X-ray Microtomography Analysis of Integrated Crop–Livestock Production’s Impact on Soil Pore Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Sampling and Preparation
2.3. X-ray Computed Tomography
2.4. Soil Morphological and Geometric Properties
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, H.; Mamkhezri, J.; Arshed, N.; Javaid, A.; Salem, S.; Khan, Y.A. Role of Energy Mix in Determining Climate Change Vulnerability in G7 Countries. Sustainability 2022, 14, 2161. [Google Scholar] [CrossRef]
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Ratnayake, S. Climate change and future of agri-food production. Future Foods 2022, 4, 49–79. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Šimanský, V.; Mendyk, L. Green fallow soil vs. intensive soil cultivation—A study of soil structure along the slope gradient affected by erosion process. Acta Fytotechn Zootech. 2019, 22, 76–83. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chang, S.X.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture. Sci. Total Environ. 2020, 740, 11. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil. Sci. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S.; Rao, C.S. Role of soil physical properties in soil health management and crop productivity in rainfed systems–II. Management technologies and crop productivity. Curr. Sci. 2016, 110, 320–328. [Google Scholar] [CrossRef]
- Seta, A.K.; Blevins, R.L.; Frye, W.W.; Barfield, B.J. Reducing soil erosion and agricultural chemical losses with conservation tillage. J. Environ. Qual. 1993, 22, 661–665. [Google Scholar] [CrossRef]
- Johansen, C.; Haque, M.E.; Bell, R.W.; Thierfelder, C.; Esdaile, R.J. Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems. Field Crops Res. 2012, 132, 18–32. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Dick, W.A. No-tillage crop production: A revolution in agriculture! J. Agron. 2008, 100, 153–165. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global meta-analysis suggests that no-tillage favorably changes soil structure and porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Do, M.C.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil. Tillage Res. 2020, 197, 8. [Google Scholar] [CrossRef]
- Rusu, T. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage. International. Int. Soil Water Conserv. Res. 2014, 2, 42–49. [Google Scholar] [CrossRef]
- Gong, L.; Nie, L.; Xu, Y.; Ji, X.; Liu, B. Characterization of micro-scale pore structure and permeability simulation of peat soil based on 2D/3D X-ray computed tomography images. Eurasian Soil. Sci. 2022, 55, 790–801. [Google Scholar] [CrossRef]
- Grogan, D.; Gilliland, T.J. A review of perennial ryegrass variety evaluation in Ireland. IJAFR 2011, 50, 65–81. [Google Scholar]
- Wilkins, P.W. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Poeplau, C.; Aronsson, H.; Myrbeck, Å.; Kätterer, T. Effect of perennial ryegrass cover crop on soil organic carbon stocks in southern Sweden. Geoderma Reg. 2015, 4, 126–133. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Combs, D.K.; Casler, M.D. Performance of lactating dairy cows fed alfalfa silage or perennial ryegrass silage. JDS 1998, 81, 162–168. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agr. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Sulc, R.M.; Tracy, B.F. Integrated crop–livestock systems in the US Corn Belt. J. Agron. 2007, 99, 335–345. [Google Scholar] [CrossRef]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.A.; Asai, M.; Sarthou, J.P.; Therond, O. Crop–livestock integration beyond the farm level: A review. Agron. Sustain. Dev. 2016, 36, 21. [Google Scholar] [CrossRef]
- Tirloni, C.; Vitorino, A.C.T.; Bergamin, A.C.; Souza, L.C.F.D. Physical properties and particle-size fractions of soil organic matter in crop-livestock integration. Rev. Bras. Cienc. Solo 2012, 36, 1299–1310. [Google Scholar] [CrossRef]
- Ambus, J.V.; Reichert, J.M.; Gubiani, P.I.; de Faccio Carvalho, P.C. Changes in composition and functional soil properties in long-term no-till integrated crop-livestock system. Geoderma 2018, 330, 232–243. [Google Scholar] [CrossRef]
- Gaspareto, J.V.; Oliveira, J.A.T.d.; Andrade, E.; Pires, L.F. Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis. Agriculture 2023, 13, 20. [Google Scholar] [CrossRef]
- Helliwell, J.R.; Sturrock, C.J.; Grayling, K.M.; Tracy, S.R.; Flavel, R.J.; Young, I.M.; Mooney, S.J. Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: A review. Eur. J. Soil. Sci. 2013, 64, 279–297. [Google Scholar] [CrossRef]
- Costanza-Robinson, M.S.; Estabrook, B.D.; Fouhey, D.F. Representative elementary volume estimation for porosity, moisture saturation, and air–water interfacial areas in unsatured porous media: Data quality implications. Water Resour. Res. 2011, 47, 12. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carlson, W.D. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput. Geosci. 2001, 27, 381–400. [Google Scholar] [CrossRef]
- Luo, L.; Lin, H.; Halleck, P. Quantifying soil structure and preferential flow in intact soil using X-ray computed tomography. Soil. Sci. Soc. Am. J. 2008, 72, 1058–1069. [Google Scholar] [CrossRef]
- dos Santos, H.D.A.; Jacomine, P.T.; Dos Anjos, L.H.C.; De Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; Cunha, T.J.F. Brazilian Soil Classification System, 5th ed.; Embrapa: Brasília, Brazil, 2018; pp. 1–586. [Google Scholar]
- Aparecido, L.E.D.O.; Rolim, G.D.S.; Richetti, J.; Souza, P.S.D.; Johann, J.A. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciênc. Agrotec 2016, 40, 405–417. [Google Scholar] [CrossRef]
- Auler, A.C.; Miara, S.; Pires, L.F.; Fonseca, A.F.D.; Barth, G. Soil physico-hydrical properties resulting from the management in Integrated Production Systems. Rev. Sci. Agron. 2014, 45, 976–989. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, J.R. Porosity and pore size distribution. Environ. Earth Sci. 2004, 3, 295–303. [Google Scholar] [CrossRef]
- Wu, J.; Jin, X.; Mi, S.; Tang, J. An effective method to compute the box-counting dimension based on the mathematical definition and intervals. Results Eng. 2020, 6, 11. [Google Scholar] [CrossRef]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Odgaard, A.; Gundersen, H.J.G. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 1993, 14, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Roque, W.L.; Costa, R.R. A plugin for computing the pore/grain network tortuosity of a porous medium from 2D/3D MicroCT image. Appl. Comput. Geosci. 2020, 5, 12. [Google Scholar] [CrossRef]
- Gommes, C.J.; Bons, A.J.; Blacher, S.; Dunsmuir, J.H.; Tsou, A.H. Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions. AIChE J. 2009, 55, 2000–2012. [Google Scholar] [CrossRef]
- Bullock, P.; Fedoroff, N.; Jongerius, A. Handbook for Soil Thin Section Description, 1st ed.; Waine Research: Albrighton, UK, 1985; pp. 1–152. [Google Scholar]
- Dhaliwal, J.K.; Kumar, S. 3D-visualization and quantification of soil porous structure using X-ray microtomography scanning under native pasture and crop-livestock systems. Soil. Tillage Res. 2022, 218, 8. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for educaton and data anlysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems, 1st ed.; CIMMYT: Texcoco, Mexico, 2010; pp. 137–208. [Google Scholar]
- de Oliveira, T.S.; Fernandes, R.B. Physical Subsoil Constraints of Agricultural and Forestry Land. Subsoil Constraints for Crop Production, 1st ed.; de Oliveira, T.S., Bell, R.W., Eds.; Springer: Cham, Switzerland, 2007; Volume 1, pp. 125–160. [Google Scholar]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; da Veiga, M.; Reinert, D.J. Is chiseling or inverting tillage required to improve mechanical and hydraulic properties of sandy clay loam soil under long-term no-tillage? Geoderma 2017, 301, 72–79. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J.; Phillips, N.C.; Cui, S.; Gao, Y. Improving soil physical properties through the use of cover crops: A review. Agrosystems Geosci. Environ. 2020, 3, 18. [Google Scholar] [CrossRef]
- Qi, J.; Jensen, J.L.; Christensen, B.T.; Munkholm, L.J. Soil structural stability following decades of straw incorporation and use of ryegrass cover crops. Geoderma 2022, 406, 11. [Google Scholar] [CrossRef]
- Tsukada, H.; Yamada, D.; Yamaguchi, N. Accumulation of 137Cs in aggregated organomineral assemblage in pasture soils 8 years after the accident at the Fukushima Daiichi nuclear power plant. Sci. Total Environ. 2022, 806, 9. [Google Scholar] [CrossRef] [PubMed]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R. Soil porosity, permeability and static and dynamic strength parameters under native forest/grassland compared to no-tillage cropping. Soil. Tillage Res. 2018, 177, 113–124. [Google Scholar] [CrossRef]
- Barley, K.P. The influence of earthworms on soil fertility. II. Consumption of soil and organic matter by the earthworm Allolobophora caliginosa (Savigny). Aust. J. Agric. Res. 1959, 10, 179–185. [Google Scholar] [CrossRef]
- Jokela, W.E.; Grabber, J.H.; Karlen, D.L.; Balser, T.C.; Palmquist, D.E. Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agron. J. 2009, 101, 727–737. [Google Scholar] [CrossRef]
- Dathe, A.; Eins, S.; Niemeyer, J.; Gerold, G. The surface fractal dimension of the soil–pore interface as measured by image analysis. Geoderma 2001, 103, 203–229. [Google Scholar] [CrossRef]
- Giménez, D.; Allmaras, R.R.; Nater, E.A.; Huggins, D.R. Fractal dimensions for volume and surface of interaggregate pores—Scale effects. Geoderma 1997, 77, 19–38. [Google Scholar] [CrossRef]
- Atzeni, C.; Pia, G.; Sanna, U.; Spanu, N. A fractal model of the porous microstructure of earth-based materials. Constr. Build. Mater. 2008, 22, 1607–1613. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Song, Y.; Zhao, Y.; Zhao, J.; Wang, D. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging. J. Appl. Geophys. 2012, 86, 70–81. [Google Scholar] [CrossRef]
- Holden, N.M. A two-dimensional quantification of soil ped shape. J. Soil. Sci. 1993, 44, 209–219. [Google Scholar] [CrossRef]
- Fiorini, A.; Boselli, R.; Amaducci, S.; Tabaglio, V. Effects of no-till on root architecture and root-soil interactions in a three-year crop rotation. Eur. J. Agron. 2018, 99, 156–166. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.; Wang, R.; Li, J.; Wang, X. Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. Eur. J. Agron. 2021, 131, 12. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- dos Reis, A.M.H.; Auler, A.C.; Armindo, R.A.; Cooper, M.; Pires, L.F. Micromorphological analysis of soil porosity under integrated crop-livestock management systems. Soil. Tillage Res. 2021, 205, 9. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil. Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Mooney, S.J.; Bird, N.R.A. Quantification of the effects of contrasting crops in the development of soil structure: An organic conversion. Soil Use Manag. 2006, 22, 172–179. [Google Scholar] [CrossRef]
- Duhour, A.; Costa, C.; Momo, F.; Falco, L.; Malacalza, L. Response of earthworm communities to soil disturbance: Fractal dimension of soil and species’ rank-abundance curves. Appl. Soil Ecol. 2009, 43, 83–88. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Brouwer, G.; Harmanny, K. Concepts and methods for studying interactions of roots and soil structure. Geoderma 1993, 56, 351–375. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, C.; Xie, D.; Gao, M.; Zeng, X. Effects of land use patterns on soil aggregate stability in Sichuan Basin, China. Particuology 2008, 6, 157–166. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil. Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, S.; Udawatta, R.P.; Anderson, S.H.; de Jonge, L.W.; Katuwal, S. Grassland conversion to croplands impacted soil pore parameters measured via X-ray computed tomography. Soil Sci. Soc. Am J. 2021, 85, 73–84. [Google Scholar] [CrossRef]
- Pozdnyakov, A.I.; Rusakov, A.V.; Shalaginova, S.M.; Pozdnyakova, A.D. Anisotropy of the properties of some anthropogenically transformed soils of podzolic type. Eurasian Soil. Sci. 2009, 42, 1218–1228. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Laboriau, R.; Kesser, M.; Zanini, P.P.G.; Guimarães, R.M.L.; Munkholm, L.J. Anisotropy of subsoil pore characteristics and hydraulic conductivity as affected by compaction and cover crop treatments. Soil Sci. Soc. Am. J. 2021, 85, 28–39. [Google Scholar] [CrossRef]
- Polich, N.G.; Lozano, L.A.; Villarreal, R.; Salazar, M.P.; Bellora, G.L.; Barraco, M.R.; Soracco, C.G. Effect of cover crops on hysteresis and anisotropy of soil hydraulic properties. Geoderma Reg. 2022, 31, 6. [Google Scholar] [CrossRef]
- Garbout, A.; Munkholm, L.J.; Hansen, S.B. Tillage effects on topsoil structural quality assessed using X-ray CT, soil cores and visual soil evaluation. Soil. Tillage Res. 2013, 128, 104–109. [Google Scholar] [CrossRef]
- Pires, L.F.; Roque, W.L.; Rosa, J.A.; Mooney, S.J. 3D analysis of the soil porous architecture under long term contrasting management systems by X-ray computed tomography. Soil. Tillage Res. 2019, 191, 197–206. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Tseng, C.L.; Alves, M.C.; Crestana, S. Quantifying physical and structural soil properties using X-ray microtomography. Geoderma 2018, 318, 78–87. [Google Scholar] [CrossRef]
- Li, M.; Yao, J.; Yan, R.; Cheng, J. Effects of infiltration amounts on preferential flow characteristics and solute transport in the protection forest soil of southwestern China. Water 2021, 13, 1301. [Google Scholar] [CrossRef]
- Cunha, A.R.; Fernandes, C.P.; Santos, L.O.E.D.; Kronbauer, D.P.; Mantovani, I.F.; Moreira, A.C.; Schmitt, M. A phenomenological connectivity measure for the pore space of rocks. arXiv 2020, arXiv:2012.00835. [Google Scholar] [CrossRef]
- Bernabé, Y.; Li, M.; Maineult, A. Permeability and pore connectivity: A new model based on network simulations. J. Geophys. Res. Solid Earth 2010, 115, 14. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Pires, L.F.; Wildenschild, D.; Heck, R.J.; Antonino, A.C. X-ray microtomography analysis of lime application effects on soil porous system. Geoderma 2018, 324, 119–130. [Google Scholar] [CrossRef]
- Castro Filho, C.D.; Lourenço, A.; Guimarães, M.D.F.; Fonseca, I.C.B. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil. Tillage Res. 2002, 65, 45–51. [Google Scholar] [CrossRef]
- Dexter, A.R. Advances in characterization of soil structure. Soil Tillage Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Pires, L.F.; Borges, J.A.; Rosa, J.A.; Cooper, M.; Heck, R.J.; Passoni, S.; Roque, W.L. Soil structure changes induced by tillage systems. Soil Tillage Res. 2017, 165, 66–79. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Bird, N.R.A.; Whitmore, A.P.; Mooney, S.J. Investigating the effects of organic and conventional management on soil aggregate stability using X-ray computed tomography. Eur. J. Soil Sci. 2009, 60, 360–368. [Google Scholar] [CrossRef]
- Alvemar, H.; Andersson, H.; Pedersen, H.H. Profitability of controlled traffic in grass silage production–economic modeling and machinery systems. Adv. Anim. Biosci. 2017, 8, 749–753. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Peets, S.; Chamen, W.C.T.; White, D.R.; Misiewicz, P.A.; Godwin, R.J. Improving grass silage production with controlled traffic farming (CTF): Agronomics, system design and economics. Precis. Agric. 2019, 20, 260–277. [Google Scholar] [CrossRef]
- Soracco, C.G.; Lozano, L.A.; Villarreal, R.; Palancar, T.C.; Collazo, D.J.; Sarli, G.O.; Filgueira, R.R. Effects of compaction due to machinery traffic on soil pore configuration. Rev. Bras. Cienc. Solo 2015, 39, 408–415. [Google Scholar] [CrossRef]
- Beutler, A.N.; Centurion, J.F.; Silva, A.P.D.; Centurion, M.A.P.D.C.; Leonel, C.L.; Freddi, O.D.S. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesqui. Agropecu. Bras. 2008, 43, 1591–1600. [Google Scholar] [CrossRef]
- Roque, W.L.; Arcaro, K.; Lanfredi, R.B. Trabecular network tortuosity and connectivity of distal radius from microtomographic images. Rev. Bras. Eng. Bioméd 2012, 28, 116–123. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Lin, Q.; Pires, L.F. Scale dependence of tortuosity in soils under contrasting cultivation conditions. Soil Tillage Res. 2023, 233, 9. [Google Scholar] [CrossRef]
- Pagenkemper, S.K.; Puschmann, D.U.; Peth, S.; Horn, R. Investigation of time dependent development of soil structure and formation of macropore networks as affected by various precrop species. Int. Soil Water Conserv. Res. 2014, 2, 51–66. [Google Scholar] [CrossRef]
- Elliot, T.R.; Reynolds, W.D.; Heck, R.J. Use of existing pore models and X-ray computed tomography to predict saturated soil hydraulic conductivity. Geoderma 2010, 156, 133–142. [Google Scholar] [CrossRef]
- Eltz, F.L.F.; Norton, L.D. Surface roughness changes as affected by rainfall erosivity, tillage, and canopy cover. Soil Sci. Soc. Am. J. 1997, 61, 1746–1755. [Google Scholar] [CrossRef]
- Peth, S.; Horn, R.; Beckmann, F.; Donath, T.; Fischer, J.; Smucker, A.J.M. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 2008, 72, 897–907. [Google Scholar] [CrossRef]
- Pires, L.F.; Auler, A.C.; Roque, W.L.; Mooney, S.J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 2020, 362, 10. [Google Scholar] [CrossRef]
- Salazar, M.P.; Lozano, L.A.; Polich, N.G.; Bellora, G.L.; Miguel, C.; Villarreal, R.; Soracco, C.G. Anisotropy of soil hydraulic properties induced by repeated machinery traffic in a Typic Argiudoll of the Argentinean Pampas Region. Soil Tillage Res. 2024, 237, 7. [Google Scholar] [CrossRef]
- Dörner, J.; Horn, R. Direction-dependent behavior of hydraulic and mechanical properties in structured soils under conventional and conservation tillage. Soil Tillage Res. 2009, 102, 225–232. [Google Scholar] [CrossRef]
- Holzer, L.; Marmet, P.; Fingerle, M.; Wiegmann, A.; Neumann, M.; Schmidt, V. Tortuosity and Microstructure Effects in Porous Media: Classical Theories, Empirical Data and Modern Methods, 1st ed.; Springer Nature: Cham, Switzerland, 2023; pp. 1–190. [Google Scholar]
- Van Veen, J.A.; Kuikman, P.J. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry 1990, 11, 213–233. [Google Scholar] [CrossRef]
- Le Bayon, R.C.; Bullinger, G.; Schomburg, A.; Turberg, P.; Brunner, P.; Schlaepfer, R. Guenat Earthworms, Plants, and Soils. In Hydrogeology, Chemical Weathering, and Soil Formation, 2nd ed.; Hunt, A., Markus, E., Faybishenko., B., Eds.; While: Hollywood, FL, USA, 2021; Volume 1, pp. 81–103. [Google Scholar]
- Pires, L.F.; Borges, F.S.; Passoni, S.; Pereira, A.B. Soil pore characterization using free software and a portable optical microscope. Pedosphere 2013, 23, 503–510. [Google Scholar] [CrossRef]
- Rasa, K.; Eickhorst, T.; Tippkötter, R.; Yli-Halla, M. Structure and pore system in differently managed clayey surface soil as described by micromorphology and image analysis. Geoderma 2012, 173, 10–18. [Google Scholar] [CrossRef]
- Castilho, S.C.D.P.; Cooper, M.; Silva, L.F.S.D. Micromorphometric analysis of porosity changes in the surface crusts of three soils in the Piracicaba region, São Paulo State, Brazil. Acta Scientiarum. Agron. 2015, 37, 385–395. [Google Scholar] [CrossRef]
- Pietola, L.; Horn, R.; Yli-Halla, M. Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res. 2005, 82, 99–108. [Google Scholar] [CrossRef]
- Posadas, A.N.; Giménez, D.; Quiroz, R.; Protz, R. Multifractal characterization of soil pore systems. Soil Sci. Soc. Am. J. 2003, 67, 1361–1369. [Google Scholar] [CrossRef]
- Menon, M.; Mawodza, T.; Rabbani, A.; Blaud, A.; Lair, G.J.; Babaei, M.; Banwart, S. Pore system characteristics of soil aggregates and their relevance to aggregate stability. Geoderma 2020, 366, 11. [Google Scholar] [CrossRef]
- Zhang, S.J.; Tang, Q.; Bao, Y.H.; He, X.B.; Tian, F.X.; Lü, F.Y.; Anjum, R. Effects of seasonal water-level fluctuation on soil pore structure in the Three Gorges Reservoir, China. J. Mt. Sci. 2018, 15, 2192–2206. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Charrier, P.; Morari, F. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment. Geoderma 2013, 204, 84–93. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Juíz, L.V.; Pérez-Rodríguez, P.; López-Periago, J.E.; Paradelo, M.; Koestel, J. Percolation theory applied to soil tomography. Geoderma 2020, 9, 113959. [Google Scholar] [CrossRef]
- Vervoort, R.W.; Cattle, S.R. Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J. Hydrol. 2003, 272, 36–49. [Google Scholar] [CrossRef]
- Vogel, H.J. Morphological determination of pore connectivity as a function of pore size using serial sections. Eur. J. Soil Sci. 1997, 48, 365–377. [Google Scholar] [CrossRef]
Physical Properties | Soil Use Practices | |||
---|---|---|---|---|
MT(C) | MT(S) | NT(C) | NT(S) | |
Sand (g kg−1) | 354 | 349 | 342 | 348 |
Clay (g kg−1) | 420 | 430 | 415 | 445 |
Silt (g kg−1) | 226 | 221 | 243 | 207 |
BD (g cm−3) | 1.13 (0.13) | 1.22 (0.05) | 1.25 (0.03) | 1.22 (0.05) |
TP (%) | 0.54 (0.05) | 0.52 (0.02) | 0.51 (0.01) | 0.52 (0.02) |
MAC (%) | 0.14 (0.07) | 0.07 (0.05) | 0.05 (0.01) | 0.09 (0.03) |
MIC (%) | 0.40 (0.03) | 0.45 (0.03) | 0.46 (0.01) | 0.43 (0.01) |
OC (g kg−1) | 26 (2) | 25 (2) | 24 (2) | 27 (3) |
Ellipsoid Axis | Shape | |||
---|---|---|---|---|
Equant | Prolate | Oblate | Triaxial | |
≥0.65 | <0.65 | ≥0.65 | <0.65 | |
≥0.65 | ≥0.65 | <0.65 | <0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspareto, J.V.; Pires, L.F. X-ray Microtomography Analysis of Integrated Crop–Livestock Production’s Impact on Soil Pore Architecture. AgriEngineering 2024, 6, 2249-2268. https://doi.org/10.3390/agriengineering6030132
Gaspareto JV, Pires LF. X-ray Microtomography Analysis of Integrated Crop–Livestock Production’s Impact on Soil Pore Architecture. AgriEngineering. 2024; 6(3):2249-2268. https://doi.org/10.3390/agriengineering6030132
Chicago/Turabian StyleGaspareto, José V., and Luiz F. Pires. 2024. "X-ray Microtomography Analysis of Integrated Crop–Livestock Production’s Impact on Soil Pore Architecture" AgriEngineering 6, no. 3: 2249-2268. https://doi.org/10.3390/agriengineering6030132
APA StyleGaspareto, J. V., & Pires, L. F. (2024). X-ray Microtomography Analysis of Integrated Crop–Livestock Production’s Impact on Soil Pore Architecture. AgriEngineering, 6(3), 2249-2268. https://doi.org/10.3390/agriengineering6030132