Agricultural Tractor Test: A Bibliometric Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Characterization
2.2. Selection and Adjustments in Databases
2.3. Bibliometric Mapping
3. Results and Discussion
3.1. Research Evolution
3.2. Top Journals’ Research
Paper | DOI—Title | TC | TC Year |
---|---|---|---|
Liu et al., 2008 [32] | 10.1016/j.ejor.2007.06.032—On solving multiobjective bin packing problems using evolutionary particle swarm optimization | 112 | 7.47 |
Kheiralla et al., 2004 [64] | 10.1016/j.still.2003.12.011—Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia | 77 | 4.05 |
Grisso et al., 2004 [65] | 10.13031/2013.17455—Predicting tractor fuel consumption | 69 | 3.63 |
Hameed et al., 2016 [68] | 10.1016/j.robot.2015.11.009—Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths | 61 | 8.71 |
Molari et al., 2012 [14] | 10.1016/j.biosystemseng.2011.10.008—Performance of an agricultural tractor fitted with rubber tracks | 60 | 5.45 |
Sun et al., 2017 [69] | 10.3390/rs9040377—In-field high-throughput phenotyping of cotton plant height using LiDAR | 54 | 9.00 |
Battiato & Diserens, 2017 [70] | 10.1016/j.still.2016.09.005—Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice | 48 | 8.00 |
Tomić et al., 2013 [71] | 10.2298/TSCI111122106T—Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines | 45 | 4.50 |
Del Rey et al., 2014 [67] | 10.13031/aea.30.10342—Comparison of Positional Accuracy between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles under Field Conditions | 37 | 4.11 |
Serrano et al., 2007 [66] | 10.1016/j.biosystemseng.2007.08.002—Tractor energy requirements in disc harrow systems | 37 | 2.31 |
3.3. Top Countries’ Research
3.4. Keyword Mapping
3.5. Trend Mapping
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoy, R.M.; Kocher, M.F. The Nebraska Tractor Test Laboratory: 100 Years of Service. In Proceedings of the Agricultural Equipment Technology Conference, Louisville, KY, USA, 10–12 February 2020; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2020; pp. 10–12. [Google Scholar]
- de Melo, R.R.; Tofoli, F.L.; Daher, S.; Antunes, F.L.M. Wheel Slip Control Applied to an Electric Tractor for Improving Tractive Efficiency and Reducing Energy Consumption. Sensors 2022, 22, 4527. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yang, Y.; Wang, D.; Cai, Y.; Lai, L. Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System. Agriculture 2022, 12, 436. [Google Scholar] [CrossRef]
- Abrahám, R.; Majdan, R.; Drlička, R. Comparison of tractor slip at three different driving wheels on grass. Agronomy Research 2017, 15, 1441–1454. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Pochi, D.; Fanigliulo, R.; Bisaglia, C. A Simplified Approach to the Evaluation of the Influences of Key Factors on Agricultural Tractor Fuel Consumption during Heavy Drawbar Tasks under Field Conditions. Agronomy 2022, 12, 1017. [Google Scholar] [CrossRef]
- Askari, M.; Abbaspour-Gilandeh, Y.; Taghinezhad, E.; Hegazy, R.; Okasha, M. Prediction and optimizing the multiple responses of the overall energy efficiency (OEE) of a tractor-implement system using response surface methodology. J. Terramech. 2022, 103, 11–17. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Lee, S.-D.; Baek, S.-M.; Baek, S.-Y.; Jeon, H.-H.; Lee, J.-H.; Kim, W.-S.; Shim, J.-Y.; Kim, Y.-J. Analysis of the Effect of Tillage Depth on the Working Performance of Tractor-Moldboard Plow System under Various Field Environments. Sensors 2022, 22, 2750. [Google Scholar] [CrossRef] [PubMed]
- Cutini, M.; Brambilla, M.; Bisaglia, C. Whole-Body Vibration in Farming: Background Document for Creating a Simplified Procedure to Determine Agricultural Tractor Vibration Comfort. Agriculture 2017, 7, 84. [Google Scholar] [CrossRef]
- Lanças, K.P.; Filho, A.C.M.; Moura, M.d.S.; Damasceno, F.A.d.J.; Balestrin, D.R. Agricultural Tractor Test. Rev. Cienc. Agron. 2020, 51, e20207750. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Del Duca, L.; Fornaciari, L.; Grilli, R.; Tomasome, R.; Pochi, D. Efficiency of an ANC system in the tractor cabin under controlled engine workload. Noise Control. Eng. J. 2020, 68, 339–357. [Google Scholar] [CrossRef]
- Qin, J.; Wu, A.; Song, Z.; He, Z.; Suh, C.S.; Zhu, Z.; Li, Z. Recovering tractor stability from an intensive rollover with a momentum flywheel and active steering: System formulation and scale-model verification. Comput. Electron. Agric. 2021, 190, 106458. [Google Scholar] [CrossRef]
- Sandi, J.; Testa, J.V.P.; Martins, M.B.; Fiorese, D.A.; Lanças, K.P. Vibração ocorrente sobre o corpo inteiro do operador de trator agrícola em ensaio padronizado. J. Neotrop. Agric. 2018, 5, 54–61. [Google Scholar] [CrossRef]
- Culshaw, D. Rubber tracks for traction. J. Terramech. 1988, 25, 69–80. [Google Scholar] [CrossRef]
- Molari, G.; Bellentani, L.; Guarnieri, A.; Walker, M.; Sedoni, E. Performance of an agricultural tractor fitted with rubber tracks. Biosyst. Eng. 2012, 111, 57–63. [Google Scholar] [CrossRef]
- Kumar, S.; Noori, T.; Pandey, K. Performance characteristics of mode of ballast on energy efficiency indices of agricultural tyre in different terrain condition in controlled soil bin environment. Energy 2019, 182, 48–56. [Google Scholar] [CrossRef]
- Filho, A.C.M.; de Medeiros, S.D.S.; Martins, M.B.; Moura, M.d.S.; Lanças, K.P. Can the Straw Remaining on the Ground Reduce the Wheelsets Impact on Sugarcane Crop? Sugar Tech 2022, 24, 1814–1820. [Google Scholar] [CrossRef]
- Mazetto, F.R.; Lanças, K.P.; Nagaoka, A.K.; Neto, P.C.; Guerra, S.P.S. Avaliação do contato pneu-solo em três modelos de pneus agrícolas. Eng. Agricola 2004, 24, 750–757. [Google Scholar] [CrossRef]
- Bertinatto, R.; Schlosser, J.F.; Bertollo, G.M.; Herzog, D.; Casali, L.; Borsatto, H.G. Typical performance behavior of a Diesel cycle agricultural tractor engine with electronic injection management and turbocharger. Cienc. Rural. 2022, 52, e20200966. [Google Scholar] [CrossRef]
- Hensh, S.; Tewari, V.; Upadhyay, G. A novel wireless instrumentation system for measurement of PTO (power take-off) torque requirement during rotary tillage. Biosyst. Eng. 2021, 212, 241–251. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, Y.-J.; Park, S.-U.; Kim, Y.-S. Influence of soil moisture content on the traction performance of a 78-kW agricultural tractor during plow tillage. Soil Tillage Res. 2021, 207, 104851. [Google Scholar] [CrossRef]
- Davidson, D.; Fairlie, M.; Stuart, A. Development of a hydrogen-fuelled farm tractor. Int. J. Hydrog. Energy 1986, 11, 39–42. [Google Scholar] [CrossRef]
- Baek, S.-Y.; Baek, S.-M.; Jeon, H.-H.; Kim, W.-S.; Kim, Y.-S.; Sim, T.-Y.; Choi, K.-H.; Hong, S.-J.; Kim, H.; Kim, Y.-J. Traction Performance Evaluation of the Electric All-Wheel-Drive Tractor. Sensors 2022, 22, 785. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.; Zhao, S.; Han, B.; Lei, S.; Xu, L. Multi-Objective Optimization and Test of a Tractor Drive Motor. World Electr. Veh. J. 2022, 13, 43. [Google Scholar] [CrossRef]
- Wen, C.-K.; Zhang, S.-L.; Xie, B.; Song, Z.-H.; Li, T.-H.; Jia, F.; Han, J.-G. Design and verification innovative approach of dual-motor power coupling drive systems for electric tractors. Energy 2022, 247, 123538. [Google Scholar] [CrossRef]
- Xie, B.; Wang, S.; Wu, X.; Wen, C.; Zhang, S.; Zhao, X. Design and hardware-in-the-loop test of a coupled drive system for electric tractor. Biosyst. Eng. 2022, 216, 165–185. [Google Scholar] [CrossRef]
- Cong, Q.; Yang, Z.; Xu, J.; Ma, B.; Chen, T.; Zhang, X.; Wang, L.; Ru, S. Design and Test of Load-Lifting Performance for Hydraulic Linkage of the High-Medium Horsepower Tractor. Appl. Sci. 2021, 11, 9758. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Prashumn; Chandra, K. Di-ethyl ether-diesel blends fuelled off-road tractor engine: Part-I: Technical feasibility. Fuel 2022, 308, 121972. [Google Scholar] [CrossRef]
- Emaish, H.; Abualnaja, K.M.; Kandil, E.E.; Abdelsalam, N.R. Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages. Sci. Rep. 2021, 11, 9811. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.; Tewari, V. Seating discomfort for tractor operators—A critical review. Int. J. Ind. Ergon. 2000, 25, 661–674. [Google Scholar] [CrossRef]
- Giordano, D.M.; Facchinetti, D.; Pessina, D. Comfort efficiency of the front axle suspension in off-road operations of a medium-powered agricultural tractor. Contemp. Eng. Sci. 2015, 8, 1311–1325. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Bisaglia, C.; Pochi, D.; Fanigliulo, R. Efficiency of Tractor Drawbar Power Taking into Account Soil-Tire Slippage. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production: Proceedings of the International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA), Matera, Italy, 12–13 September 2019; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 409–417. [Google Scholar]
- Liu, D.; Tan, K.; Huang, S.; Goh, C.; Ho, W. On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur. J. Oper. Res. 2008, 190, 357–382. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Chiaroni, D.; Del Vecchio, P.; Urbinati, A. Designing business models in circular economy: A systematic literature review and research agenda. Bus. Strat. Environ. 2020, 29, 1734–1749. [Google Scholar] [CrossRef]
- Seuring, S.; Gold, S. Conducting content-analysis based literature reviews in supply chain management. Supply Chain Manag. Int. J. 2012, 17, 544–555. [Google Scholar] [CrossRef]
- Daim, T.U.; Rueda, G.; Martin, H.; Gerdsri, P. Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technol. Forecast. Soc. Chang. 2006, 73, 981–1012. [Google Scholar] [CrossRef]
- Liu, W.; Gu, M.; Hu, G.; Li, C.; Liao, H.; Tang, L.; Shapira, P. Profile of developments in biomass-based bioenergy research: A 20-year perspective. Scientometrics 2014, 99, 507–521. [Google Scholar] [CrossRef]
- Andrade-Valbuena, N.A.; Merigo-Lindahl, J.M.; Olavarrieta, S. Bibliometric analysis of entrepreneurial orientation. World J. Entrep. Manag. Sustain. Dev. 2019, 15, 45–69. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef]
- Sharifi, A.; Simangan, D.; Kaneko, S. Three decades of research on climate change and peace: A bibliometrics analysis. Sustain. Sci. 2021, 16, 1079–1095. [Google Scholar] [CrossRef]
- Mallett, R.; Hagen-Zanker, J.; Slater, R.; Duvendack, M. The benefits and challenges of using systematic reviews in international development research. J. Dev. Eff. 2012, 4, 445–455. [Google Scholar] [CrossRef]
- Chain, C.P.; dos Santos, A.C.; de Castro, L.G.; Prado, J.W.D. Bibliometric analysis of the quantitative methods applied to the measurement of industrial clusters. J. Econ. Surv. 2019, 33, 60–84. [Google Scholar] [CrossRef]
- Pollock, M.; Fernandes, R.M.; Becker, L.A.; Featherstone, R.; Hartling, L. What guidance is available for researchers conducting overviews of reviews of healthcare interventions? A scoping review and qualitative metasummary. Syst. Rev. 2016, 5, 190. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Bansal, P. Partnering Up: Including Managers as Research Partners in Systematic Reviews. Organ. Res. Methods 2023, 26, 262–291. [Google Scholar] [CrossRef]
- Souza, V.H.S.; Dias, G.L.; Santos, A.A.R.; Costa, A.L.G.; Santos, F.L.; Magalhães, R.R. Evaluation of the interaction between a harvester rod and a coffee branch based on finite element analysis. Comput. Electron. Agric. 2018, 150, 476–483. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An efficient framework for conducting systematic literature reviews in agricultural sciences. Sci. Total. Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. Citation indexes for science; A new dimension in documentation through association of ideas. Int. J. Epidemiol. 2006, 35, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Kitchenham, B.; Charters, S.M. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Keele University: Keele, UK, 2007. [Google Scholar]
- Bakkalbasi, N.; Bauer, K.; Glover, J.; Wang, L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed. Digit. Libr. 2006, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- Nardi, P.; Di Matteo, G.; Palahi, M.; Mugnozza, G.S. Structure and Evolution of Mediterranean Forest Research: A Science Mapping Approach. PLoS ONE 2016, 11, e0155016. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Merton, R.K. The Sociology of Science in Europe, 1st ed.; Southern Illinois University Press: Carbondale, IL, USA, 1977. [Google Scholar]
- Van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- World Energy Council. History of the World Energy Congress. 2022. Available online: https://www.worldenergy.org/experiences-events/world-energy-congress/history-of-the-world-energy-congress (accessed on 12 March 2023).
- Persson, S.P.E. Part Load and Varying-Speed Fuel Consumption of Tractors. Trans. ASAE 1969, 12, 0595–0597. [Google Scholar] [CrossRef]
- Macnab, J.E. Modeling the Effects of Tractive Effort on Agricultural Tractor Energy Requirements. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1976. [Google Scholar]
- Marques, L.S.; Ferraz, G.A.e.S.; Neto, J.M.; Magalhães, R.R.; de Lima, D.A.; Tsuchida, J.E.; Fuzatto, D.C. Agricultural Machinery Telemetry: A Bibliometric Analysis. Agriengineering 2022, 4, 939–950. [Google Scholar] [CrossRef]
- Craig, I.; Plume, A.; Mcveigh, M.; Pringle, J.; Amin, M. Do open access articles have greater citation impact? A critical review of the literature. J. Inf. 2007, 1, 239–248. [Google Scholar] [CrossRef]
- Kelly, C.; Jennions, M. The h index and career assessment by numbers. Trends Ecol. Evol. 2006, 21, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Naderbeigi, F.; Mokhtari, H.; Saberi, M.K.; Amiri, M.R.; Vakilimofrad, H.; Masoumi, L. Effect of Self-Citation on H-Index: A Study of Top 1% Highly Cited Iranian Scientists in Medical Sciences. J. Otorhinolaryngol. Facial Plast. Surg. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Wren, J.D.; Georgescu, C. Detecting anomalous referencing patterns in PubMed papers suggestive of author-centric reference list manipulation. Scientometrics 2022, 127, 5753–5771. [Google Scholar] [CrossRef] [PubMed]
- Kheiralla, A.; Yahya, A.; Zohadie, M.; Ishak, W. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Tillage Res. 2004, 78, 21–34. [Google Scholar] [CrossRef]
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting tractor fuel consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; da Silva, J.M.; Pinheiro, A.; Carvalho, M. Tractor energy requirements in disc harrow systems. Biosyst. Eng. 2007, 98, 286–296. [Google Scholar] [CrossRef]
- Carballido, J.; Perez-Ruiz, M.; Emmi, L.; Agüera, J. Comparison of Positional Accuracy between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles under Field Conditions. Appl. Eng. Agric. 2014, 30, 361–366. [Google Scholar] [CrossRef]
- Hameed, I.; la Cour-Harbo, A.; Osen, O. Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths. Robot. Auton. Syst. 2016, 76, 36–45. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Paterson, A.H. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR. Remote. Sens. 2017, 9, 377. [Google Scholar] [CrossRef]
- Battiato, A.; Diserens, E. Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice. Soil Tillage Res. 2017, 166, 18–32. [Google Scholar] [CrossRef]
- Tomic, M.; Savin, L.; Micic, R.; Simikic, M.; Furman, T. Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines. Therm. Sci. 2013, 17, 263–278. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Q.; Zhu, Z. Evolutionary Overview of Land Consolidation Based on Bibliometric Analysis in Web of Science from 2000 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 3218. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, V.; Nadykto, V.; Ivanovs, S.; Dukulis, I. Improving the performance of a ploughing tractor by means of an auxiliary carriage with motorized axle. J. Agric. Eng. 2021, 52, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, B.; Wen, C.; Zhao, Y.; Du, Y.; Zhu, Z.; Song, Z.; Li, L. Intelligent ballast control system with active load- transfer for electric tractors. Biosyst. Eng. 2022, 215, 143–155. [Google Scholar] [CrossRef]
- Naygaonkar, S.S.; Desai, S.R. Experimental analysis of steering wheel vibrations of an agriculture tractor for reduction of hand-arm vibrations. Noise Vib. Worldw. 2022, 53, 308–321. [Google Scholar] [CrossRef]
- Naygaonkar, S.S.; Desai, S.R. Design and numerical investigation for reduction of hand-arm vibrations from steering wheel of an agricultural tractor. Int. J. Veh. Noise Vib. 2022, 18, 119. [Google Scholar] [CrossRef]
- Xue, L.; Jiang, H.; Zhao, Y.; Wang, J.; Wang, G.; Xiao, M. Fault diagnosis of wet clutch control system of tractor hydrostatic power split continuously variable transmission. Comput. Electron. Agric. 2022, 194, 106778. [Google Scholar] [CrossRef]
- Mocera, F.; Martini, V.; Somà, A. Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors. Energies 2022, 15, 1944. [Google Scholar] [CrossRef]
Journal | H_Index | G_Index | C | NP | PY_Start |
---|---|---|---|---|---|
Nongye Gongcheng Xuebao—CSAE | 15 | 18 | 596 | 55 | 2006 |
Applied Engineering in Agriculture—ASABE | 10 | 16 | 257 | 17 | 1989 |
Journal of Terramechanics | 9 | 11 | 205 | 11 | 1988 |
Biosystems Engineering | 8 | 13 | 199 | 13 | 2003 |
Nongye Jixie Xuebao—CSAE | 7 | 9 | 95 | 12 | 2013 |
Computers and Electronics in Agriculture | 6 | 9 | 100 | 9 | 1990 |
Soil and Tillage Research | 6 | 6 | 183 | 6 | 2004 |
Transactions of ASAE | 6 | 10 | 102 | 10 | 1977 |
Energy | 4 | 5 | 85 | 5 | 2014 |
Agronomy | 3 | 3 | 15 | 3 | 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanças, K.P.; Marques Filho, A.C.; Santana, L.S.; Ferraz, G.A.e.S.; Faria, R.O.; Martins, M.B. Agricultural Tractor Test: A Bibliometric Review. AgriEngineering 2024, 6, 2229-2248. https://doi.org/10.3390/agriengineering6030131
Lanças KP, Marques Filho AC, Santana LS, Ferraz GAeS, Faria RO, Martins MB. Agricultural Tractor Test: A Bibliometric Review. AgriEngineering. 2024; 6(3):2229-2248. https://doi.org/10.3390/agriengineering6030131
Chicago/Turabian StyleLanças, Kléber Pereira, Aldir Carpes Marques Filho, Lucas Santos Santana, Gabriel Araújo e Silva Ferraz, Rafael Oliveira Faria, and Murilo Battistuzzi Martins. 2024. "Agricultural Tractor Test: A Bibliometric Review" AgriEngineering 6, no. 3: 2229-2248. https://doi.org/10.3390/agriengineering6030131
APA StyleLanças, K. P., Marques Filho, A. C., Santana, L. S., Ferraz, G. A. e. S., Faria, R. O., & Martins, M. B. (2024). Agricultural Tractor Test: A Bibliometric Review. AgriEngineering, 6(3), 2229-2248. https://doi.org/10.3390/agriengineering6030131