Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan
Abstract
:1. Introduction
- (a)
- Measure soil hardness at various depths before and after the passage of the tractor at different speeds and tire pressures.
- (b)
- Analyze the impact of tractor speed and tire pressure on soil hardness.
- (c)
- Measure the loads (pressures) exerted by the tractor on the soil at various depths across the tire width at different tractor speeds.
- (d)
- Analyze the effect of tractor speed on the loads (pressures) exerted by the tractor on the soil at various depths across the tire width.
- (e)
- Determine the optimal operating modes (speed and tire pressure) to minimize soil compaction for the specific tractor under study.
2. Materials and Methods
2.1. Case Study Area
2.2. A Description of the Tractor Used in the Research
2.3. Methods
2.4. Calculations and Statistics
3. Results and Discussion
3.1. Influence of Wheel Tractor Speed on Soil Hardness
3.2. The Influence of Tractor Speed on the Load (Pressure) Exerted by the Tractor on Soil at Various Depths across the Tire Width
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhmetov, A.A.; Akhmedov, S.A.; Allanazarov, M.A.; Asamov, R.H. Ensuring the Reliability of Adjusting the Clearance of a Four-Wheel Tractor. IOP Conf. Ser. Earth Environ. Sci. 2023, 1138, 012047. [Google Scholar] [CrossRef]
- Rosim, D.C.; De Maria, I.C.; Silva, R.L.; Silva, Á.P.D. Soil Compaction in a Rhodic Hapludox Soil as Influenced by Straw Management and Quantity on Surface; [Compactação de Um Latossolo Vermelho Distroférrico Com Diferentes Quantidades e Manejos de Palha Em Superfície]. Bragantia 2012, 71, 502–508. [Google Scholar] [CrossRef]
- Schjønning, P.; Munkholm, L.J.; Lamandé, M. Soil Characteristics and Root Growth in a Catena across and Outside the Wheel Tracks for Different Slurry Application Systems. Soil Tillage Res. 2022, 221, 105422. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical Increase in Agricultural Machinery Weights Enhanced Soil Stress Levels and Adversely Affected Soil Functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Tijink, F.G.J.; Döll, H.; Vermeulen, G.D. Technical and Economic Feasibility of Low Ground Pressure Running Gear. Soil Tillage Res. 1995, 35, 99–110. [Google Scholar] [CrossRef]
- Lamandé, M.; Keller, T.; Berisso, F.; Stettler, M.; Schjønning, P. Accuracy of Soil Stress Measurements as Affected by Transducer Dimensions and Shape. Soil Tillage Res. 2015, 145, e72–e77. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Boizard, H.; Dürr, C.; Richard, G.; Boiffin, J. Effect of Cropping Systems and Climate on Soil Physical Characteristics, Field Crop Emergence and Yield: A Dataset from a 19-Year Field Experiment. Data Brief 2021, 39, 107581. [Google Scholar] [CrossRef] [PubMed]
- Longepierre, M.; Feola Conz, R.; Barthel, M.; Bru, D.; Philippot, L.; Six, J.; Hartmann, M. Mixed Effects of Soil Compaction on the Nitrogen Cycle Under Pea and Wheat. Front. Microbiol. 2022, 12, 822487. [Google Scholar] [CrossRef]
- Campbell, D.J. Terramechanics Research in The Soil Section of The Scottish Institute of Agricultural Engineering. NASA Tech. Memo. 1983, 20, 61–67. [Google Scholar] [CrossRef]
- Berisso, F.E.; Schjønning, P.; Lamandé, M.; Weisskopf, P.; Stettler, M.; Keller, T. Effects of the Stress Field Induced by a Running Tyre on the Soil Pore System. Soil Tillage Res. 2013, 131, 36–46. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.-R.; Schrader, S.; Höper, H.; Wilke, B.-M. Evaluation of Soil Compaction Effects on Soil Biota and Soil Biological Processes in Soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Thomas, S.M.; Fraser, P.M.; Hu, W.; Clough, T.J.; Van Der Klei, G.; Wilson, S.; Tregurtha, R.; Baird, D. Tillage, Compaction and Wetting Effects on NO3, N2O and N2 Losses. Soil Res. 2019, 57, 670. [Google Scholar] [CrossRef]
- Weisskopf, P.; Reiser, R.; Rek, J.; Oberholzer, H.-R. Effect of Different Compaction Impacts and Varying Subsequent Management Practices on Soil Structure, Air Regime and Microbiological Parameters. Soil Tillage Res. 2010, 111, 65–74. [Google Scholar] [CrossRef]
- Smith, E.K.; Misiewicz, P.A.; Chaney, K.; White, D.R.; Godwin, R.J. An Investigation into the Effect of Traffic and Tillage on Soil Properties and Crop Yields. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, Kansas City, MO, USA, 21–24 July 2013; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013; Volume 4, pp. 2868–2880. [Google Scholar]
- Arvidsson, J.; Bölenius, E.; Cavalieri, K.M.V. Effects of Compaction during Drilling on Yield of Sugar Beet (Beta vulgaris L.). Eur. J. Agron. 2012, 39, 44–51. [Google Scholar] [CrossRef]
- Bianchini, L.; Alemanno, R.; Di Stefano, V.; Cecchini, M.; Colantoni, A. Soil Compaction in Harvesting Operations of Phalaris arundinacea L. Land 2022, 11, 1031. [Google Scholar] [CrossRef]
- Saggau, P.; Kuhwald, M.; Duttmann, R. Integrating Soil Compaction Impacts of Tramlines into Soil Erosion Modelling: A Field-Scale Approach. Soil Syst. 2019, 3, 51. [Google Scholar] [CrossRef]
- Calleja-Huerta, A.; Lamandé, M.; Green, O.; Munkholm, L.J. Impacts of Load and Repeated Wheeling from a Lightweight Autonomous Field Robot on the Physical Properties of a Loamy Sand Soil. Soil Tillage Res. 2023, 233, 105791. [Google Scholar] [CrossRef]
- Dickson, J.W.; Ritchie, R.M. Zero and Reduced Ground Pressure Traffic Systems in an Arable Rotation. 2. Soil and Crop Responses. Soil Tillage Res. 1996, 38, 89–113. [Google Scholar] [CrossRef]
- Lagnelöv, O.; Larsson, G.; Larsolle, A.; Hansson, P.-A. Impact of Lowered Vehicle Weight of Electric Autonomous Tractors in a Systems Perspective. Smart Agric. Technol. 2023, 4, 100156. [Google Scholar] [CrossRef]
- Hasan, A.-H.A. Impact of Tractor Wheel Passage during Soil Tillage on Some Soil Characteristics and Productivity of Barely. J. Appl. Sci. Res. 2012, 8, 3552–3562. [Google Scholar]
- Idkham, M.; Mandang, T.; Hermawan, W.; Pramuhadi, G. Design Analysis of Narrow Lug Wheel for Wet Paddy Field. Int. J. Sci. Technol. Res. 2019, 8, 286–291. [Google Scholar]
- Jurik, T.W.; Zhang, S. Tractor Wheel Traffic Effects on Weed Emergence in Central Iowa. Weed Technol. 1999, 13, 741–746. [Google Scholar] [CrossRef]
- Kurkauskas, V.; Janulevicius, A.; Pupinis, G. Air Pressure in Tires Effects on Slippage of Tractors. Eng. Rural Dev. 2015, 14, 67–71. [Google Scholar]
- Soane, B.D. The Role of Organic Matter in Soil Compactibility: A Review of Some Practical Aspects. Soil Tillage Res. 1990, 16, 179–201. [Google Scholar] [CrossRef]
- Peralta, G.; Alvarez, C.R.; Taboada, M.Á. Soil Compaction Alleviation by Deep Non-Inversion Tillage and Crop Yield Responses in No Tilled Soils of the Pampas Region of Argentina. A Meta-Analysis. Soil Tillage Res. 2021, 211, 105022. [Google Scholar] [CrossRef]
- Calleja-Huerta, A.; Lamandé, M.; Green, O.; Munkholm, L.J. Vertical and Horizontal Stresses from a Lightweight Autonomous Field Robot during Repeated Wheeling. Soil Tillage Res. 2023, 233, 105790. [Google Scholar] [CrossRef]
- Hemmat, A.; Taki, O. Comparison of Compaction and Puddling as Pre-Planting Soil Preparation for Mechanized Rice Transplanting in Very Gravelly Calcisols in Central Iran. Soil Tillage Res. 2003, 70, 65–72. [Google Scholar] [CrossRef]
- Makharoblidze, R.M.; Lagvilava, I.M.; Basilashvili, B.B.; Makharoblidze, Z.K. Interact of the Tractor Driving Wheels with the Soil by Considering the Rheological Properties of Soils. Ann. Agrar. Sci. 2018, 16, 65–68. [Google Scholar] [CrossRef]
- Cebro, I.S.; Bulan, R.; Sitorus, A. Measurement of Soil Reaction Forces by a Single Flat Wheel on The Slope Soil Bin; [Pengukuran Gaya Reaksi Tanah Dengan Satu Buah Sirip Roda Sangkar Traktor Tangan Di Bak Pengujian Tanah]. INMATEH Agric. Eng. 2022, 67, 573–580. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Becker, S. Modern Forestry Vehicles and Their Impacts on Soil Physical Properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- McBride, R.A. Performance of Wheel and Track Running Gear on Liquid Manure Spreaders. Can. Agric. Eng. 2000, 42, 19–25. [Google Scholar]
- Kroulík, M.; Kvíz, Z.; Kumhála, F.; Hůla, J.; Loch, T. Procedures of Soil Farming Allowing Reduction of Compaction. Precis. Agric. 2011, 12, 317–333. [Google Scholar] [CrossRef]
- Akhmetov, A.; Botirov, R.; Abdurokhmonov, S. Mechanism for Changing the Rear Axle Clearance of a Universal-Tiller Tractor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 883, 012125. [Google Scholar] [CrossRef]
- Akhmetov, A.; Botirov, R.; Amonov, M. Wheeled Tractor Equipped with a Mechanism for Changing the Ground Clearance. In Proceedings of the E3S Web Conference; Foldvary, L., Abdurahmanov, I., Eds.; EDP Sciences: Les Ulis, France, 2023; Volume 386. [Google Scholar]
- McPhee, J.E.; Antille, D.L.; Tullberg, J.N.; Doyle, R.B.; Boersma, M. Managing Soil Compaction—A Choice of Low-Mass Autonomous Vehicles or Controlled Traffic? Biosyst. Eng. 2020, 195, 227–241. [Google Scholar] [CrossRef]
- Interstate Standard 26953-86; Agricultural Mobile Machinery Methods for Determining Force Produced by Propelling Agents on Soil. Standards Publishing: Cincinnati, OH, USA, 1986.
- Interstate Standard 7463-2004; Pneumatic Tyres for Tractors and Agricultural Machinery. Specifications. Standards Publishing: Cincinnati, OH, USA, 2004.
- Cao, X.; He, W.; He, W.; Shi, Y.; An, T.; Wang, X.; Liu, F.; Zhao, Y.; Zhou, P.; Chen, C.; et al. EMMTE: An Excel VBA Tool for Source Apportionment of Nitrate Based on the Stable Isotope Mixing Model. Sci. Total Environ. 2023, 868, 161728. [Google Scholar] [CrossRef] [PubMed]
- Schjønning, P.; Lamandé, M.; Munkholm, L.J.; Lyngvig, H.S.; Nielsen, J.A. Soil Precompression Stress, Penetration Resistance and Crop Yields in Relation to Differently-Trafficked, Temperate-Region Sandy Loam Soils. Soil Tillage Res. 2016, 163, 298–308. [Google Scholar] [CrossRef]
- ten Damme, L.; Schjønning, P.; Munkholm, L.J.; Green, O.; Nielsen, S.K.; Lamandé, M. Soil Structure Response to Field Traffic: Effects of Traction and Repeated Wheeling. Soil Tillage Res. 2021, 213, 105128. [Google Scholar] [CrossRef]
- Botta, G.F.; Tolon-Becerra, A.; Lastra-Bravo, X.; Tourn, M. Tillage and Traffic Effects (Planters and Tractors) on Soil Compaction and Soybean (Glycine max L.) Yields in Argentinean Pampas. Soil Tillage Res. 2010, 110, 167–174. [Google Scholar] [CrossRef]
Name of Indicators | When Installing | |
---|---|---|
High Clearance | Low Clearance | |
Traction class according to [34] | 1.4 | |
Rated pulling force, kN, not less than | 16.4 | 15.8 |
Engine power, kW, not less than: | ||
nominal | 77.0 | |
operational | 74.0 | |
Travel speeds at rated engine speed and no slippage, (with rear-wheel tires 18.4R38), km/h: forward backward | ||
1.29–16.03 | ||
1.54–19.07 | ||
Number of gears (forward/backward) | 12/12 | |
Operating weight of the tractor with ballast, kg | 4680 | |
Ground clearance, mm | 539 | 440 |
Agrotechnical clearance, mm, not less than: | ||
along the beam of the front axle | 870 | 650 |
under the casings of the rear axle shafts | 870 | 650 |
Tractor track, mm: | 1800/2400 | |
Tractor base, mm | 2498 | 2678 |
The smallest turning radius, m, no more | 4.7 | |
Load capacity of the rear-hinged system (at a point 610 mm away from the axis of the rear hinges of the lower links), kg, not less than | ||
3000 | ||
Overall dimensions, mm: | ||
-length with a hinged system in the transport position | 4570 | |
-width | 2280 | |
-height | 3020/2800 |
Indicators and Unit of Measurement | The Value of Indicators at the Depth of the Soil, % | ||||
---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | 40–50 cm | |
Wav, % | 6.78 | 6.78 | 11.46 | 13.04 | 15.74 |
±σ, % | 0.93 | 0.08 | 1.04 | 1.22 | 0.96 |
№ | Horizons, cm | Tractor Movement Speed, km/h | Soil Hardness Value, Tav | |||
---|---|---|---|---|---|---|
Before the Passage of the Tractor | After the Passage of the Tractor | |||||
Average Value, Tav | Standard Deviation, ±σ | Average Value, Tav | Standard Deviation, ±σ | |||
1 | 0–10 | 1.7 | 1.50 | 0.31 | 1.98 | 0.32 |
2 | 10–20 | 1.90 | 0.28 | 2.22 | 0.07 | |
3 | 20–30 | 2.30 | 0.19 | 2.67 | 0.08 | |
4 | 30–40 | 2.60 | 0.15 | 2.73 | 0.06 | |
5 | 40–50 | 2.63 | 0.11 | 2.75 | 0.03 | |
6 | 0–10 | 3.9 | 1.49 | 0.31 | 1.95 | 0.31 |
7 | 10–20 | 1.92 | 0.28 | 2.19 | 0.07 | |
8 | 20–30 | 2.24 | 0.19 | 2.50 | 0.10 | |
9 | 30–40 | 2.46 | 0.15 | 2.59 | 0.16 | |
10 | 40–50 | 2.63 | 0.11 | 2.70 | 0.12 | |
11 | 0–10 | 9.3 | 1.45 | 0.31 | 1.87 | 0.31 |
12 | 10–20 | 1.83 | 0.28 | 2.15 | 0.11 | |
13 | 20–30 | 2.30 | 0.19 | 2.46 | 0.10 | |
14 | 30–40 | 2.47 | 0.15 | 2.56 | 0.16 | |
15 | 40–50 | 2.63 | 0.11 | 2.66 | 0.11 |
№ | Horizons, cm | Tractor Movement Speed, km/h | Soil Hardness Value, Tav | |||
---|---|---|---|---|---|---|
Before the Passage of the Tractor | After the Passage of the Tractor | |||||
Average Value, Tav | Standard Deviation, ±σ | Average Value, Tav | Standard Deviation, ±σ | |||
1 | 0–10 | 1.7 | 1.60 | 0.32 | 1.90 | 0.35 |
2 | 10–20 | 2.15 | 0.05 | 2.23 | 0.23 | |
3 | 20–30 | 2.32 | 0.37 | 2.51 | 0.13 | |
4 | 30–40 | 2.61 | 0.20 | 2.73 | 0.08 | |
5 | 40–50 | 2.69 | 0.19 | 2.73 | 0.11 | |
6 | 0–10 | 3.9 | 1.62 | 0.32 | 2.18 | 0.13 |
7 | 10–20 | 2.19 | 0.05 | 2.51 | 0.17 | |
8 | 20–30 | 2.37 | 0.37 | 2.68 | 0.12 | |
9 | 30–40 | 2.59 | 0.20 | 2.71 | 0.12 | |
10 | 40–50 | 2.67 | 0.19 | 2.72 | 0.09 | |
11 | 0–10 | 9.3 | 1.70 | 0.32 | 2.06 | 0.20 |
12 | 10–20 | 2.05 | 0.05 | 2.27 | 0.35 | |
13 | 20–30 | 2.33 | 0.37 | 2.57 | 0.15 | |
14 | 30–40 | 2.54 | 0.20 | 2.60 | 0.25 | |
15 | 40–50 | 2.61 | 0.19 | 2.68 | 0.12 |
№ | Horizons, cm | Tractor Movement Speed, km/h | Soil Hardness Value, Tav | |||
---|---|---|---|---|---|---|
Before the Passage of the Tractor | After the Passage of the Tractor | |||||
Average Value, Tav | Standard Deviation, ±σ | Average Value, Tav | Standard Deviation, ±σ | |||
1 | 0–10 | 1.7 | 1.39 | 0.78 | 2.14 | 0.23 |
2 | 10–20 | 2.03 | 0.11 | 2.24 | 0.13 | |
3 | 20–30 | 2.22 | 0.13 | 2.45 | 0.16 | |
4 | 30–40 | 2.16 | 0.21 | 2.52 | 0.25 | |
5 | 40–50 | 2.27 | 0.22 | 2.53 | 0.24 | |
6 | 0–10 | 3.9 | 1.30 | 0.78 | 1.99 | 0.22 |
7 | 10–20 | 1.97 | 0.11 | 2.20 | 0.12 | |
8 | 20–30 | 2.13 | 0.13 | 2.34 | 0.23 | |
9 | 30–40 | 2.19 | 0.21 | 2.41 | 0.14 | |
10 | 40–50 | 2.31 | 0.22 | 2.46 | 0.24 | |
11 | 0–10 | 9.3 | 1.36 | 0.78 | 1.97 | 0.21 |
12 | 10–20 | 1.85 | 0.11 | 2.05 | 0.11 | |
13 | 20–30 | 2.09 | 0.13 | 2.18 | 0.21 | |
14 | 30–40 | 2.13 | 0.21 | 2.25 | 0.13 | |
15 | 40–50 | 2.22 | 0.22 | 2.29 | 0.22 |
Horizons, cm | Running Gear Pressure on Soil at Various Tractor Speeds, kPa | |||||||
---|---|---|---|---|---|---|---|---|
1.24 km/h | 1.66 km/h | 7.29 km/h | 11.88 km/h | |||||
The Average across the Tire Width | The Maximum along the Wheel’s Symmetry Axis | The Average across the Tire Width | The Maximum along the Wheel’s Symmetry Axis | The Average across the Tire Width | The Maximum along the Wheel’s Symmetry Axis | The Average across the Tire Width | The Maximum along the Wheel’s Symmetry Axis | |
10 | 175.0 | 418.6 | 159.9 | 351.7 | 111.9 | 239.2 | 51.6 | 178.6 |
20 | 151.5 | 388.1 | 126.3 | 350.9 | 78.1 | 221.8 | 38.0 | 99.3 |
30 | 115.6 | 212.7 | 112.2 | 206.2 | 77.4 | 142.3 | 27.1 | 49.8 |
40 | 60.6 | 104.3 | 49.0 | 98.8 | 20.5 | 54.6 | 9.0 | 26.9 |
50 | 39.5 | 95.9 | 28.1 | 72.8 | 14.8 | 44.2 | 4.2 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetov, A.; Akhmedov, S.; Ishchanov, J. Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan. AgriEngineering 2024, 6, 2067-2081. https://doi.org/10.3390/agriengineering6030121
Akhmetov A, Akhmedov S, Ishchanov J. Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan. AgriEngineering. 2024; 6(3):2067-2081. https://doi.org/10.3390/agriengineering6030121
Chicago/Turabian StyleAkhmetov, Adilbek, Sherzodbek Akhmedov, and Javlonbek Ishchanov. 2024. "Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan" AgriEngineering 6, no. 3: 2067-2081. https://doi.org/10.3390/agriengineering6030121
APA StyleAkhmetov, A., Akhmedov, S., & Ishchanov, J. (2024). Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan. AgriEngineering, 6(3), 2067-2081. https://doi.org/10.3390/agriengineering6030121