Use of Dielectric Heating in Greenhouses
Abstract
:1. Introduction
- Department of Mechanical, Energy, Management and Transportation Engineering (DIME) of the University of Genoa,
- The Center for Agricultural Experimentation and Assistance (CeRSAA),
- The Center for Agricultural Vocational Education and Technical Assistance (CIPAT of Savona)
- The agricultural cooperative Florcoop,
- The Bertolotto Enrico horticultural enterprise.
2. Materials and Methods
2.1. Health Hazards and Safety Regulations
2.2. Design of the Antenna
2.2.1. Antenna A: Linear Polarised Circular Patch Microstrip Antenna
2.2.2. Antenna B: Linear Polarised Circular Patch Microstrip Antenna
2.2.3. Antenna C: Linear Polarised Circular Patch Microstrip Antenna
2.2.4. Antenna D: Implementation of 2 × 1 Linear Array
2.3. Microwave Heating Prototypes
2.3.1. Laboratory Prototype
2.3.2. Industrial Prototype
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D. Exploitation of low-temperature energy sources from cogeneration gas engines. Energy 2016, 108, 86–92. [Google Scholar] [CrossRef]
- Drofenik, J.; Urbancl, D.; Goričanec, D. Comparison of the New Refrigerant R1336mzz (E) with R1234ze (E) as an Alternative to R134a for Use in Heat Pumps. Processes 2022, 10, 218. [Google Scholar] [CrossRef]
- Adesanya, M.A.; Na, W.-H.; Rabiu, A.; Ogunlowo, Q.O.; Akpenpuun, T.D.; Rasheed, A.; Yoon, Y.-C.; Lee, H.-W. TRNSYS Simulation and Experimental Validation of Internal Temperature and Heating Demand in a Glass Greenhouse. Sustainability 2022, 14, 8283. [Google Scholar] [CrossRef]
- Bakos, G.C.; Fidanidis, D.; Tsagas, N.F. Greenhouse heating using geothermal energy. Geothermics 1999, 28, 759–765. [Google Scholar] [CrossRef]
- Marttila, M.P.; Uusitalo, V.; Linnanen, L.; Mikkilä, M.H. Agro-Industrial Symbiosis and Alternative Heating Systems for Decreasing the Global Warming Potential of Greenhouse Production. Sustainability 2021, 13, 9040. [Google Scholar] [CrossRef]
- Ellis, M.W.; Von Spakovsky, M.R.; Nelson, D.J. Fuel cell systems: Efficient, flexible energy conversion for the 21st century. Proc. IEEE 2001, 89, 1808–1818. [Google Scholar] [CrossRef]
- Castellini, A.; Farinelli, A.; Minuto, G.; Quaglia, D.; Secco, I.; Tinivella, F. EXPO-AGRI: Smart automatic greenhouse control. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Sanford, S. Reducing greenhouse energy consumption—An overview. Energy 2011, 3907. Available online: https://farm-energy.extension.org/wp-content/uploads/2019/04/2.-A3907-01.pdf (accessed on 16 July 2024).
- Ouazzani Chahidi, L.; Fossa, M.; Priarone, A.; Mechaqrane, A. Evaluation of supervised learning models in predicting greenhouse energy demand and production for intelligent and sustainable operations. Energies 2021, 14, 6297. [Google Scholar] [CrossRef]
- Garibaldi, A.; Gullino, M.L.; Minuto, G. Diseases of basil and their management. Plant Dis. 1997, 81, 124–132. [Google Scholar] [CrossRef]
- Reverberi, G.; Cepolina, F.; Pietronave, G.; Testa, M.; Ramadoss, V.; Zoppi, M. The minimal exoskeleton, a passive exoskeleton to simplify pruning and fruit collection. Eng. Agric. Environ. Food 2023, 16, 37–42. [Google Scholar] [CrossRef]
- Kavga, A.; Alexopoulos, G.; Bontozoglou, V.; Pantelakis, S.; Panidis, T. Experimental investigation of the energy needs for a conventionally and an infrared-heated greenhouse. Adv. Mech. Eng. 2012, 4, 789515. [Google Scholar] [CrossRef]
- Knies, P.; van de Braak, N.J.; Breuer, J.J. Infrared heating in greenhouses. In III International Symposium on Energy in Protected Cultivation; ISHS: Leuven, Belgium, 1983; Volume 148, pp. 73–80. [Google Scholar] [CrossRef]
- Teitel, M.; Shklyar, A.; Elad, Y.; Dikhtyar, V.; Jerby, E. Development of a microwave system for greenhouse heating. In Proceedings of the International Conference and British-Israeli Workshop on Greenhouse Techniques towards the 3rd Millennium, Haifa, Israel, 5–8 September 2000; pp. 189–196. [Google Scholar] [CrossRef]
- Cepolina, F.; Silenzi, F.; Cirillo, L.; Schenone, C.; Zoppi, M. Energizing Sustainable Agriculture: Advances in Greenhouse Heating through Microwave-Based Technologies. Energies 2023, 16, 7843. [Google Scholar] [CrossRef]
- Guess, M.J. Heating of Greenhouse Crops with Microwave Energy. Doctoral Dissertation, University of Leeds, Leeds, UK, 2011. [Google Scholar]
- Guess, M.J.; Hunter, I.C.; Abunjaileh, A.I. Improving energy efficiency by heating greenhouse crops with microwaves. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. Available online: https://ieeexplore.ieee.org/document/5973373 (accessed on 16 July 2024).
- European Parliament and Council. Directive 2013/35/EU on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Electromagnetic Fields). Off. J. Eur. Union L 179/1 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0035 (accessed on 16 July 2024).
- Council of the European Union. Directive 89/391/EEC of 12 June 1989 on the Introduction of Measures to Encourage Improvements in the Safety and Health of Workers at Work. Off. J. Eur. Union L 183/1 1989. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31989L0391 (accessed on 16 July 2024).
- Bisceglia, B.; Valbonesi, S.; Carciofi, C. Directive 2013/35/EU: A critical analysis. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium-Italy (ACES), Firenze, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Mainardi, F.; Barelli, E. Dielectric Relaxation in Biological Materials. 2015. Available online: https://amslaurea.unibo.it/9102/1/Eleonora_Barelli_tesi.pdf (accessed on 16 July 2024).
- Henry, F.; Gaudillat, M.; Costa, L.C.; Lakkis, F. Free and/or bound water by dielectric measurements. Food Chem. 2003, 82, 29–34. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Yang, H.W. Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. J. Food Eng. 2007, 78, 1452–1456. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-64206-1. [Google Scholar]
- Fatthi Alsager, A. Design and Analysis of Microstrip Patch Antenna Arrays. Unpublished Master’s Thesis, University College of Boras, Borås, Sweden, 2011. [Google Scholar]
- Yeo, U.-H.; Lee, S.-Y.; Park, S.-J.; Kim, J.-G.; Cho, J.-H.; Decano-Valentin, C.; Kim, R.-W.; Lee, I.-B. Rooftop Greenhouse: (2) Analysis of Thermal Energy Loads of a Building-Integrated Rooftop Greenhouse (BiRTG) for Urban Agriculture. Agriculture 2022, 12, 787. [Google Scholar] [CrossRef]
- Galema, S. Microwave chemistry. Chem. Soc. Rev. 1997, 26, 233–238. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heat-ing Strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Microwave dielectric heating: Applications on metals processing. Renew. Sustain. Energy Rev. 2018, 82, 2880–2892. [Google Scholar] [CrossRef]
- Venkatesh, M.S.; Raghavan, G.S.V. An overview of microwave processing and dielectric properties of agrifood materials. Biosyst. Eng. 2004, 88, 1–18. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Yang, H.-W. Optimization of pulsed microwave heating. J. Food Eng. 2007, 78, 1457–1462. [Google Scholar] [CrossRef]
- Huber, M.F. Heating Plants. UK Patent Application No. GB2120065A, 22 April 1982. [Google Scholar]
- Geedipalli, S.S.R.; Rakesh, V.; Datta, A.K. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J. Food Eng. 2007, 82, 359–368. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S. Models for the Microwave Dielectric Properties of Grain and Seed. Trans. ASABE 2011, 54, 549–553. [Google Scholar] [CrossRef]
- Schmutz, P.; Siegenthaler, J.; Stäger, C.; Tarjan, D.; Bucher, J.B. Long-term exposure of young spruce and beech trees to 2450-MHz microwave radiation. Sci. Total Environ. 1996, 180, 43–48. [Google Scholar] [CrossRef]
- Kundu, A.; Gupta, B.; Ray, S. A Study of Specific Absorption Rate in Coconut Exposed to RF Radiation. Microw. Rev. 2014, 20, 2–11. [Google Scholar]
- Abbey, L.; Udenigwe, C.; Mohan, A.; Anom, E. Microwave irradiation effects on vermicasts potency, and plant growth and antioxidant activity in seedlings of Chinese cabbage (Brassica rapa subsp. pekinensis). J. Radiat. Res. Appl. Sci. 2017, 10, 110–116. [Google Scholar] [CrossRef]
- Kratchanova, M.; Pavlova, E.; Panchev, I. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr. Polym. 2004, 56, 181–185. [Google Scholar] [CrossRef]
- Kozai, T.; Kitaya, Y.; Oh, Y.S. Microwave-Powered Lamps as a High Intensity Light Source for plant growth. Greenh. Environ. Control. Autom. 1994, 399, 107–112. [Google Scholar]
- Heredia, A.; Barrera, C.; Andrés, A. Drying of cherry tomato by a combination of different dehydration techniques: Comparison of kinetics and other related properties. J. Food Eng. 2007, 80, 111–118. [Google Scholar] [CrossRef]
- Mahdi, W.M.; Al-Badri, K.S.L.; Al-Samarrai, G.F. Use of microwave radiation in soil sterilization and effects on the bacteria, fungi, and growth characteristics of chickpea plant (Cicer arietinum L.). Plant Arch. 2019, 19, 2064–2069. [Google Scholar]
- Maynaud, G.; Baudoin, E.; Bourillon, J.; Duponnois, R.; Cleyet-Marel, J.C.; Brunel, B. Short-termeffect of 915-MHz microwave treatments on soil physicochemical and biological properties. Eur. J. Soil Sci. 2019, 70, 443–453. [Google Scholar] [CrossRef]
- Nelson, S.O. A review and assessment of microwave energy for soil treatment to control pests. Trans. ASAE 1996, 39, 281–289. [Google Scholar] [CrossRef]
- Sajid, M.U.; Saghir, M.Z.; Dincer, I.; Bicer, Y. Spectrum splitting through CuS–ZnO/water hybrid nanofluid for agricultural greenhouse cooling applications: An experimental study. J. Therm. Anal. Calorim. 2023, 148, 8387–8401. [Google Scholar] [CrossRef]
- Cepolina, E.M.; Cepolina, F.; Ferla, G. Brainstorm on artificial intelligence applications and evaluation of their commercial impact. IAES Int. J. Artif. Intell. 2022, 11, 799. [Google Scholar] [CrossRef]
- Molfino, R.; Cepolina, F.E.; Cepolina, E.; Cepolina, E.M.; Cepolina, S. Robots trends and megatrends: Artificial intelligence and the society. Ind. Robot Int. J. Robot Res. Appl. 2024, 51, 117–124. [Google Scholar] [CrossRef]
Symbol | Description | Unit |
---|---|---|
ELVs | Exposure limit values | Wkg−1 |
SAR | Specific Absorption Rate | Wkg−1 |
f | Frequency | MHz GHz |
fr = 2.45 GHz | Resonant frequency of organic plants | MHz GHz |
Resonant frequency with fringing effect | MHz GHz | |
Resonant frequency from cavity model | MHz GHz | |
Resonant frequency associated with length | MHz GHz | |
Resonant frequency associated with width W | MHz GHz | |
LA(E) | Electric field action level | Vm−1 |
LA(B) | Magnetic field action level | μT |
ϵr = 2.2 | Dielectric constant | - |
Effective constant | - | |
W | Optimal width of the patch | mm |
∆L | Effective length of the patch | cm |
ae | Effective radius with fringing effect | mm |
H | Height of substrate | cm |
L | Length of the antenna | mm |
y′ z′ | Feed point coordinates | cm |
λ | Wavelength of the signal | m |
λ0 | Free-space wavelength | m |
G1, G2 | Conductance | S |
Yin | Total input admittance | S |
Xmn | Zeroes of the derivative of the Bessel function | - |
Qt | Quality factor | - |
P | Power of antenna | W |
Exposure Limit Values (ELVs) | SAR |
---|---|
Whole-body heat stress ELV | 0.4 Wkg−1 |
ELV for head and trunk | 10 Wkg−1 |
ELV for the limbs | 20 Wkg−1 |
Frequency Range | LA (E) [Vm−1] (RMS) | LA (B) [μT] (RMS) |
---|---|---|
400 MHz ≤ f < 2 GHz | 3 × 10−3 f1/2 | 1.0 × 10−5 f |
2 ≤ f <6 GHz | 1.4 × 102 | 4.5 × 10−1 |
Antenna A | Antenna B | Antenna C | Antenna D | |
---|---|---|---|---|
Polarisation | linear | linear | circular | circular |
Patch | rectangular | circular | rectangular | rectangular |
Antenna Dimensions | 4.04 × 4.182 cm | Radius a = 2.28 cm | 4.674 × 5.001 cm | 4.674 × 5.001 cm |
Resonant frequency | 2.45 GHz | 2.45 GHz | 2.45 GHz | 2.45 GHz |
Height of substrate | 0.16 cm | 0.16 cm | 0.16 cm | 0.16 cm |
Subst. dielectric const. | 2.2 | 2.2 | 2.2 | 2.2 |
Number of elements | 1 | 1 | 1 | 2 |
Elements spacing | /2 | |||
Maximum Gain | 8.15 dBi | 8.45 dBi | 8.37 dBi | 10 dBi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cepolina, F.; Cirillo, L.; Zoppi, M. Use of Dielectric Heating in Greenhouses. AgriEngineering 2024, 6, 2352-2365. https://doi.org/10.3390/agriengineering6030137
Cepolina F, Cirillo L, Zoppi M. Use of Dielectric Heating in Greenhouses. AgriEngineering. 2024; 6(3):2352-2365. https://doi.org/10.3390/agriengineering6030137
Chicago/Turabian StyleCepolina, Francesco, Leonardo Cirillo, and Matteo Zoppi. 2024. "Use of Dielectric Heating in Greenhouses" AgriEngineering 6, no. 3: 2352-2365. https://doi.org/10.3390/agriengineering6030137
APA StyleCepolina, F., Cirillo, L., & Zoppi, M. (2024). Use of Dielectric Heating in Greenhouses. AgriEngineering, 6(3), 2352-2365. https://doi.org/10.3390/agriengineering6030137