unimontes Cientif. 2017, 19, 178–190. [Google Scholar]
- Alencar, C.A.B.; Cunha, F.F.; Martins, C.E.; Coser, A.C.; Rocha, W.S.D.; Araujo, R.A.S. Irrigação de pastagens: Atualidade e recomendações para uso e manejo. Rev. Bras. Zootec. 2009, 38, 98–108. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Cui, P.; Su, D. Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation. Agric. Water Manag. 2021, 245, 106608. [Google Scholar] [CrossRef]
- Sanches, A.C.; Gomes, E.P.; Rickli, M.E.; Fasolin, J.P.; Soares, M.R.C.; Goes, R.H. Produtividade e valor nutritivo do capim Tifton 85 irrigado e sobressemeado com aveia. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 126–133. [Google Scholar] [CrossRef]
- Zaccaria, D.; Cobo, M.T.C.; Montazar, A.; Putnam, D.H.; Bali, K. Assessing the viability of sub-surface drip irrigation for resource-efficient alfalfa production in Central and Southern California. Water 2017, 9, 837. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático da Produção Agrícola de 2022. 2023. Available online: https://ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria.html (accessed on 17 January 2024).
- Aguilera, E.; Gaona, C.D.; Laureano, R.G.; Palomo, C.R.; Guzmán, G.I.; Ortolani, L.; Rodríguez, M.S.; Estévez, V.R. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Llanos, E.; Astigarraga, L.; Picasso, V. Energy and economic efficiency in grazing dairy systems under alternative intensification strategies. Eur. J. Agron. 2018, 92, 133–140. [Google Scholar] [CrossRef]
- Borges, G.S.; Silva, N.A.M.; Santos, M.E.R. Structural and productive differences between deferred braúna, cayana and sabiá grasses. Arq. Bras. Med. Vet. Zootec. 2023, 75, 1155–1164. [Google Scholar] [CrossRef]
- Empresa Agropecuária Barenbrug (BARENBRUG). Cultivar Sabiá: A Brachiaria Desenvolvida Geneticamente pela Barenbrug. 2022. Available online: http://barenbrug.com.br/brachiaria-sabia (accessed on 10 December 2023).
- Melo, M.C.; Guimarães, L.C.; Silva, P.L.; Camargo, D.D.; Drumond, L.C.D. Crescimento e produtividade de Brachiaria adubada e irrigada por gotejamento subsuperficial. Irriga 2020, 25, 112–130. [Google Scholar] [CrossRef]
- Rocha, M.O.; Teixeira, A.S.; Silva Filho, F.C.; Gondim, R.S.; Sousa, A.B.O. The use of numerical modelling to assess soil water dynamics in subsurface irrigation. Rev. Cienc. Agron. 2023, 54, e20217808. [Google Scholar] [CrossRef]
- Şahin, M. Potential use of subsurface drip irrigation systems in landscape irrigation under full and limited irrigation conditions. Sustainability 2023, 15, 15053. [Google Scholar] [CrossRef]
- Irmak, S. Maize response to different subsurface drip irrigation management strategies: Yield, production functions, basal and crop evapotranspiration. Agric. Water Manag. 2024, 300, 108927. [Google Scholar] [CrossRef]
- Ayars, J.E.; Fulton, A.; Taylor, B. Subsurface drip irrigation in California—Here to stay? Agric. Water Manag. 2015, 157, 39–47. [Google Scholar] [CrossRef]
- Guimarães, C.M.; Cunha, F.F.; Silva, F.C.S.; Araujo, E.D.; Guimarães, A.B.F.; Mantovani, E.C.; Silva, D.J.H. Agronomic performance of lettuce cultivars submitted to different irrigation depths. PLoS ONE 2019, 14, e0224264. [Google Scholar] [CrossRef]
- Mota, V.J.G.; Carvalho, A.J.; Oliveira, F.G.; Gomes, V.M.; Monção, F.P.; Mota Filho, V.J.G. Determinação do coeficiente de cultura do capim-mombaça manejado em diferentes estações do ano no semiárido mineiro. Irriga 2020, 25, 170–183. [Google Scholar] [CrossRef]
- Mo, Y.; Li, G.; Wang, D.; Lamm, F.R.; Wang, J.; Zhang, Y.; Cai, M.; Gong, S. Planting and preemergence irrigation procedures to enhance germination of subsurface drip irrigated corn. Agric. Water Manag. 2020, 242, 106412. [Google Scholar] [CrossRef]
- Guan, X.; Yang, M.; Bai, T.; Han, J.; Huang, J.; Wang, J.; Wang, T. Suitable deep sowing increasing emergence rate and promoting summer maize growth in seeding stage under subsurface drip irrigation. Trans. CSAE 2016, 32, 75–80. [Google Scholar] [CrossRef]
- Wang, S.; Jiao, X.; Guo, W.; Lu, J.; Bai, Y.; Wang, L. Adaptability of shallow subsurface drip irrigation of alfalfa in an arid desert area of Northern Xinjiang. PLoS ONE 2018, 13, e0195965. [Google Scholar] [CrossRef]
- Vadar, H.R.; Pandya, P.A.; Patel, R.J. Effect of subsurface drip irrigation depth scheduling in summer Okra. Emerg. Life Sci. Res. 2019, 5, 52–61. [Google Scholar] [CrossRef]
- Yang, M.D.; Leghari, S.J.; Guan, X.K.; Ma, S.C.; Ding, C.M.; Mei, F.J.; Wei, L.; Wang, T.C. Deficit subsurface drip irrigation improves water use efficiency and stabilizes yield by enhancing subsoil water extraction in winter wheat. Front. Plant Sci. 2020, 11, 508. [Google Scholar] [CrossRef]
- Karayel, D.; Šarauskis, E. Influence of tillage methods and soil crust breakers on cotton seedling emergence in silty-loam soil. Soil Till. Res. 2024, 239, 106054. [Google Scholar] [CrossRef]
- Bordovsky, J.P.; Cranmer, A.M.; Colaizz, P.D.; Lamm, F.R.; Evett, S.R.; Howell, T.A. Investigating strategies to improve crop germination when using SDI. In Proceedings of the Annual Central Plains Irrigation Conference, Colby, KS, USA, 21–22 February 2012. [Google Scholar]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 vision of subsurface drip irrigation in the U.S. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Charlesworth, P.B.; Muirhead, W.A. Crop establishment using subsurface drip irrigation: A comparison of point and area sources. Irrig. Sci. 2003, 22, 171–176. [Google Scholar] [CrossRef]
- Elnesr, M.N.; Alazba, A.A. The effects of three techniques that change the wetting patterns over subsurface drip-irrigated potatoes. Span. J. Agric. Res. 2015, 13, 1204–1216. [Google Scholar] [CrossRef]
- Coelho, E.F.; Lima, L.W.F.; Stringam, B.; Matos, A.P.; Santos, D.L.; Reinhardt, D.H.; Velame, L.M.; Santos, C.E.M.; Cunha, F.F. Water productivity in pineapple (Ananas comosus) cultivation using plastic film to reduce evaporation and percolation. Agric. Water Manag. 2024, 296, 108785. [Google Scholar] [CrossRef]
- Dubreuil, V.; Fante, K.P.; Planchon, O.; Sant’anna Neto, J.L. Os tipos de climas anuais no Brasil: Uma aplicação da classificação de Köppen de 1961 a 2015. Confins 2018, 37, 15738. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; 356p. [Google Scholar]
- Silva, L.J.; Medeiros, A.D.; Oliveira, A.M.S. SeedCalc, a new automated R software tool for germination and seedling length data processing. J. Seed Sci. 2019, 41, 250–257. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://R-project.org/ (accessed on 17 January 2024).
- Freitas, E.M.; Gomes, C.N.; Silva, L.J.; Cunha, F.F. Germination performance of Physalis peruviana L. seeds under thermal and water stress conditions. Agronomy 2024, 14, 1213. [Google Scholar] [CrossRef]
- ISTA. The germination test. In International Rules for Seed Testing; ISTA: Zurich, Switzerland, 2015. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of germination-aid selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Ahmad, N.; Hafeez, K. Thermal hardening: A new seed vigor enhancement tool in rice. J. Integr. Plant Biol. 2005, 47, 187–193. [Google Scholar] [CrossRef]
- Labouriau, L.G. Uma nova linha de pesquisa na fisiologia da germinação das sementes. In Proceedings of the Congresso Nacional de Botânica, Porto Alegre, Rio Grande do Sul, Brazil, 18–22 July 1983. [Google Scholar]
- Demilly, D.; Ducournau, S.; Wagner, M.H.; Dürr, C. Digital imaging of seed germination. Plant Image Anal. 2014, 1, 147–164. [Google Scholar] [CrossRef]
- Araujo, E.D.; Assis, M.O.; Guimaraes, C.M.; Araujo, E.F.; Borges, A.C.; Cunha, F.F. Superabsorbent polymers and sanitary sewage change water availability during the cowpea emergence phase. Nativa 2024, 12, 37–48. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ma, W.; Shen, S.; Gu, A. Underlying biochemical and molecular mechanisms for seed germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef]
- Suharto, B.; Sulianto, A.A.; Pratama, N.A. Analysis of reference evapotranspiration (ETo) and rainfall on maize hybrid seed production: Cases in Malang and Jember. Univers. J. Agric. Res. 2023, 11, 475–488. [Google Scholar] [CrossRef]
- Chiodini, B.M.; Silva, C.T.A.C. Efeito da temperatura na germinação de sementes de Brachiaria brizantha cv. Marandu (Hochst. ex A. Rich.) Stapf (Poaceae). Rev. Varia Sci. Agrar. 2013, 3, 105–113. [Google Scholar]
- Prudente, D.; Paiva, R. Seed dormancy and germination: Physiological considerations. J. Cell Dev. Biol. 2018, 2, 2. [Google Scholar]
- Selemani, I.S. Growth and yield of three Brachiaria cultivars from the Southern Highlands, Rungwe, Mbeya, Tanzania. Tanz. J. Agric. Sci. 2022, 21, 161–169. [Google Scholar]
- Simpson, M.; Boschma, S.P.; Alemseged, Y.; Newell, M.T.; Norton, M.R.; Smith, W.J.; Brennan, M.A.; Day, N.; Harden, S.; Price, A. Seedling emergence of tropical perennial pasture species in response to temperature used to determine sowing time recommendations. Trop. Grassl. 2023, 11, 198–209. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Javanbakht, Z. Assessing the physical and empirical reference evapotranspiration (ETo) models and time series analyses of the influencing weather variables on ETo in a semi-arid area. J. Environ. Manag. 2020, 276, 111278. [Google Scholar] [CrossRef]
- Barbieri, J.D.; Freitas, P.S.L.; Dallacort, R.; Rezende, R.; Silva, A.L.B.R.; Fenner, W.; Carvalho, M.A.C. Influence of soil coverage on evapotranspiration and dual crop coefficients on soybean. J. Exp. Agric. Int. 2020, 42, 111–125. [Google Scholar] [CrossRef]
- Singh, M.; Thapa, R.; Kukal, M.S.; Irmak, S.; Mirsky, S.; Jhala, A.J. Effect of water stress on weed germination, growth characteristics, and seed production: A global meta-analysis. Weed Sci. 2022, 70, 621–640. [Google Scholar] [CrossRef]
- Niño, J.M.D.; Manera, J.O.; Arbat, G.; Girona, J.; Casadesús, J. Analysis of the variability in soil moisture measurements by capacitance sensors in a drip-irrigated orchard. Sensors 2020, 20, 5100. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Lindner, H.; Robbins, N.E.; Dinneny, J.R. Growing out of stress: The role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell 2016, 28, 1769–1782. [Google Scholar] [CrossRef]
- Almeida, J.P.N.; Lessa, B.F.T.; Pinheiro, C.L.; Gomes, F.M.; Medeiros, S.; Silva, C.C. Germinação e desenvolvimento de plântulas de Amburana cearensis em função do peso da semente, luz e temperatura. Acta Sci. Agron. 2017, 39, 525–533. [Google Scholar] [CrossRef]
- Di Marzo, M.; Babolin, N.; Viana, V.E.; Oliveira, A.C.; Gugi, B.; Caporali, E.; Ubaldo, H.H.; Estrada, E.M.; Driouich, A.; Folter, S.; et al. The genetic control of SEEDSTICK and LEUNIG-HOMOLOG in seed and fruit development: New insights into cell wall control. Plants 2022, 11, 3146. [Google Scholar] [CrossRef]
- López, A.S.; López, D.R.; Arana, M.V.; Batlla, D.; Marchelli, P. Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters. Sci. Rep. 2021, 11, 10653. [Google Scholar] [CrossRef]
- Virk, S.; Porter, W.; Snider, J.; Rains, G.; Li, C.; Liu, Y. Cotton emergence and yield response to planter depth and downforce settings in different soil moisture conditions. Agriengineering 2021, 3, 323–338. [Google Scholar] [CrossRef]
- Seyar, M.H.; Ahamed, T. Development of an IoT-based precision irrigation system for tomato production from indoor seedling germination to outdoor field production. Appl. Sci. 2023, 13, 5556. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Barbanti, L.; Aamer, M.; Iqbal, M.M.; Nawaz, M.; Mahmood, A.; Ali, A.; et al. Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—A review. Plant Biosyst. 2021, 155, 211–234. [Google Scholar] [CrossRef]
- Felix, F.C.; Araújo, F.S.; Silva, M.D.; Ferrari, C.S.; Pacheco, M.V. Water and thermal stress on the germination Leucaena leucocephala (Lam.) de wit seeds. Rev. Bras. Cienc. Agrar. 2018, 13, e5515. [Google Scholar] [CrossRef]
- Correia, D.C.C.; Cardoso, A.S.; Ferreira, M.R.; Siniscalchi, D.; Gonçalves, P.H.D.; Lumasini, R.N.; Reis, R.A.; Ruggieri, A.C. Ammonia volatilization, forage accumulation, and nutritive value of marandu palisade grass pastures in different N sources and doses. Atmosphere 2021, 12, 1179. [Google Scholar] [CrossRef]
- Seal, C.E.; Daws, M.I.; Flores, J.; Baes, P.O.; Galíndez, G.; Lobos, P.L.; Sandoval, A.; Stuva, A.C.; Bullón, N.R.; Aranda, P.D. Thermal buffering capacity of the germination phenotype across the environmental envelope of the cactaceae. Glob. Change Biol. 2017, 23, 5309–5317. [Google Scholar] [CrossRef] [PubMed]
- Lewandrowski, W.; Stevens, J.C.; Webber, B.L.; Dalziell, E.L.; Trudgen, M.S.; Bateman, A.M.; Erickson, T.E. Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress. Ecol. Evol. 2021, 11, 8071–8084. [Google Scholar] [CrossRef]
- Ye, X.; Wen, R.; Yang, H.; Lu, P.; Lu, L. Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize. J. Integr. Agric. 2020, 19, 2216–2228. [Google Scholar] [CrossRef]
- Slot, M.; Winter, K. Photosynthetic acclimation to warming in tropical forest tree seedlings. J. Exp. Bot. 2017, 68, 2275–2284. [Google Scholar] [CrossRef]
- Durand, M.; Murchie, E.H.; Lindfors, A.V.; Urban, O.; Aphalo, P.J.; Robson, T.M. Diffuse solar radiation and canopy photosynthesis in a changing environment. Agric. For. Meteorol. 2021, 311, 108684. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xue, J.; Xie, R.; Ming, B.; Wang, K.; Hou, P.; Li, S. Leaf removal affects maize morphology and grain yield. Agronomy 2020, 10, 269. [Google Scholar] [CrossRef]
- Richardson, F.; Brodribb, T.J.; Jordan, G.J. Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiol. 2017, 37, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Driesen, E.; Ende, D.; Proft, M.; Saeys, W. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 2020, 10, 1975. [Google Scholar] [CrossRef]
- Sierra, A.J.Z.; Pérez, M.F.M.; Requena, R.R.; Agugliaro, F.M. Root distribution with the use of drip irrigation on layered soils at greenhouses crops. Sci. Total Environ. 2021, 768, 144944. [Google Scholar] [CrossRef]
Coarse Sand | Fine Sand | Silt | Clay | FC | PWP | Bd | Ko | Textural Classification | |
---|---|---|---|---|---|---|---|---|---|
kg kg−1 | g cm−3 | m d−1 | |||||||
0.307 | 0.137 | 0.128 | 0.428 | 0.247 | 0.137 | 1.06 | 5.56 | Clay | |
pH | pH | P | K+ | Na+ | Ca2+ | Mg2+ | Al3+ | H + Al | |
H2O | KCl | mg dm−3 | cmolc dm−3 | ||||||
6.30 | 5.69 | 117.3 | 46.0 | 6.60 | 5.68 | 0.55 | 0.00 | 1.90 | |
SB | t | T | V | m | SSI | OM | N-total | P-rem | |
cmolc dm−3 | % | dag kg−1 | mg L−1 | ||||||
6.38 | 6.38 | 8.28 | 77.1 | 0.00 | 0.35 | 2.96 | 0.115 | 37.0 | |
S | B | Cu | Mn | Fe | Zn | Cr | Ni | Cd | Pb |
mg dm−3 | |||||||||
1.90 | 0.26 | 2.54 | 40.5 | 54.1 | 12.93 | 0.00 | 0.78 | 0.42 | 1.26 |
Function | Function Description | Formula | Reference |
---|---|---|---|
FG | Final germination percentage | n—number of germinated seeds; N—total number of seeds. | ISTA [35] |
GSI | Germination speed index | ni—number of seeds germinated on each day of daily count until the last count; ti—number of days after starting the test in each count. | Maguire [36] |
T10 | Time required for germination of 10% of seeds | N—final number of germinated seeds; ni and nf—total num-ber of germinated seeds at adjacent counts at times ti and tf, respectively, when | Farooq et al. [37] |
T50 | Time required for germination of 50% of seeds | Same code as T10. | Farooq et al. [37] |
T90 | Time required for germination of 90% of seeds | Same code as T10. | Farooq et al. [37] |
MGT | Mean germination time | ni—number of seeds germinated each day (not cumulative, but specific to the i-th observation); ti—time elapsed from the beginning of the germination test to the i-th observation. | Labouriau [38] |
MGR | Mean germination rate | —mean germination time; GSCo— germination speed coefficient. | Labouriau [38] |
GUnif | Germination uniformity | T90—time required for germination of 90% of the seeds; T10—time required for germination of 10% of the seeds. | Demilly et al. [39] |
Variable | Mean Squares | CV | Depth | Cycles | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cycle | Depth | C × D | (%) | (cm) | 1 | 2 | 3 | ||||
T10 (days) | 1.42 × 101 ** | 1.26 × 100 ** | 1.22 × 100 ** | 5.89 | 0 | 5.979 | b | 6.634 | a | 5.760 | b |
5 | 6.119 | ab | 6.321 | a | 5.639 | b | |||||
10 | 6.841 | a | 6.515 | a | 5.835 | b | |||||
15 | 7.280 | a | 6.788 | a | 5.675 | b | |||||
20 | 8.435 | a | 6.617 | b | 5.987 | b | |||||
25 | 7.813 | a | 6.383 | b | 5.429 | c | |||||
30 | 7.606 | a | 5.873 | b | 5.777 | b | |||||
T50 (days) | 6.38 × 100 ** | 1.50 × 100 ** | 1.70 × 100 ** | 5.03 | 0 | 7.58 | b | 8.84 | a | 8.18 | ab |
5 | 8.62 | a | 8.47 | ab | 7.85 | b | |||||
10 | 8.70 | a | 8.73 | a | 7.86 | b | |||||
15 | 9.11 | a | 8.71 | ab | 8.12 | b | |||||
20 | 10.19 | a | 8.72 | b | 8.66 | b | |||||
25 | 10.02 | a | 8.05 | b | 8.48 | b | |||||
30 | 10.06 | a | 7.81 | c | 8.76 | b | |||||
T90 (days) | 1.41 × 101 ** | 3.40 × 100 ** | 3.10 × 100 ** | 4.95 | 0 | 10.32 | b | 11.78 | a | 10.65 | b |
5 | 11.13 | b | 10.03 | c | 12.70 | a | |||||
10 | 12.56 | a | 9.80 | b | 12.02 | a | |||||
15 | 12.69 | a | 11.59 | b | 12.40 | ab | |||||
20 | 13.48 | a | 11.54 | b | 12.22 | b | |||||
25 | 12.43 | a | 10.40 | b | 11.50 | a | |||||
30 | 13.13 | a | 10.97 | b | 11.45 | b | |||||
FG (%) | 3.04 × 103 ** | 7.90 × 102 ** | 1.23 × 102 ** | 9.64 | 0 | 68.47 | a | 58.06 | b | 69.48 | a |
5 | 71.34 | a | 48.56 | c | 60.02 | b | |||||
10 | 53.59 | a | 40.97 | b | 54.38 | a | |||||
15 | 61.58 | a | 45.00 | b | 55.32 | a | |||||
20 | 49.37 | a | 27.68 | b | 47.84 | a | |||||
25 | 58.07 | a | 34.09 | b | 64.25 | a | |||||
30 | 45.88 | b | 29.92 | c | 61.35 | a |
Variable | Mean Squares | CV | Depth | Cycles | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cycle | Depth | C × D | (%) | (cm) | 1 | 2 | 3 | ||||
GSI | 3.68 × 102 ** | 9.04 × 101 ** | 4.53 × 101 ** | 8.76 | 0 | 8.35 | c | 16.58 | b | 23.59 | a |
5 | 23.62 | a | 17.85 | c | 20.46 | b | |||||
10 | 15.89 | b | 15.17 | b | 18.89 | a | |||||
15 | 18.07 | a | 12.92 | b | 18.73 | a | |||||
20 | 9.74 | b | 8.60 | b | 16.29 | a | |||||
25 | 13.46 | b | 11.06 | c | 21.76 | a | |||||
30 | 10.78 | b | 11.57 | b | 20.74 | a | |||||
MGT (days) | 6.51 × 100 * | 1.48 × 100 ** | 1.31 × 100 * | 4.90 | 0 | 8.29 | b | 9.52 | a | 8.74 | b |
5 | 9.07 | a | 8.43 | a | 8.95 | a | |||||
10 | 9.54 | a | 8.41 | b | 8.54 | b | |||||
15 | 9.87 | a | 9.65 | a | 8.85 | b | |||||
20 | 10.45 | a | 9.42 | b | 9.11 | b | |||||
25 | 10.41 | a | 8.79 | b | 8.89 | b | |||||
30 | 10.58 | a | 8.65 | b | 8.92 | b | |||||
MGR (%) | 8.58 × 100 ** | 2.55 × 100 ** | 2.04 × 100 ** | 5.44 | 0 | 12.19 | a | 10.53 | b | 11.49 | a |
5 | 11.06 | a | 11.88 | a | 11.23 | a | |||||
10 | 10.64 | b | 11.89 | a | 11.71 | a | |||||
15 | 10.24 | b | 10.41 | b | 11.37 | a | |||||
20 | 8.97 | b | 10.63 | a | 11.07 | a | |||||
25 | 9.66 | b | 11.42 | a | 11.26 | a | |||||
30 | 9.47 | b | 11.60 | a | 11.27 | a | |||||
GUnif | 2.03 × 101 * | 1.01 × 100 ** | 2.02 × 100 ** | 7.32 | 0 | 4.343 | b | 5.149 | a | 4.887 | ab |
5 | 5.006 | b | 3.704 | c | 7.065 | a | |||||
10 | 5.783 | a | 3.288 | b | 6.189 | a | |||||
15 | 5.415 | b | 4.801 | b | 6.721 | a | |||||
20 | 5.172 | b | 4.921 | b | 6.228 | a | |||||
25 | 4.871 | b | 4.018 | c | 6.074 | a | |||||
30 | 5.327 | a | 5.097 | a | 5.678 | a |
Variable | Mean Squares | CV | Depth | Cycles | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cycle | Depth | C × D | (%) | (cm) | 1 | 2 | 3 | ||||
RL (cm) | 1.67 × 100 ** | 1.62 × 100 ** | 8.87 × 10−1 ** | 13.38 | 0 | 3.699 | a | 3.215 | ab | 2.630 | b |
5 | 4.208 | a | 3.443 | b | 2.960 | b | |||||
10 | 3.313 | a | 3.055 | a | 3.225 | a | |||||
15 | 3.421 | a | 2.174 | b | 2.738 | b | |||||
20 | 2.887 | a | 2.488 | ab | 2.168 | b | |||||
25 | 2.828 | a | 2.777 | a | 2.849 | a | |||||
30 | 2.209 | b | 2.172 | b | 3.446 | a | |||||
SL (cm) | 8.96 × 10−2 ns | 4.66 × 100 ** | 5.90 × 100 ** | 12.95 | 0 | 8.458 | a | 4.962 | b | 5.670 | b |
5 | 6.203 | a | 6.442 | a | 5.775 | a | |||||
10 | 7.807 | a | 5.663 | b | 5.863 | b | |||||
15 | 5.846 | a | 5.944 | a | 5.525 | a | |||||
20 | 3.708 | b | 5.387 | a | 5.429 | a | |||||
25 | 4.776 | b | 6.267 | a | 5.772 | ab | |||||
30 | 3.293 | b | 6.012 | a | 5.887 | a | |||||
SFM (mg pl−1) | 1.43 × 104 ** | 1.51 × 103 * | 1.16 × 103 ** | 11.82 | 0 | 129.7 | a | 143.9 | a | 130.2 | a |
5 | 96.3 | c | 156.4 | a | 126.0 | b | |||||
10 | 96.0 | b | 122.7 | ab | 141.6 | a | |||||
15 | 121.1 | a | 143.6 | a | 137.1 | a | |||||
20 | 91.2 | a | 113.5 | a | 111.4 | a | |||||
25 | 56.4 | b | 135.5 | a | 137.6 | a | |||||
30 | 79.3 | c | 153.2 | a | 124.0 | b | |||||
SDM (mg pl−1) | 1.72 × 102 * | 9.39 × 101 ** | 2.51 × 101 ** | 11.23 | 0 | 23.21 | b | 28.48 | a | 26.75 | ab |
5 | 20.08 | b | 30.35 | a | 21.42 | b | |||||
10 | 18.22 | a | 21.31 | a | 21.14 | a | |||||
15 | 21.36 | a | 22.47 | a | 22.34 | a | |||||
20 | 20.97 | a | 20.76 | a | 17.34 | a | |||||
25 | 13.73 | b | 21.65 | a | 21.95 | a | |||||
30 | 14.95 | b | 22.16 | a | 18.65 | ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, M.O.; de Miranda, A.G.S.; da Silva, P.A.; de Oliveira, J.T.; da Cunha, F.F. Growth Performance of Sabia Grass Irrigated by Drippers Installed in Subsurface. AgriEngineering 2024, 6, 3443-3459. https://doi.org/10.3390/agriengineering6030196
Rocha MO, de Miranda AGS, da Silva PA, de Oliveira JT, da Cunha FF. Growth Performance of Sabia Grass Irrigated by Drippers Installed in Subsurface. AgriEngineering. 2024; 6(3):3443-3459. https://doi.org/10.3390/agriengineering6030196
Chicago/Turabian StyleRocha, Mayara Oliveira, Amilton Gabriel Siqueira de Miranda, Policarpo Aguiar da Silva, Job Teixeira de Oliveira, and Fernando França da Cunha. 2024. "Growth Performance of Sabia Grass Irrigated by Drippers Installed in Subsurface" AgriEngineering 6, no. 3: 3443-3459. https://doi.org/10.3390/agriengineering6030196
APA StyleRocha, M. O., de Miranda, A. G. S., da Silva, P. A., de Oliveira, J. T., & da Cunha, F. F. (2024). Growth Performance of Sabia Grass Irrigated by Drippers Installed in Subsurface. AgriEngineering, 6(3), 3443-3459. https://doi.org/10.3390/agriengineering6030196