Computational Techniques for Analysis of Thermal Images of Pigs and Characterization of Heat Stress in the Rearing Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Study Area
2.2. Data Collection
2.2.1. Recording of Thermal Images
2.2.2. Recording of Environmental Variables
2.2.3. Tool Used
Preprocessing
Segmentation
Feature Extraction
- n is the number of samples,
- y is the observed value for each sample,
- p is the predicted value by the model for each sample,
- | | represents the absolute value.
Recognition and Interpretation—Classifier
3. Results
3.1. Preprocessing
3.1.1. Segmentation by the Otsu Method
3.1.2. Color Targeting
3.1.3. Measurement Metrics for Your Targets
3.2. Feature Extraction
3.3. Thermal Comfort Assessment
3.4. Sorter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, S.T.; Nääs, I.D.A.; dos Reis, J.G.M.; Costa Neto, P.L.D.O.; Toloi, R.C.; Santos, R.C.; Vendrametto, O.; Sanches, A.C. Impacto do microclima do caminhão na temperatura superficial de suínos durante a logística pré-abate. Res. Soc. Dev. 2021, 10, 13. Available online: https://rsdjournal.org/index.php/rsd/article/view/21077 (accessed on 3 September 2024).
- de Oliveira Alves, D.; Przyvara Rizzatti, E.; Alves Feitosa Filho, L.; Grisa Hahn, K. Custo de produção da suinocultura: Comparativo de rentabilidade da suinocultura de cria e recria nos períodos de 2019 a 2022, em uma unidade produtiva situada no município de Ampére no sudoeste do Paraná. RECIMA21 Rev. Científica Multidiscip. 2023, 4, e414465. [Google Scholar] [CrossRef]
- Cai, Z.; Cui, J.; Yuan, H.; Cheng, M. Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: A review. Comput. Electron. Agric. 2023, 205, 107586. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Hayes, M.D.; Rohrer, G.A.; Eigenberg, R.A. Thermal comfort evaluation of three genetic lines of nursery pigs using thermal images. Biosyst. Eng. 2023, 225, 1–12. [Google Scholar] [CrossRef]
- da Silva Rodrigues, A.V.; Martello, L.S.; Pacheco, V.M.; de Souza Sardinha, E.J.; Pereira, A.L.V.; de Sousa, R.V. Thermal signature: A method to extract characteristics from infrared thermography data applied to the development of animal heat stress classifier models. J. Therm. Biol. 2023, 115, 103609. [Google Scholar]
- Titto, C.G.; Henrique, F.L.; Pantoja, M.H.D.A.; Çakmakçı, C.; Silva, P.D.S. Editorial: Behavior and heat stress. Front. Vet. Sci. 2023, 10. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Wang, C.; Zhang, Y.; Zong, Z.; Wang, H.; Su, L.; Du, Y. A Non-Contact Cow Estrus Monitoring Method Based on the Thermal Infrared Images of Cows. Agriculture 2023, 13, 385. [Google Scholar] [CrossRef]
- Coşkun, G.; Şahin, Ö.; Delialioğlu, R.A.; Altay, Y.; Aytekin, İ. Diagnosis of lameness via data mining algorithm by using thermal camera and image processing method in Brown Swiss cows. Trop. Anim. Health Prod. 2023, 55, 50. [Google Scholar] [CrossRef]
- Wilson, A.N.; Gupta, K.A.; Koduru, B.H.; Kumar, A.; Jha, A.; Cenkeramaddi, L.R. Recent Advances in Thermal Imaging and its Applications Using Machine Learning: A Review. IEEE Sens. J. 2023, 23, 3395–3407. [Google Scholar] [CrossRef]
- Godyń, D.; Herbut, P. Applications of continuous body temperature measurements in pigs—A review. Anim. Sci. For. Wood Technol. Hortic. Landsc. Archit. Land Reclam. 2018, 56, 209–220. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Li, S.; Gan, Q. Effects of ambient temperature and relative humidity and measurement site on the cow’s body temperature measured by infrared thermography. J. Zhejiang Univ. (Agric. Life Sci.) 2020, 46, 500–508. [Google Scholar]
- Kadirvel, G.; Gonmei, C.; Singh, N.S. Assessment of Rectal Temperature using Infrared Thermal Camera in Pigs. Indian J. Sci. Technol. 2022, 15, 2041–2046. [Google Scholar] [CrossRef]
- Wang, B.; Qi, J.; An, X.; Wang, Y. Heterogeneous fusion of biometric and deep physiological features for accurate porcine cough recognition. PLoS ONE 2024, 19, e0297655. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S. A Method for Obtaining 3D Point Cloud Data by Combining 2D Image Segmentation and Depth Information of Pigs. Animals 2023, 13, 2472. [Google Scholar] [CrossRef] [PubMed]
- Küster, S.; Haverkamp, L.; Schlather, M.; Traulsen, I. An Approach towards a Practicable Assessment of Neonatal Piglet Body Core Temperature Using Automatic Object Detection Based on Thermal Images. Agriculture 2023, 13, 812. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, G.; Willard, N.C.; Ellis, M.; Gates, R.S. Modeling neonatal piglet rectal temperature with thermography and machine learning. J. ASABE 2023, 66, 193–204. [Google Scholar] [CrossRef]
- Tucker, B.S.; Jorquera-Chavez, M.; Petrovski, K.R.; Craig, J.R.; Morrison, R.S.; Smits, R.J.; Kirkwood, R.N. Comparing surface temperature locations with rectal temperature in neonatal piglets under production conditions. J. Appl. Anim. Res. 2023, 51, 212–219. [Google Scholar] [CrossRef]
- Singh, O.; Kashyap, K.L.; Singh, K.K. Meshless technique for lung computed tomography image enhancement. Biomed. Signal Process. Control. 2023, 81, 104452. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Liu, K.; Mostacci, M.; Yao, Y.; Sfarra, S. Deep convolutional autoencoder thermography for artwork defect detection. Quant. Infrared Thermogr. J. 2023, 1–17. [Google Scholar] [CrossRef]
- McManus, R.; Boden, L.A.; Weir, W.; Viora, L.; Barker, R.; Kim, Y.; McBride, P.; Yang, S. Thermography for disease detection in livestock: A scoping review. Front. Vet. Sci. 2022, 9, 965622. [Google Scholar] [CrossRef]
- Colaco, S.J.; Kim, J.H.; Poulose, A.; Neethirajan, S.; Han, D.S. DISubNet: Depthwise Separable Inception Subnetwork for Pig Treatment Classification Using Thermal Data. Animals 2023, 13, 1184. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Wang, K.; Shuang, F.; Dong, D.; Jiao, L. A Smartphone-Based Sensor with an Uncooled Infrared Thermal Camera for Accurate Temperature Measurement of Pig Groups. Front. Phys. 2022, 10, 893131. [Google Scholar] [CrossRef]
- Nolêto, R.M.A.; Nolêto, C.; Santos, N.P.S.; Madeira, A.M.A. Inovações no Reconhecimento e Detecção de Animais: Uma Análise da Literatura com Ênfase em Redes Neurais e Aprendizado de Máquina. In Anais do XVI Encontro Unificado de Computação do Piauí (ENUCOMPI 2023); Sociedade Brasileira de Computação, 2023; pp. 33–40. Available online: https://scholar.google.com.br/citations?view_op=view_citation&hl=pt-BR&user=rHzm68cAAAAJ&citation_for_view=rHzm68cAAAAJ:W7OEmFMy1HYC (accessed on 10 October 2023).
- Whittaker, A.L.; Muns, R.; Wang, D.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Mota-Rojas, D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals 2023, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, H.S.; da Paz, C.D.; Cocozza, F.D.M.; de Oliveira, J.G.A.; Silva, M.A.V. Plantas medicinais da caatinga: Uma revisão integrativa dos saberes etnobotânicos no semiárido nordestino. Arq. Ciências Saúde UNIPAR 2023, 27, 874–900. [Google Scholar] [CrossRef]
- Diniz, C.D.d.S.C.; Ataíde, E.M. Different substrates in the germination of pomegranate seeds. Braz. J. Anim. Environ. Res. 2023, 6, 1876–1882. [Google Scholar] [CrossRef]
- Barbosa Filho, J.A.D.; Silva, I.J.O.; Silva, M.A.N.; Silva, C.J.M. Avaliação dos comportamentos de aves poedeiras utilizando sequência de imagens. Eng. Agrícola 2007, 27, 93–99. [Google Scholar] [CrossRef]
- Kalaiyarasi, M.; Janaki, R.; Sampath, A.; Ganage, D.; Chincholkar, Y.D. Budaraju Non-additive noise reduction in medical images using bilateral filtering and modular neural networks. Soft Comput. 2023, 1–10. [Google Scholar] [CrossRef]
- Otsu, N.A. Threshold selection method from gray-level histograms. IEEE Transactions on Systems. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, P. Digital Image Processing. Hall, P., Ed.; 2007. Available online: https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=Threshold+selection+method+from+gray-level+histograms&btnG= (accessed on 10 October 2023).
- Bareli, F. Introdução à Visão Computacional: Uma Abordagem Prática com Python e OpenCV; 2019. [Google Scholar]
- Zhang, F.; Dai, Y.; Peng, X.; Wu, C.; Zhu, X.; Zhou, R.; Wu, Y. Brightness segmentation-based plateau histogram equalization algorithm for displaying high dynamic range infrared images. Infrared Phys. Technol. 2023, 134, 104894. [Google Scholar] [CrossRef]
- Wziątek-Kuczmik, D.; Niedzielska, I.; Mrowiec, A.; Bałamut, K.; Handzel, M.; Szurko, A. Is Thermal Imaging a Helpful Tool in Diagnosis of Asymptomatic Odontogenic Infection Foci—A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 16325. [Google Scholar] [CrossRef]
- Rodriguez, P.C.L.; Franca, A.S.; Pereira, F.G.; Nunes, R.B.; Cani, S.P.N.; Rampinelli Fernandes, M. Máquina De Vetores De Suporte Para Classificação De Anomalias Em Trilho a Partir De Características De Textura De Imagens Digitais. Rev. Ifes Ciência 2023, 9, 1–12. [Google Scholar] [CrossRef]
- Alfarzaeai, M.S.; Hu, E.; Peng, W.; Qiang, N.; Alkainaeai, M.M.A. Coal Gangue Classification Based on the Feature Extraction of the Volume Visual Perception ExM-SVM. Energies 2023, 16, 2064. [Google Scholar] [CrossRef]
- Draz, H.H.; Elashker, N.E.; Mahmoud, M.M.A. Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing. Circuits Syst. Signal Process. 2023, 42, 5545–5558. [Google Scholar] [CrossRef]
- Aghamaleki, J.A.; Ghorbani, A. Image fusion using dual tree discrete wavelet transform and weights optimization. Vis. Comput. 2023, 39, 1181–1191. [Google Scholar] [CrossRef]
- Bose, A.; Maulik, U.; Sarkar, A. An entropy-based membership approach on type-II fuzzy set (EMT2FCM) for biomedical image segmentation. Eng. Appl. Artif. Intell. 2023, 127, 107267. [Google Scholar] [CrossRef]
- Zhu, Y.; Nie, X.; Li, Y.; Nie, C.; Wang, C.; Gao, Z. A Novel Fault Diagnosis Method for Train Real-Time Ethernet Network Based on Physical Layer Electrical Signal Features. IEEJ Trans. Electr. Electron. Eng. 2023, 18, 1673–1681. [Google Scholar] [CrossRef]
- Nazarudin, A.A.; Zulkarnain, N.; Mokri, S.S.; Zaki, W.M.D.W.; Hussain, A.; Ahmad, M.F.; Nordin, I.N.A.M. Performance Analysis of a Novel Hybrid Segmentation Method for Polycystic Ovarian Syndrome Monitoring. Diagnostics 2023, 13, 750. [Google Scholar] [CrossRef] [PubMed]
- Tamoor, M.; Naseer, A.; Khan, A.; Zafar, K. Skin Lesion Segmentation Using an Ensemble of Different Image Processing Methods. Diagnostics 2023, 13, 2684. [Google Scholar] [CrossRef]
- Carlos de Carvalho, E.; Martins Coelho, A.; Conci, A.; Baffa, M.D.F.O. U-Net Convolutional Neural Networks for breast IR imaging segmentation on frontal and lateral view. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023, 11, 311–316. [Google Scholar] [CrossRef]
- Dumitru, R.G.; Peteleaza, D.; Craciun, C. Using DUCK-Net for polyp image segmentation. Sci. Rep. 2023, 13, 9803. [Google Scholar] [CrossRef]
- da Queiroz, K.F.F.C.; de Queiroz Júnior, J.R.A.; Dourado, H.; de Lima, R.D.C.F. Automatic segmentation of region of interest for breast thermographic image classification. Res. Biomed. Eng. 2023, 39, 199–208. [Google Scholar] [CrossRef]
- Srivastava, S.; Vidyarthi, A.; Jain, S. Analytical study of the encoder-decoder models for ultrasound image segmentation. Serv. Oriented Comput. Appl. 2023, 18, 81–100. [Google Scholar] [CrossRef]
- Yan, X.; Lin, B.; Fu, J.; Li, S.; Wang, H.; Fan, W.; Jiang, C. MRSNet: Joint consistent optic disc and cup segmentation based on large kernel residual convolutional attention and self-attention. Digit. Signal Process. 2023, 145, 104308. [Google Scholar] [CrossRef]
- Santosh Kumar, P.; Sakthivel, V.P.; Raju, M.; Satya, P.D. Brain tumor segmentation of the FLAIR MRI images using novel ResUnet. Biomed. Signal Process. Control 2023, 82, 104586. [Google Scholar] [CrossRef]
- Sharma, N.; Gupta, S.; Al Reshan, M.S.; Sulaiman, A.; Alshahrani, H.; Shaikh, A. EfficientNetB0 cum FPN Based Semantic Segmentation of Gastrointestinal Tract Organs in MRI Scans. Diagnostics 2023, 13, 2399. [Google Scholar] [CrossRef]
- Gomathi, P.; Muniraj, C.; Periasamy, P.S. Digital infrared thermal imaging system based breast cancer diagnosis using 4D U-Net segmentation. Biomed. Signal Process. Control 2023, 85, 104792. [Google Scholar] [CrossRef]
- Aleid, A.; Alhussaini, K.; Alanazi, R.; Altwaimi, M.; Altwijri, O.; Saad, A.S. Artificial Intelligence Approach for Early Detection of Brain Tumors Using MRI Images. Appl. Sci. 2023, 13, 3808. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Zhou, Y.; Sun, S.; Zhang, H.; Wang, Y. Automatic detection of indoor occupancy based on improved YOLOv5 model. Neural Comput. Appl. 2023, 35, 2575–2599. [Google Scholar] [CrossRef]
- Irujo, G.P. IRimage: Open source software for processing images from infrared thermal cameras. PeerJ Comput. Sci. 2022, 8, e977. [Google Scholar] [CrossRef]
- Nosrati, Z.; Bergamo, M.; Rodríguez-Rodríguez, C.; Saatchi, K.; Häfeli, U.O. Refinement and validation of infrared thermal imaging (IRT): A non-invasive technique to measure disease activity in a mouse model of rheumatoid arthritis. Arthritis Res. Ther. 2020, 22, 1–16. [Google Scholar] [CrossRef]
- Borges, P.A.C.; Silva, D.C.; da Silva, N.A.A.; Lima, V.H.; Queiroz, P.J.B.; Borges, N.C.; da Silva, L.A.F. Different methods of processing thermographic images to evaluate the carpal temperature of healthy calves. Cienc. Anim. Bras. 2022, 23, e70559. [Google Scholar] [CrossRef]
- Crameri, F.; Shephard, G.E.; Heron, P.J. The misuse of colour in science communication. Nat. Commun. 2020, 11, 5444. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Akhter, N.; Manza, R. Medical Image Processing of Thermal Images in Light of Applied Color Palettes. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 8, 1520–1524. [Google Scholar] [CrossRef]
- Gorczyca, M.T.; Milan, H.F.M.; Maia, A.S.C.; Gebremedhin, K.G. Machine learning algorithms to predict core, skin, and hair-coat temperatures of piglets. Comput. Electron. Agric. 2018, 151, 286–294. [Google Scholar] [CrossRef]
- Perdomo, C.C.; Kozen, E.A.; Sobestiansky, J.; Silva, A.P.; Silva, C.N.I. Considerações sobre edificações para suínos. 4.,1985. In Curso de Atualização sobre a Produção de Suínos; Embrapa, C., Aves, S.E., Eds.; CNPSA-EMBRAPA: Concórdia, Brazil, 1985. [Google Scholar]
- Kiefer, C.; Meignen, B.C.G.; Sanches, J.F.; Carrijo, A.S. Resposta de suínos em crescimento mantidos em diferentes temperaturas. Arch. Zootec. 2009, 58, 55–64. [Google Scholar] [CrossRef]
- Crone, C.; Caldara, F.R.; Martins, R.; de Oliveira, G.F.; Marcon, A.V.; Garcia, R.G.; dos Santos, L.S.; Almeida Paz, I.C.L.; Lippi, I.C.D.C.; Burbarelli, M.F.d.C. Environmental Enrichment for Pig welfare during Transport. J. Appl. Anim. Welf. Sci. 2023, 26, 393–403. [Google Scholar] [CrossRef]
- Dos Santos, T.C.; Carvalho, C.D.C.S.; da Silva, G.C.D.; Diniz, T.A.; Soares, T.E.; Moreira, S.D.J.M.; Cecon, P.R. Influência do ambiente térmico no comportamento e desempenho zootécnico de suínos. Rev. Ciências Agroveterinárias 2018, 17, 241–253. [Google Scholar] [CrossRef]
- Vásquez, N.; Cervantes, M.; Bernal-Barragán, H.; Rodríguez-Tovar, L.E.; Morales, A. Short- and Long-Term Exposure to Heat Stress Differently Affect Performance, Blood Parameters, and Integrity of Intestinal Epithelia of Growing Pigs. Animals 2022, 12, 2529. [Google Scholar] [CrossRef]
- Jia, G.; Li, W.; Meng, J.; Tan, H.; Feng, Y. Non-Contact Evaluation of Pigs’ Body Temperature Incorporating Environmental Factors. Sensors 2020, 20, 4282. [Google Scholar] [CrossRef]
- Alves, M.D.F.A.; Pandorfi, H.; Montenegro, A.A.D.A.; da Silva, R.A.B.; Gomes, N.F.; Santana, T.C.; de Almeida, G.L.P.; Marinho, G.T.B.; da Silva, M.V.; da Silva, W.A. Evaluation of Body Surface Temperature in Pigs Using Geostatistics. AgriEngineering 2023, 5, 1090–1103. [Google Scholar] [CrossRef]
- Sadeghi, M.; Banakar, A.; Minaei, S.; Orooji, M.; Shoushtari, A.; Li, G. Early Detection of Avian Diseases Based on Thermography and Artificial Intelligence. Animals 2023, 13, 2348. [Google Scholar] [CrossRef] [PubMed]
- Jaddoa, M.A.; Gonzalez, L.; Cuthbertson, H.; Al-Jumaily, A. Multiview eye localisation to measure cattle body temperature based on automated thermal image processing and computer vision. Infrared Phys. Technol. 2021, 119, 103932. [Google Scholar] [CrossRef]
- Saeedi, S.; Rezayi, S.; Keshavarz, H.R.; Niakan Kalhori, S. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med. Inform. Decis. Mak. 2023, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, L.; Tuba, E. Brain Tumor Segmentation and Classification using Texture Features and Support Vector Machine. In Proceedings of the 11th International Symposium on Digital Forensics and Security (ISDFS), Chattanooga, TN, USA, 11–12 May 2023; pp. 1–5. [Google Scholar]
- Yang, X.; Zhao, Y.; Street, G.M.; Huang, Y.; Filip To, S.D.; Purswell, J.L. Classification of broiler behaviours using triaxial accelerometer and machine learning. Animal 2021, 15, 100269. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.M.L.; Jørgensen, E.; Dybkjær, L.; Jørgensen, B. The ear skin temperature as an indicator of the thermal comfort of pigs. Appl. Anim. Behav. Sci. 2008, 113, 43–56. [Google Scholar] [CrossRef]
- Hoffer, O.; Rabin, T.; Nir, R.R.; Brzezinski, R.Y.; Zimmer, Y.; Gannot, I. Automated thermal imaging monitors the local response to cervical cancer brachytherapy. J. Biophotonics 2023, 16, e202200214. [Google Scholar] [CrossRef]
- Conceição, A.R.; Coeli, A.C.; Braga, P.H.S.; Oliveira, P.D.C.S.; Schultz, E.B. Tecnologias aplicadas ao monitoramento de parâmetros fisiológicos na produção de ruminantes. Rev. Agrar. Acad. 2023, 6, 27–37. [Google Scholar] [CrossRef]
- Stewart, M.; Wilson, M.T.; Schaefer, A.L.; Huddart, F.; Sutherland, M.A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. J. Dairy Sci. 2017, 100, 3893–3901. [Google Scholar] [CrossRef]
Color | Lower Limit | Upper Limit |
---|---|---|
Yellow | 10, 100, 100 | 50, 255, 255 |
Blue | 100, 100, 100 | 140, 255, 255 |
Green | 40, 100, 100 | 80, 255, 255 |
Red | 160, 100, 100 | 200, 255, 255 |
Color Intensity | Matching Temperature (°C) |
---|---|
(15, 0, 15) | 23.1 |
(31, 0, 31) | 23.2 |
(47, 0, 47) | 23.4 |
(63, 0, 63) | 23.5 |
Methods | Says | Jaccard | Precision |
---|---|---|---|
Otsu | 0.89 | 0.81 | 0.87 |
Color | 0.90 | 0.83 | 0.88 |
Metric | Air-Conditioned Environment | Non-Air-Conditioned Environment |
---|---|---|
MAE | 0.280 | 0.25 |
RMSE | 0.07 | 0.09 |
R2 | 0.96 | 0.93 |
Statistics | Air-Conditioned Environment | Natural Environment |
---|---|---|
Mean | 30.40–35.70 °C | 33.02–38.38 °C |
Minimum | 22.80 °C | 34.10 °C |
Maximum | 38.40 °C | 42.80 °C |
Performance Metrics | ||
---|---|---|
Precision | Accuracy | AUC |
0.80 | 0.91 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.d.F.A.; Pandorfi, H.; Soares, R.G.F.; Almeida, G.L.P.d.; Santana, T.C.; Silva, M.V.d. Computational Techniques for Analysis of Thermal Images of Pigs and Characterization of Heat Stress in the Rearing Environment. AgriEngineering 2024, 6, 3203-3226. https://doi.org/10.3390/agriengineering6030183
Alves MdFA, Pandorfi H, Soares RGF, Almeida GLPd, Santana TC, Silva MVd. Computational Techniques for Analysis of Thermal Images of Pigs and Characterization of Heat Stress in the Rearing Environment. AgriEngineering. 2024; 6(3):3203-3226. https://doi.org/10.3390/agriengineering6030183
Chicago/Turabian StyleAlves, Maria de Fátima Araújo, Héliton Pandorfi, Rodrigo Gabriel Ferreira Soares, Gledson Luiz Pontes de Almeida, Taize Calvacante Santana, and Marcos Vinícius da Silva. 2024. "Computational Techniques for Analysis of Thermal Images of Pigs and Characterization of Heat Stress in the Rearing Environment" AgriEngineering 6, no. 3: 3203-3226. https://doi.org/10.3390/agriengineering6030183
APA StyleAlves, M. d. F. A., Pandorfi, H., Soares, R. G. F., Almeida, G. L. P. d., Santana, T. C., & Silva, M. V. d. (2024). Computational Techniques for Analysis of Thermal Images of Pigs and Characterization of Heat Stress in the Rearing Environment. AgriEngineering, 6(3), 3203-3226. https://doi.org/10.3390/agriengineering6030183