Optimization of the Design of a Greenhouse LED Luminaire with Immersion Cooling
Abstract
:1. Introduction
2. Materials and Methods
- lM—length of the thermal circuit section in the material, m;
- SM—cross-sectional area of the material section, m2;
- λM—thermal conductivity coefficient of the profile material, W·m−1·K−1.
- lliq—length of the section (thickness) of the heat chain in the liquid, m;
- Sliq—cross-sectional area of the fluid section, m2;
- λliq—equivalent thermal conductivity coefficient of liquid, W·m−1·K−1;
- Grliq—Grasgof number;
- Prliq—Prandtl number;
- Raliq—Rayleigh number;
- λliq—fluid thermal conductivity coefficient W·m−1·K−1.
- g—acceleration of free fall, 9.8 m·s−2;
- βliq—coefficient of volumetric expansion of the liquid, K−1;
- Tled—temperature of the outer part of the LED line, K;
- Tc—temperature of the inner wall of the cylinder, K;
- vliq—coefficient of kinematic viscosity of liquid, m2·s−1;
- aliq—coefficient of thermal diffusivity for liquid, m2·s−1.
- Cliq—heat capacity of liquid, J·kg−1·K−1;
- ρliq—liquid density, kg·m−3.
3. Results and Discussion
- Spr—area of the metal profile on which the LEDs are placed, m2;
- Sin.c—area of the inner wall of the luminaire cylinder, m2.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanderson, S.W.; Simons, K.L. Light emitting diodes and the lighting revolution: The emergence of a solid-state lighting industry. Res. Policy 2014, 43, 1730–1746. [Google Scholar] [CrossRef]
- Esteki, M.; Khajehoddin, S.A.; Safaee, A.; Li, Y. LED Systems Applications and LED Driver Topologies: A Review. IEEE Access 2023, 11, 38324–38358. [Google Scholar] [CrossRef]
- Al Murad, M.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Yudina, L.; Sukhova, E.; Mudrilov, M.; Nerush, V.; Pecherina, A.; Smirnov, A.A.; Dorokhov, A.S.; Chilingaryan, N.O.; Vodeneev, V.; Sukhov, V. Ratio of Intensities of Blue and Red Light at Cultivation Influences Photosynthetic Light Reactions, Respiration, Growth, and Reflectance Indices in Lettuce. Biology 2022, 11, 60. [Google Scholar] [CrossRef]
- Rakutko, S.A.; Rakutko, E.N.; Medvedev, G.V. Development of an Experimental Phytotron and its Application in the Research on the Energy-ecological Efficiency of Indoor Plant Lighting. Agric. Mach. Technol. 2023, 17, 40–48. (In Russia) [Google Scholar] [CrossRef]
- Smirnov, A.A.; Semenova, N.A.; Dorokhov, A.S.; Proshkin, Y.A.; Godyaeva, M.M.; Vodeneev, V.; Sukhov, V.; Panchenko, V.; Chilingaryan, N.O. Influence of Pulsed, Scanning and Constant (16- and 24-h) Modes of LED Irradiation on the Physiological, Biochemical and Morphometric Parameters of Lettuce Plants (Lactuca sativa L.) while Cultivated in Vertical Farms. Agriculture 2022, 12, 1988. [Google Scholar] [CrossRef]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 56. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Sipos, L.; Boros, I.F.; Csambalik, L.; Székely, G.; Jung, A.; Balázs, L. Horticultural lighting system optimalization: A rev. Sci. Hort. 2020, 273, 109631. [Google Scholar] [CrossRef]
- Wu, B.-S.; Hitti, Y.; MacPherson, S.; Orsat, V.; Lefsrud, M.G. Comparison and perspective of conventional and LED lighting for photobiology and industry applications. Environ. Exp. Bot. 2020, 171, 103953. [Google Scholar] [CrossRef]
- Katzin, D.; van Mourik, S.; Kempkes, F.; van Henten, E.J. GreenLight–An open source model for greenhouses with supplemental lighting: Evaluation of heat requirements under LED and HPS lamps. Biosyst. Eng. 2020, 194, 61–81. [Google Scholar] [CrossRef]
- Chang, M.H.; Das, D.; Varde, P.V.; Pecht, M. Light emitting diodes reliability review. Microelectron. Reliab. 2012, 52, 762–782. [Google Scholar] [CrossRef]
- Luo, X.; Hu, R.; Liu, S.; Wang, K. Heat and fluid flow in high-power LED packaging and applications. Prog. Energy Combust. Sci. 2016, 56, 1–32. [Google Scholar] [CrossRef]
- Chhajed, S.; Xi, Y.; Gessmann, T.; Xi, J.-Q.; Shah, J.M.; Kim, J.K.; Schubert, E.F. Junction temperature in light-emitting diodes assessed by different methods. Light. Diodes Res. Manuf. Appl. 2005, 16, 5739. [Google Scholar] [CrossRef]
- Shailesh, K.R.; Kurian, C.P.; Kini, S.G. Understanding the reliability of LED luminaires. Light. Res. and Technol. 2017, 50, 1179–1197. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H. Lifetime estimation of LED lamp using gamma process model. Microelectron. Reliab. 2016, 57, 71–78. [Google Scholar] [CrossRef]
- Meng, H.; Kong, F.; Li, K. General Analytical Method for Heat Dissipation of N-Layer High-Power LED Systems. IEEE Access 2021, 9, 158917–158925. [Google Scholar] [CrossRef]
- Li, Z.; Tan, J.; Li, J.; Ding, X.; Tang, Y. A review on thermal management of light-emitting diodes: From package-level to system-level. Appl. Therm. Eng. 2024, 257, 124145. [Google Scholar] [CrossRef]
- Adhikari, R.; Beyragh, D.; Pahlevani, M.; Wood, D. A Numerical and Experimental Study of a Novel Heat Sink Design for Natural Convection Cooling of LED Grow Lights. Energies 2020, 13, 4046. [Google Scholar] [CrossRef]
- Şevik, S.; Abuşka, M.; Özdilli, Ö. Thermal performance analysis of a novel linear LED housing with inner and outer fins. Int. Commun. Heat Mass Transf. 2020, 119, 104970. [Google Scholar] [CrossRef]
- Delendik, K.; Kolyago, N.; Voitik, O. Design and investigation of cooling system for high-power LED luminaire. Comput. Math. Appl. 2021, 83, 84–94. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, Y.; Ren, H.; Zhang, C.; Wang, M.; Tang, X.; Ding, S. Heat dissipation design and optimization of high-power LED lamps. Therm. Sci. Eng. Prog. 2023, 37, 101587. [Google Scholar] [CrossRef]
- Pekur, D.V.; Sorokin, V.M.; Nikolaenko, Y.E. Thermal characteristics of a compact LED luminaire with a cooling system based on heat pipes. Therm. Sci. Eng. Prog. 2020, 18, 100549. [Google Scholar] [CrossRef]
- Wang, M.; Tao, H.; Sun, Z.; Zhang, C. The development and performance of the high-power LED radiator. Int. J. Therm. Sci. 2017, 113, 65–72. [Google Scholar] [CrossRef]
- Hao, X.; Little, C.; Khosla, S. Led inter-lighting in year-round greenhouse mini-cucumber production. In Proceedings of the International Symposium on Light in Horticultural Systems, VII International Symposium Acta Hortic (ISHS Acta Horticulturae 956), Wageningen, The Netherlands, 15–18 October 2012; pp. 335–340. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Supplemental LED inter-lighting compensates for a shortage of light for plant growth and yield under the lack of sunshine. PLoS ONE 2018, 13, e0206592. [Google Scholar] [CrossRef]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED Lighting Systems for Horticulture: Business Growth and Global Distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Arik, M.; Utturkar, Y.; Weaver, S. Immersion Cooling of Light Emitting Diodes. In Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 12th IEEE Intersociety Conference (ITherm 2010), Las Vegas, NV, USA, 2–5 June 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Cengiz, C.; Mete Muslu, A.; Arik, M.; Dogruoz, B. Enhanced Thermal Performance of High Flux LED Systems with Two-Phase Immersion Cooling. In Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 19th IEEE Intersociety Conference (ITherm 2020), Orlando, FL, USA, 21–23 July 2020; pp. 196–206. [Google Scholar] [CrossRef]
- Kahvecioglu, H.I.; Tamdogan, E.; Arik, M. Investigation of combined optical and thermal effects on phosphor converted light-emitting diodes with liquid immersion cooling. Opt. Eng. 2018, 57, 055101. [Google Scholar] [CrossRef]
- Azarifar, M.; Cengiz, C.; Arik, M. Thermal and optical performance characterization of bare and phosphor converted LEDs through package level immersion cooling. Int. J. Heat Mass Transf. 2022, 189, 122607. [Google Scholar] [CrossRef]
- Arik, M.; Petroski, J.; Weaver, S. Thermal challenges in the future generation solid state lighting applications: Light emitting diodes. In Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), ITherm 2002, San Diego, CA, USA, 27–30 May 2002; pp. 113–120. [Google Scholar] [CrossRef]
- Roffi, T.M.; Idris, I.; Uchida, K.; Nozaki, S.; Sugiyama, N.; Morisaki, H.; Soelami, F.X.N. Improvement of high-power-white-LED lamp performance by liquid injection. In Proceedings of the International Conference on Electrical Engineering and Informatics, 2011 Intl Conf on (PRT), Bandung, Indonesia, 17–19 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, W.; Liu, X.; Lai, W.; Cheng, X.; Ye, X. The comparative study on thermal performance and life time of liquid cooling LED bulb lamp and traditional LED bulb lamp. In Proceedings of the International Forum on Solid State Lighting, 10th China International Forum (ChinaSSL), Beijing, China, 10–12 November 2013; pp. 122–124. [Google Scholar] [CrossRef]
- Kachan, S.A.; Smirnov, A.A.; Proshkin, Y.A.; Izmailov, A.Y.; Dorokhov, A.S.; Burynin, D.A. Liquid Phyto-Irradiator for Plants. Patent RU 209726 U1, 21 March 2022. [Google Scholar]
- Kachan, S.A.; Smirnov, A.A.; Proshkin, Y.A.; Izmailov, A.Y.; Dorokhov, A.S.; Burynin, D.A. LED Liquid Phyto-Irradiator for Circular Irradiation of Plants. Patent RU 2 777 658 C1, 8 July 2022. [Google Scholar]
- Lykov, A.V. Theory of thermal conductivity. In Textbook Higher School; Higher Education: Moscow, Russia, 1967; p. 600. [Google Scholar]
- Bukhmirov, V.V. Heat and Mass Transfer. In Textbook Ivanovo State Power Engineering University Named after V.I. Lenin; The Science: Ivanovo, Russia, 2014; p. 360. [Google Scholar]
- Campos, D. Handbook on Navier-Stokes Equations: Theory and Applied Analysis; Nova Science Publishers Incorporated: Hauppauge, NY, USA, 2017; p. 506. [Google Scholar]
- Tsvetkov, F.F.; Grigoriev, B.A. Heat and Mass Transfer: A Textbook for Universities, 2nd ed.; Corrected and Enlarged; MPEI Publishing House: Moscow, Russia, 2005; p. 550. [Google Scholar]
- Mikheev, M.A.; Mikheeva, I.M. A Short Course in Heat Transfer; Gosenergoizdat: Moscow, Russia, 1961; p. 208. [Google Scholar]
- Tamdogan, E.; Arik, M. Natural Convection Immersion Cooling With Enhanced Optical Performance of Light-Emitting Diode Systems. J. Electron. Packag. 2015, 137, 041006. [Google Scholar] [CrossRef]
- Arik, M.; Weaver, S.; Becker, C.; Hsing, M.; Srivastava, A. Effects of Localized Heat Generations Due to the Color Conversion in Phosphor Particles and Layers of High Brightness Light Emitting Diodes. In Proceedings of the International Electronic Packaging Technical Conference and Exhibition, ASME 2003, Maui, HI, USA, 6–11 July 2003; pp. 611–619. [Google Scholar] [CrossRef]
Material | Thermal Characterization of the Substance | Values | Unit of Measurement |
---|---|---|---|
Polycarbonate | ) | 0.2 | W·m−1·K−1 |
Glass | ) | 1 | W·m−1·K−1 |
Aluminum alloy AMg5 | ) | 117 | W·m−1·K−1 |
Polymethylsiloxane liquid PMS 5 | 920 | kg·m−3 | |
1632 | J·kg−1·K−1 | ||
) | 0.167 | W·m−1·K−1 | |
5 × 10−6 | m·s−2 | ||
Volumetric expansion coefficient, | 12 × 10−4 | K−1 |
Material | Thermal Resistance, K·W−1 |
---|---|
Glass | 100 |
Polycarbonate | 500 |
Aluminum alloy AMg5 | 0.855 |
Polymethylsiloxane liquid PMS 5 | 104 |
Material | Thermal Conductivity, W/(m·K) | Thermal Resistance at a Volume of 10 mm3, K/W |
---|---|---|
HFE7200 | 0.075 | 95 |
PSM-5 | 0.167 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhonov, P.V.; Smirnov, A.A.; Proshkin, Y.A.; Burynin, D.A.; Kachan, S.A.; Dorokhov, A.S. Optimization of the Design of a Greenhouse LED Luminaire with Immersion Cooling. AgriEngineering 2024, 6, 3460-3473. https://doi.org/10.3390/agriengineering6030197
Tikhonov PV, Smirnov AA, Proshkin YA, Burynin DA, Kachan SA, Dorokhov AS. Optimization of the Design of a Greenhouse LED Luminaire with Immersion Cooling. AgriEngineering. 2024; 6(3):3460-3473. https://doi.org/10.3390/agriengineering6030197
Chicago/Turabian StyleTikhonov, Pavel V., Alexander A. Smirnov, Yuri A. Proshkin, Dmitry A. Burynin, Sergey A. Kachan, and Alexey S. Dorokhov. 2024. "Optimization of the Design of a Greenhouse LED Luminaire with Immersion Cooling" AgriEngineering 6, no. 3: 3460-3473. https://doi.org/10.3390/agriengineering6030197
APA StyleTikhonov, P. V., Smirnov, A. A., Proshkin, Y. A., Burynin, D. A., Kachan, S. A., & Dorokhov, A. S. (2024). Optimization of the Design of a Greenhouse LED Luminaire with Immersion Cooling. AgriEngineering, 6(3), 3460-3473. https://doi.org/10.3390/agriengineering6030197