Advancing Livestock Technology: Intelligent Systemization for Enhanced Productivity, Welfare, and Sustainability
Abstract
:1. Introduction
2. Importance of Intelligent Systemization in Livestock Production
System | Methods | Outcomes | References |
---|---|---|---|
Data-driven decision making | Data analytics, machine learning (ML) | Improved predictions and decision making in agriculture; competitive edge gained through data acquisition and analysis | [15,17] |
Performance recording and animal identification | Automated data acquisition, ICAR guidelines | Enhanced insights into animal health, productivity, and efficiency | [18] |
Livestock management | Data analytics, real-time data utilization | Optimization of resources, increased sustainability, capital optimization, market demands prediction, environmental sustainability, preventive healthcare, and improved reproduction methods | [19] |
Precision livestock farming (PLF) | Information technology, data science, and PLF technology | Optimized animal feed intake, disease risk mitigation, enhanced animal welfare and living conditions, and collaboration among stakeholders for optimized production of animal-derived products | [20,24] |
Automated feeding systems | Automated feeding systems (AFS) | Precise feed dispensing, reduced wastage, cost efficiency, resource optimization, improved farmer well-being, reduced energy consumption, and environmental impact | [25,28] |
Enhanced animal welfare | Automated climate control systems | Improved animal well-being and enhanced quality of final products | [29] |
Optimized operations | Data analytics and data-driven decision making | General optimization of inputs/outputs and comprehensive operational view for managers | [30] |
Technology integration | Novel technologies, online tools, genetic editing (CRISPR-Cas), omics technologies | Increased herd productivity, genetic improvement, major advances in omics technologies, precise gene expression analysis | [31,32] |
Continuous monitoring | Data Hub, advanced data analytics, and real-time predictive tools | Facilitated continuous monitoring and informed decision making in short-, medium-, and long-term | [33] |
Environmental impact | Online tools for carbon footprint calculation CAP’2ER, Cool-FarmTool, Farm Carbon Toolkit, AGRECALC | Informed decisions on carbon emissions, awareness and action on emission reduction, and sustainable and ethical farming practices | [34] |
Technology | Methods | Objective/Function | Reference |
---|---|---|---|
Big data analyses, ML, AI | ML, AI, sensors, wearable devices, and monitoring tools | This enables farmers to make informed decisions regarding feed management, breeding practices, and disease prevention. By analyzing historical data, these systems can predict trends and optimize strategies for enhanced productivity. Utilizing data to drive decisions in farming entails relying on predictions derived from information collected within the farm and throughout the supply chain | [35] |
Precision Livestock Farming (PLF) | Sensors, monitoring devices | Tracking individual animals’ health, behavior, and performance, identify deviations from normal patterns, allowing for early detection of diseases or stress, minimizing the need for antibiotics and other interventions | [23] |
Genetic engineering for improved traits | Transgenic technology | Advances in genetic engineering have enabled the development of livestock with enhanced traits such as disease resistance, higher milk or meat yields, and improved feed efficiency, by analyzing genetic data, leading to the development of healthier and more productive animal populations | [36,37] |
Environmental monitoring and sustainability | Drones, sensors | IS allows farmers to monitor and manage factors such as water usage, greenhouse gas emissions, and waste disposal more effectively. By optimizing resource utilization and adopting sustainable practices, livestock producers can contribute to environmental conservation | [38,39] |
Supply chain optimization | AI, ML, blockchain technology | Integration with logistics, processing, and distribution systems ensures that the road from farm to table is efficient and transparent. This not only reduces waste, but also enhances the overall quality and safety of livestock products | [40,41,42] |
Remote monitoring and management | IoT, cloud computing, satellite imagery, drones, multispectral cameras. | The ability to remotely monitor and manage livestock operations is a game-changer for farmers. IS enables real-time surveillance of farms, allowing farmers to address issues promptly and efficiently. This is particularly beneficial for large-scale operations where physical presence may be challenging | [43,44] |
Smart farming | Knowledge base, multi-agent technology | Smart farming involves different stages like collection of information on the farm, field, culture, data analysis, and decision making and implementation of decisions—agrotechnical operation | [45,46] |
3. Intelligent Systematization in Livestock Growth Analysis
3.1. Utilizing Advanced Technologies for Animal Growth Monitoring
3.2. Data-Driven Approaches in Analyzing Livestock Development
3.3. Intelligent Systematization Impacts on Productivity and Quality
4. Automated Facilities in Livestock Management
5. Maintenance and Management
5.1. Importance of Accurate Data in Livestock Management
5.2. Real-Time Monitoring and Decision Support
6. Welfare Livestock Farming
6.1. Integrating Technology for Animal Welfare
6.2. Ethical Considerations in Livestock Technology
6.3. Achieving Sustainable and Humane Practices
7. Addressing Livestock Challenges
7.1. Disease Control Strategies
7.2. Reduction of Environmental Impact
7.3. Energy Efficiency in Livestock Production
8. Future Directions and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Subach, T.I.; Shmeleva, Z.N. Introduction of digital innovations in livestock farming. IOP Conf. Ser. Earth Environ. Sci. 2022, 1112, 012079. [Google Scholar] [CrossRef]
- Confessore, A.; Sirtori, B.; Pugliese, C. Precision Livestock Farming technologies in pas-ture-based livestock systems. Animal 2022, 16, 100429. [Google Scholar]
- Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Fraser, E.D.; Roberts, B.; Sharif, S. Smart poultry management: Smart sensors, big data, and the internet of things. Comput. Electron. Agric. 2020, 170, 105291. [Google Scholar] [CrossRef]
- Shriver, A.; McConnachie, E. Genetically modifying livestock for improved welfare: A path forward. J. Agric. Environ. Ethic 2018, 31, 161–180. [Google Scholar] [CrossRef]
- Rangasamy, S.; Rajamohan, K.; Lavan, V.S.; Mayur, C.; Lalitha, M.F. Evolutionized Industry with the Internet of Things. In Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries; IGI Global: Hershey, PA, USA, 2023; pp. 407–434. [Google Scholar]
- Manoharan, G.; Razak, A.; Rao, C.G.; Ashtikar, S.P.; Nivedha, M. Artificial Intelligence at the Helm: Steering the Modern Business Landscape Toward Progress. In The Ethical Frontier of AI and Data Analysis; IGI Global: Hershey, PA, USA, 2024; pp. 72–99. [Google Scholar]
- Mowla, N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of Things and Wireless Sensor Networks for Smart Agriculture Applications: A Survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Hostiou, N.; Fagon, J.; Chauvat, S.; Turlot, A.; Kling-Eveillard, F.; Boivin, X.; Allain, C. Impact of precision livestock farming on work and human-animal interactions on dairy farms. A review. Biosci. Biotechnol. Biochem. 2017, 21, 268–275. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.d.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Mittal, A.; Krejci, C.C.; Craven, T.J. Logistics best practices for regional food systems: A review. Sustainability 2018, 10, 168. [Google Scholar] [CrossRef]
- Wijedasa, M.B.A.S.; Cooray, P.L.G.K.; Jayawansha, R.L.C.; Karunasekera, S.D.; Caldera; Silva, D.D. Cattle farm management system using machine learning and image processing. Int. J. Res. Eng. Sci. Manag. 2023, 6, 12–20. [Google Scholar]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Lee, I.; Shin, Y.J. Machine learning for enterprises: Applications, algorithm selection, and challenges. Bus. Horiz. 2020, 63, 157–170. [Google Scholar] [CrossRef]
- Pääkkönen, P.; Pakkala, D. Reference architecture and classification of technologies, products and services for big data systems. Big Data Res. 2015, 2, 166–186. [Google Scholar] [CrossRef]
- The Global Standard for Livestock Datam. 2022. Available online: https://www.icar.org/index.php/icar-recording-guidelines/ (accessed on 21 May 2024).
- Awan, U. Industrial Ecology in Support of Sustainable Development Goals. In Responsible Consumption and Production; Springer: Cham, Switzerland, 2020; pp. 370–380. [Google Scholar]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision livestock farming research: A global scientometric review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef] [PubMed]
- Shurson, G.C. “What a waste”—Can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 2020, 12, 7071. [Google Scholar] [CrossRef]
- Van der Poel, A.F.; Abdollahi, M.R.; Cheng, H.; Colovic, R.; Den Hartog, L.A.; Miladinovic, D.; Page, G.; Sijssens, K.; Smillie, J.F.; Thomas, M.; et al. Future directions of animal feed technology research to meet the challenges of a changing world. Anim. Feed. Sci. Technol. 2020, 270, 114692. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A. Data-driven decision making in pig farming: A review of the literature. Livest. Sci. 2022, 261, 104961. [Google Scholar] [CrossRef]
- Jorgensen, M.; Adams-Progar, A.; de Passillé, A.; Rushen, J.; Godden, S.; Chester-Jones, H.; Endres, M. Factors associated with dairy calf health in automated feeding systems in the Upper Midwest United States. J. Dairy Sci. 2017, 100, 5675–5686. [Google Scholar] [CrossRef]
- Hansen, B.G.; Bugge, C.T.; Skibrek, P.K. Automatic milking systems and farmer wellbeing-exploring the effects of automation and digitalization in dairy farming. J. Rural Stud. 2020, 80, 469–480. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production. J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Bragaglio, A.; Romano, E.; Brambilla, M.; Bisaglia, C.; Lazzari, A.; Giovinazzo, S.; Cutini, M. A comparison between two specialized dairy cattle farms in the upper Po Valley. Precision agriculture as a strategy to improve sustainability. Clean. Environ. Syst. 2023, 11, 100146. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Maia, M.R.; Miranda; Cabrita, A.R.; Fonseca, A.J.; Pereira, J.L.; Trindade, H. Ammonia and greenhouse emissions from cow’s excreta are affected by feeding system, stage of lactation and sampling time. J. Environ. Manag. 2022, 320, 115882. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, G.R.; Salvesen, H.A.; Sternberg, A.; Lillico, S.G. On-Farm Livestock Genome Editing Using Cutting Edge Reproductive Technologies. Front. Sustain. Food Syst. 2019, 3, 106. [Google Scholar] [CrossRef]
- Santos, R.C.; Lopes, A.L.N.; Sanches, A.C.; Gomes, E.P.; da Silva, E.A.S.; da Silva, J.L.B. Intelligent automated monitoring integrated with animal production facilities. Eng. Agricola 2023, 43, e20220225. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Gao, R.X.; Zhang, F. Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability. J. Manuf. Syst. 2022, 63, 381–391. [Google Scholar] [CrossRef]
- Brlek, P.; Bulić, L.; Bračić, M.; Projić, P.; Škaro, V.; Shah, N.; Shah, P.; Primorac, D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, V.; Barrientos, J.; Fadul, L.; Delgado, H. Real-time continuous decision-making using big data. J. Dairy Sci. 2019, 103, 3856–3866. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar] [CrossRef]
- Mallinger, K.; Baeza-Yates, R. Responsible AI in Farming: A Multi-Criteria Framework for Sustainable Technology Design. Appl. Sci. 2024, 14, 437. [Google Scholar] [CrossRef]
- Laible, G. Enhancing livestock through genetic engineering—Recent advances and future prospects. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Van Eenennaam, A.L.; De Figueiredo Silva, F.; Trott, J.F.; Zilberman, D. Genetic engineering of livestock: The op-portunity cost of regulatory delay. Annu. Rev. Anim. Biosci. 2021, 9, 453–478. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.R.; Nallakaruppan, M.K.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart water resource management using artificial intelligence—A review. Sustainability 2022, 14, 13384. [Google Scholar] [CrossRef]
- Maraveas, C. Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inform. 2020, 17, 4322–4334. [Google Scholar] [CrossRef]
- Menon, S.; Jain, K. Blockchain technology for transparency in agri-food supply chain: Use cases, limitations, and future directions. IEEE Trans. Eng. Manag. 2021, 71, 106–120. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Abdel-Fatah, L. Artificial Intelligence and Internet of Things in Smart Farming; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Sivakumar, R.; Prabadevi, B.; Velvizhi, G.; Muthuraja, S.; Kathiravan, S.; Biswajita, M.; Madhumathi, A. Internet of things and machine learning applications for smart precision agriculture. IoT Appl. Comput. 2021, 1, 135–165. [Google Scholar] [CrossRef]
- Karothia, R.; Chattopadhyay, M.K. Review of Various Technologies Involved in Precision Farming Automation. In Precision Agriculture for Sustainability; Apple Academic Press: Williston, VT, USA, 2024; pp. 3–20. [Google Scholar]
- Skobelev, P.; Simonova, E.; Smirnov, S.; Budaev, D.; Voshchuk, G.; Morokov, A. Development of a knowledge base in the “smart farming” system for agricultural enterprise management. Procedia Comput. Sci. 2019, 150, 154–161. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.; Gopejenko, V.; Yakunin, K.; et al. Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics 2022, 10, 2552. [Google Scholar] [CrossRef]
- Pivoto, D. Smart Farming: Concepts, Applications, Adoption and Diffusion in Southern Brazil. Ph.D. Thesis, Universidad Federal de Río Grande del Sur, Alegre, Brazil, 2018. [Google Scholar]
- Maffezzoli, F.; Ardolino, M.; Bacchetti, A.; Perona, M.; Renga, F. Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits. Futures 2022, 142, 102998. [Google Scholar] [CrossRef]
- Misiuk, M.; Zakhodym, M. Digitization as a tool for revitalizing the livestock industry. Èkon. APK 2023, 30, 10–24. [Google Scholar] [CrossRef]
- Srivastava, M.; Kumar, R. Smart environmental monitoring based on IoT: Architecture, issues, and challenges. In Advances in Computational Intelligence and Communication Technology: Proceedings of CICT 2019; Springer: Singapore, 2021; pp. 349–358. [Google Scholar]
- Andronie, M.; Lăzăroiu, G.; Ștefănescu, R.; Uță, C.; Dijmărescu, I. Sustainable, smart, and sensing technologies for cyber-physical manufacturing systems: A systematic literature review. Sustainability 2021, 13, 5495. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q. Artificial intelligence in animal farming: A systematic literature review. J. Clean. Prod. 2021, 331, 129956. [Google Scholar] [CrossRef]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D.; et al. Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 2021, 67, 101741. [Google Scholar] [CrossRef]
- Lohiya, R.; Thakkar, A. Application domains, evaluation data sets, and research challenges of IoT: A systematic review. IEEE Internet Things J. 2021, 8, 8774–8798. [Google Scholar] [CrossRef]
- Wrzecińska, M.; Czerniawska-Piątkowska, E.; Kowalewska, I.; Kowalczyk, A.; Mylostyvyi, R.; Stefaniak, W. Agriculture in the face of new digitization technologies. Ukr. Black Sea Reg. Agrar. Sci. 2023, 3, 9–17. [Google Scholar] [CrossRef]
- Liang, C.; Shah, T. IoT in agriculture: The future of precision monitoring and data-driven farming. Eig. Rev. Sci. Technol. 2023, 7, 85–104. [Google Scholar]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef]
- Hamadani, H.; Hamadani, A.; Shabir, S. Artificial intelligence in animal farms for management and breeding. In A Biologist s Guide to Artificial Intelligence; Academic Press: Cambridge, MA, USA, 2024; pp. 167–182. [Google Scholar]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Cockburn, M. Review: Application and prospective discussion of machine learning for the management of dairy farms. Animals 2020, 10, 1690. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Holzinger, A.; Saranti, A.; Angerschmid, A.; Retzlaff, C.O.; Gronauer, A.; Pejakovic, V.; Medel-Jimenez, F.; Krexner, T.; Gollob, C.; Stampfer, K. Digital Transformation in Smart Farm and Forest Operations Needs Human-Centered AI: Challenges and Future Directions. Sensors 2022, 22, 3043. [Google Scholar] [CrossRef]
- Kouroubali, A.; Katehakis, D.G. Policy and strategy for interoperability of digital health in Europe. In MEDINFO 2021: One World, One Health–Global Partnership for Digital Innovation; IOS Press: Amsterdam, The Netherlands, 2022; pp. 897–901. [Google Scholar]
- Lassoued, R.; Macall, D.M.; Smyth, S.J.; Phillips, P.W.B.; Hesseln, H. Expert Insights on the Impacts of, and Potential for, Agricultural Big Data. Sustainability 2021, 13, 2521. [Google Scholar] [CrossRef]
- Mittelstadt, B.D.; Floridi, L. The ethics of big data: Current and foreseeable issues in biomedical contexts. Ethics Biomed. Big Data 2016, 29, 445–480. [Google Scholar]
- Hassan, M.; Park, J.H.; Han, M.H. Enhancing livestock management with IoT-based wireless sensor networks: A comprehensive approach for health monitoring, location tracking, behavior analysis, and environmental optimization. J. Sustain. Urban Futures 2023, 13, 34–46. [Google Scholar]
- Park, S.O.; Zammit, V.A. Effect of digital livestock system on animal be-havior and welfare, and fatty acid profiles of egg in laying hens. J. Anim. Feed. Sci. 2023, 32, 174–180. [Google Scholar] [CrossRef]
- Park, S.-O.; Seo, K.-H. Digital livestock systems and probiotic mixtures can improve the growth performance of swine by enhancing immune function, cecal bacteria, short-chain fatty acid, and nutrient digestibility. Front. Veter-Sci. 2023, 10, 1126064. [Google Scholar] [CrossRef] [PubMed]
- Um, K.; Park, S.; Zammit, V. Utilization of ICT-based feeding system on egg production, egg quality, blood parameters and caecal microflora in laying hens. Anim. Nutr. Feed. Technol. 2020, 20, 289–300. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zailani, S. Big data for sustainable agri-food supply chains: A review and future research per-spectives. J. Data Inf. Manag. 2021, 3, 167–182. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Di Vaio, A.; Boccia, F.; Landriani, L.; Palladino, R. Artificial Intelligence in the Agri-Food System: Rethinking Sustainable Business Models in the COVID-19 Scenario. Sustainability 2020, 12, 4851. [Google Scholar] [CrossRef]
- Sun, H.; Palaoag, T.D.; Quan, Q. Design of automatic monitoring and control system for livestock and poultry house environment based on internet of things robot. In Proceedings of the APIT 2022: 2022 4th Asia Pacific Information Technology Conference, Bangkok, Thailand, 14–16 January 2022. [Google Scholar]
- Bhoj, S.; Tarafdar, A.; Singh, M.; Gaur, G.K. Smart and automatic milking systems: Benefits and prospects. In Smart and Sustainable Food Technologies; Springer Nature: Singapore, 2022; pp. 87–121. [Google Scholar]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Stoliarchuk, N.; Kozak, O.; Serhieieva, N.; Kozak, M.; Bilochenko, A.; Semendiak, V. Search for Reserves to Increase the Livestock Production Efficiency Based on the Sustainable Development Strategy. Environ. Res. Eng. Manag. 2021, 77, 19–32. [Google Scholar] [CrossRef]
- Weetman, C. A Circular Economy Handbook for Business and Supply Chains: Repair, Remake, Redesign, Rethink; Kogan Page Publishers: London, UK, 2016. [Google Scholar]
- Ingram, J. Agronomist–farmer knowledge encounters: An analysis of knowledge exchange in the context of best management practices in England. Agric. Hum. Values 2008, 25, 405–418. [Google Scholar] [CrossRef]
- Gosnell, H.; Gill, N.; Voyer, M. Transformational adaptation on the farm: Processes of change and persistence in transitions to ‘climate-smart’ regenerative agriculture. Glob. Environ. Chang. 2019, 59, 101965. [Google Scholar] [CrossRef]
- Rojo-Gimeno, C.; van der Voort, M.; Niemi, J.K.; Lauwers, L.; Kristensen, A.R.; Wauters, E. Assessment of the value of information of precision livestock farming: A conceptual framework. NJAS-Wagening. J. Life Sci. 2019, 90–91, 1–9. [Google Scholar] [CrossRef]
- Villeneuve, E.; Akle, A.A.; Merlo, C.; Masson, D.; Terrasson, G.; Llaria, A. Decision support in precision sheep farming. IFAC-PapersOnLine 2019, 51, 236–241. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Adrion, F.; Maselyne, J.; Kapun, A.; Hessel, E.F.; Saeys, W.; Van Nuffel, A.; Gallmann, E. A review of passive radio frequency identification systems for animal monitoring in livestock facilities. Appl. Eng. Agric. 2018, 35, 579–591. [Google Scholar] [CrossRef]
- Velayudhan, N.K.; Pradeep, P.; Rao, S.N.; Devidas, A.R.; Ramesh, M.V. IoT-enabled water distribution systems—A comparative technological review. IEEE Access 2022, 10, 101042–101070. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Salama, A.A.; Oliver, J.; Baratta, M.; Ferrer, C.; Knight, C.H. Sensing solutions for improving the performance, health and wellbeing of small ruminants. J. Dairy Res. 2020, 87, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The role of AI, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access 2020, 9, 32030–32052. [Google Scholar] [CrossRef]
- Hampton, J.O.; Jones, B.; McGreevy, P.D. Social license and animal welfare: Developments from the past decade in Australia. Animals 2020, 10, 2237. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.J.; van der Weele, C. The farmers’ dilemma: Meat, means, and morality. Appetite 2021, 167, 105605. [Google Scholar] [CrossRef] [PubMed]
- Bhave, P.P.; Palekar, A.L. Quantification and environmental impact of slaughter waste during its life cycle. Environ. Monit. Assess. 2024, 196, 225. [Google Scholar] [CrossRef] [PubMed]
- Botilias, G.-P.; Margariti, S.V.; Besarat, J.; Salmas, D.; Pachoulas, G.; Stylios, C.; Skalkos, D. Designing and Developing a Meat Traceability System: A Case Study for the Greek Meat Industry. Sustainability 2023, 15, 12162. [Google Scholar] [CrossRef]
- Giovanini, L.; Rufiner, H. Information Technologies in Feeding Behavior Livestock Monitoring. In Encyclopedia of Digital Agricultural Technologies; Springer International Publishing: Cham, Switzerland, 2023; pp. 672–683. [Google Scholar]
- Vlaicu, P.A.; Untea, A.E.; Varzaru, I.; Saracila, M.; Oancea, A.G. Designing Nutrition for Health—Incorporating Dietary By-Products into Poultry Feeds to Create Functional Foods with Insights into Health Benefits, Risks, Bioactive Compounds, Food Component Functionality and Safety Regulations. Foods 2023, 12, 4001. [Google Scholar] [CrossRef]
- Beauchamp, T.L.; Frey, R.G. (Eds.) The Oxford Handbook of Animal Ethics; Oxford University Press USA: New York, NY, USA, 2011. [Google Scholar]
- Rollin, B. Agriculture, Ethics, and Law. In International Food Law and Policy; Springer: Berlin/Heidelberg, Germany, 2016; pp. 31–49. [Google Scholar]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. AMBIO 2016, 46, 4–17. [Google Scholar] [CrossRef]
- Wang’ombe, A. Waste Management and Resource Efficiency in Livestock Farming. Int. J. Sustain. Livest. Pract. 2023, 1, 20–29. [Google Scholar]
- Bratcher, N.A.; Allen, C.M.; McLahan, C.L.; O’Connell, D.M.; Burr, H.N.; Keen, J.N.; Stanislawczyk, L.M.; A Burns, M. Identification of Rodent Husbandry Refinement Opportunities through Benchmarking and Collaboration. J. Am. Assoc. Lab. Anim. Sci. 2022, 61, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Scoones, I. Addressing the dynamics of agri-food systems: An emerging agenda for social science re-search. Environ. Sci. Policy 2009, 12, 386–397. [Google Scholar] [CrossRef]
- Ali, W.; Ali, M.; Ahmad, M.; Dilawar, S.; Firdous, A.; Afzal, A. Application of modern techniques in animal production sector for human and animal welfare. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 457–463. [Google Scholar] [CrossRef]
- Malik, Y.S.; Verma, A.; Kumar, N.; Deol, P.; Kumar, D.; Ghosh, S.; Dhama, K. Biotechnological innovations in farm and pet animal disease diagnosis. In Genomics and Biotechnological Advances in Veterinary, Poultry, and Fisheries; Academic Press: Cambridge, MA, USA, 2020; pp. 287–309. [Google Scholar]
- Drewe, J.A.; Snary, E.L.; Crotta, M.; Alarcon, P.; Guitian, J. Surveillance and risk assessment for early detection of emerging infectious diseases in livestock. Rev. Sci. Tech. l’OIE 2023, 42, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in pig farms: A review. Porc. Health Manag. 2021, 7, 5. [Google Scholar] [CrossRef]
- Robertson, I.D. Disease control, prevention and on-farm biosecurity: The role of veterinary epidemiology. Engineering 2019, 6, 20–25. [Google Scholar] [CrossRef]
- Yuan, G.N.; Marquez, G.P.B.; Deng, H.; Iu, A.; Fabella, M.; Salonga, R.B.; Ashardiono, F.; Cartagena, J.A. A review on urban agriculture: Technology, socio-economy, and policy. Heliyon 2022, 8, e11583. [Google Scholar] [CrossRef]
- Gawande, V.; Saikanth, D.R.K.; Sumithra, B.S.; Aravind, S.A.; Swamy, G.N.; Chowdhury, M.; Singh, B.V. Potential of precision farming technologies for eco-friendly agriculture. Int. J. Plant Soil Sci. 2023, 35, 101–112. [Google Scholar] [CrossRef]
- Karthika, R. Role of precision agriculture in soil fertility and its application to farmers. In Remote Sensing in Precision Agriculture; Academic Press: Cambridge, MA, USA, 2024; pp. 137–147. [Google Scholar]
- Babu, S.; Das, A.; Singh, R.; Mohapatra, K.P.; Kumar, S.; Rathore, S.S.; Yadav, S.K.; Yadav, P.; Ansari, M.A.; Panwar, A.S.; et al. Designing an energy efficient, economically feasible, and environmentally robust integrated farming system model for sustainable food production in the Indian Himalayas. Sustain. Food Technol. 2022, 1, 126–142. [Google Scholar] [CrossRef]
- González-Quintero, R.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantevez, H.; Barahona-Rosales, R.; Sánchez-Pinzón, M.S. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci. Total Environ. 2021, 773, 145573. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Jhariya, M.K.; Raj, A.; Yadav, D.K.; Khan, N.; Meena, R.S. Energy and climate footprint towards the environmental sustainability. In Agroecological Footprints Management for Sustainable Food System; Springer: Singapore, 2021; pp. 415–443. [Google Scholar]
- Simpeh, E.K.; Pillay, J.-P.G.; Ndihokubwayo, R.; Nalumu, D.J. Improving energy efficiency of HVAC systems in buildings: A review of best practices. Int. J. Build. Pathol. Adapt. 2022, 40, 165–182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlaicu, P.A.; Gras, M.A.; Untea, A.E.; Lefter, N.A.; Rotar, M.C. Advancing Livestock Technology: Intelligent Systemization for Enhanced Productivity, Welfare, and Sustainability. AgriEngineering 2024, 6, 1479-1496. https://doi.org/10.3390/agriengineering6020084
Vlaicu PA, Gras MA, Untea AE, Lefter NA, Rotar MC. Advancing Livestock Technology: Intelligent Systemization for Enhanced Productivity, Welfare, and Sustainability. AgriEngineering. 2024; 6(2):1479-1496. https://doi.org/10.3390/agriengineering6020084
Chicago/Turabian StyleVlaicu, Petru Alexandru, Mihail Alexandru Gras, Arabela Elena Untea, Nicoleta Aurelia Lefter, and Mircea Catalin Rotar. 2024. "Advancing Livestock Technology: Intelligent Systemization for Enhanced Productivity, Welfare, and Sustainability" AgriEngineering 6, no. 2: 1479-1496. https://doi.org/10.3390/agriengineering6020084
APA StyleVlaicu, P. A., Gras, M. A., Untea, A. E., Lefter, N. A., & Rotar, M. C. (2024). Advancing Livestock Technology: Intelligent Systemization for Enhanced Productivity, Welfare, and Sustainability. AgriEngineering, 6(2), 1479-1496. https://doi.org/10.3390/agriengineering6020084