Some Geospatial Insights on Orange Grove Site Selection in a Portion of the Northern Citrus Belt of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Criteria Standardization
2.4. Analytical Hierarchy Process
2.5. Weighted Linear Combination
2.6. Principal Component Analysis for Assembling Multiyear Land Suitability
2.7. Estimated Land Suitability vs. Current Spatial Distribution of Orange Groves
3. Results
3.1. Spatiotemporal Variation in Precipitation
3.2. Spatial Pattern of Annual Land Suitability for Growing Orange Groves
3.3. Principal Component Analysis
3.4. Integrated Land Suitability for Growing Orange Groves
3.5. Comparison of Land Suitability Maps vs. Spatial Distribution of Orange Groves
4. Discussion
4.1. Spatiotemporal Variation in Precipitation
4.2. Spatial Pattern of Annual Land Suitability for Growing Orange Groves
4.3. Integrated Land Suitability for Growing Orange Groves
4.4. Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Criterion: Topography | ||||
Elevation | Slope | Aspect | ||
Elevation | 1 | |||
Slope | 1/3 | 1 | ||
Aspect | 1 | 5 | 1 | |
C.R. = 0.03 | ||||
Criterion: Soil | ||||
pH | Soil depth | Soil texture | Electrical conductivity | |
pH | 1 | |||
Soil depth | 3 | 1 | ||
Soil texture | 3 | 1 | 1 | |
Electrical conductivity | 3 | 1/3 | 1 | 1 |
C.R. = 0.06 | ||||
Criterion: Climate | ||||
Relative humidity | Mean minimum temperature | Mean maximum temperature | Precipitation | |
Relative humidity | 1 | |||
Mean minimum temperature | 3 | 1 | ||
Mean maximum temperature | 5 | 3 | 1 | |
Precipitation | 5 | 3 | 3 | 1 |
C.R. = 0.07 | ||||
Criterion: Proximity to water sources | ||||
Distance to rivers | Distance to wells | Distance to springs | ||
Distance to rivers | 1 | |||
Distance to springs | 1/3 | 1 | ||
Distance to wells | 3 | 5 | 1 | |
C.R. = 0.03 |
All four criteria | ||||
Topography | Soil | Proximity to water sources | Climate | |
Topography | 1 | |||
Soil | 3 | 1 | ||
Proximity to water sources | 5 | 3 | 1 | |
Climate | 5 | 3 | 3 | 1 |
C.R. = 0.01 |
PC’s | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | PC12 | PC13 | PC14 | PC15 | PC16 | PC17 | PC18 | PC19 | PC20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% Variance explained | 99.62 | 0.09 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
Eigenvalue | 19.92 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Eigenvector 1 (Year 2000) | 0.22 | −0.21 | −0.36 | 0.22 | −0.59 | 0.56 | −0.18 | 0.04 | −0.03 | 0.13 | −0.05 | 0.00 | 0.01 | 0.02 | −0.01 | −0.10 | 0.00 | −0.03 | −0.01 | 0.00 |
Eigenvector 2 (Year 2001) | 0.22 | 0.15 | 0.11 | −0.15 | 0.09 | 0.07 | −0.07 | 0.12 | −0.20 | 0.06 | −0.17 | 0.01 | −0.07 | −0.20 | 0.52 | −0.46 | −0.47 | 0.18 | 0.01 | 0.00 |
Eigenvector 3 (Year 2002) | 0.22 | −0.17 | −0.07 | −0.29 | 0.06 | 0.11 | 0.33 | 0.26 | −0.29 | −0.11 | −0.05 | 0.53 | 0.04 | −0.43 | −0.19 | 0.13 | 0.16 | 0.00 | 0.00 | 0.00 |
Eigenvector 4 (Year 2003) | 0.22 | −0.05 | −0.04 | −0.41 | −0.09 | 0.00 | 0.04 | 0.56 | 0.08 | −0.27 | 0.19 | −0.35 | −0.28 | 0.32 | −0.10 | 0.11 | −0.13 | −0.02 | 0.00 | 0.00 |
Eigenvector 5 (Year 2004) | 0.22 | −0.12 | 0.05 | −0.10 | 0.12 | −0.12 | −0.53 | −0.16 | −0.47 | 0.10 | 0.46 | 0.22 | 0.00 | 0.27 | −0.11 | −0.04 | 0.04 | 0.10 | −0.02 | 0.00 |
Eigenvector 6 (Year 2005) | 0.22 | −0.05 | −0.11 | −0.31 | −0.19 | −0.29 | −0.12 | −0.12 | 0.66 | 0.17 | 0.27 | 0.16 | 0.08 | −0.25 | −0.02 | −0.22 | 0.04 | 0.07 | −0.01 | 0.00 |
Eigenvector 7 (Year 2006) | 0.22 | −0.30 | −0.28 | 0.16 | 0.11 | −0.25 | −0.27 | −0.23 | 0.00 | −0.63 | −0.23 | −0.14 | −0.12 | −0.24 | 0.07 | 0.05 | −0.01 | −0.02 | 0.00 | 0.00 |
Eigenvector 8 (Year 2007) | 0.22 | 0.30 | −0.02 | 0.02 | 0.00 | −0.11 | −0.05 | −0.04 | −0.06 | 0.12 | −0.05 | 0.07 | −0.27 | −0.04 | −0.01 | −0.06 | 0.00 | −0.86 | 0.04 | 0.00 |
Eigenvector 9 (Year 2008) | 0.22 | 0.42 | −0.12 | 0.14 | −0.06 | −0.10 | 0.05 | −0.05 | 0.00 | 0.03 | −0.07 | 0.07 | −0.25 | 0.02 | −0.07 | 0.17 | 0.03 | 0.27 | −0.74 | 0.00 |
Eigenvector 10 (Year 2009) | 0.22 | −0.17 | 0.06 | −0.27 | −0.11 | −0.07 | 0.17 | −0.29 | 0.09 | 0.00 | −0.46 | 0.31 | 0.09 | 0.59 | 0.14 | 0.12 | −0.08 | −0.02 | 0.02 | 0.00 |
Eigenvector 11 (Year 2010) | 0.22 | 0.41 | −0.15 | 0.18 | −0.08 | −0.11 | 0.09 | −0.07 | −0.02 | 0.04 | −0.02 | 0.08 | −0.29 | 0.02 | −0.12 | 0.14 | 0.01 | 0.35 | 0.67 | 0.00 |
Eigenvector 12 (Year 2011) | 0.22 | 0.35 | −0.12 | 0.07 | 0.05 | 0.09 | 0.23 | −0.08 | −0.03 | −0.38 | 0.15 | −0.05 | 0.57 | 0.18 | −0.23 | −0.39 | −0.01 | −0.06 | −0.01 | 0.00 |
Eigenvector 13 (Year 2012) | 0.22 | 0.23 | −0.04 | 0.00 | 0.12 | 0.09 | −0.26 | 0.19 | 0.10 | 0.05 | 0.02 | −0.04 | 0.49 | −0.08 | 0.38 | 0.60 | 0.03 | −0.06 | 0.06 | 0.00 |
Eigenvector 14 (Year 2013) | 0.22 | −0.04 | 0.20 | −0.07 | 0.19 | 0.08 | −0.24 | 0.00 | 0.05 | 0.26 | −0.39 | −0.24 | 0.14 | −0.15 | −0.63 | 0.04 | −0.29 | 0.05 | 0.01 | 0.00 |
Eigenvector 15 (Year 2014) | 0.22 | −0.11 | 0.06 | −0.18 | −0.27 | −0.17 | 0.37 | −0.38 | −0.33 | 0.20 | 0.15 | −0.51 | 0.10 | −0.19 | 0.10 | 0.15 | 0.04 | 0.00 | −0.01 | 0.00 |
Eigenvector 16 (Year 2015) | 0.22 | −0.08 | 0.20 | 0.02 | 0.39 | 0.58 | 0.16 | −0.36 | 0.26 | −0.10 | 0.30 | 0.00 | −0.27 | −0.02 | 0.06 | 0.12 | −0.08 | −0.01 | −0.01 | 0.00 |
Eigenvector 17 (Year 2016) | 0.22 | 0.05 | 0.21 | −0.09 | 0.13 | 0.11 | −0.12 | 0.08 | 0.02 | 0.06 | −0.25 | −0.20 | −0.06 | 0.03 | 0.12 | −0.27 | 0.79 | 0.09 | 0.03 | 0.00 |
Eigenvector 18 (Year 2017) | 0.22 | −0.15 | 0.43 | 0.37 | −0.16 | −0.15 | 0.08 | 0.17 | 0.06 | −0.06 | 0.07 | 0.08 | 0.03 | 0.00 | 0.02 | 0.00 | −0.04 | −0.01 | 0.00 | −0.71 |
Eigenvector 19 (Year 2018) | 0.22 | −0.15 | 0.43 | 0.37 | −0.16 | −0.15 | 0.08 | 0.17 | 0.06 | −0.06 | 0.07 | 0.08 | 0.03 | 0.00 | 0.02 | 0.00 | −0.04 | −0.01 | −0.01 | 0.71 |
Eigenvector 20 (Year 2019) | 0.22 | −0.31 | −0.45 | 0.31 | 0.46 | −0.17 | 0.26 | 0.20 | 0.04 | 0.40 | 0.04 | −0.08 | 0.03 | 0.17 | 0.07 | −0.10 | 0.00 | 0.00 | −0.02 | 0.00 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | |
---|---|---|---|---|---|---|---|---|---|---|
Loading Year 2000 | 0.9972 | −0.0283 | −0.0313 | 0.0160 | −0.0422 | 0.0394 | −0.0114 | 0.0025 | −0.0018 | 0.0075 |
Loading Year 2001 | 0.9986 | 0.0207 | 0.0095 | −0.0110 | 0.0065 | 0.0049 | −0.0042 | 0.0075 | −0.0116 | 0.0035 |
Loading Year 2002 | 0.9982 | −0.0231 | −0.0061 | −0.0208 | 0.0046 | 0.0077 | 0.0209 | 0.0156 | −0.0170 | −0.0059 |
Loading Year 2003 | 0.9983 | −0.0066 | −0.0039 | −0.0296 | −0.0062 | 0.0000 | 0.0028 | 0.0337 | 0.0048 | −0.0152 |
Loading Year 2004 | 0.9983 | −0.0164 | 0.0045 | −0.0071 | 0.0084 | −0.0084 | −0.0337 | −0.0095 | −0.0274 | 0.0055 |
Loading Year 2005 | 0.9982 | −0.0070 | −0.0094 | −0.0227 | −0.0134 | −0.0207 | −0.0077 | −0.0070 | 0.0385 | 0.0095 |
Loading Year 2006 | 0.9975 | −0.0417 | −0.0243 | 0.0114 | 0.0077 | −0.0174 | −0.0169 | −0.0140 | 0.0000 | −0.0353 |
Loading Year 2007 | 0.9985 | 0.0411 | −0.0019 | 0.0016 | −0.0002 | −0.0075 | −0.0032 | −0.0026 | −0.0034 | 0.0068 |
Loading Year 2008 | 0.9978 | 0.0573 | −0.0103 | 0.0102 | −0.0046 | −0.0068 | 0.0029 | −0.0028 | −0.0002 | 0.0019 |
Loading Year 2009 | 0.9983 | −0.0239 | 0.0052 | −0.0195 | −0.0076 | −0.0052 | 0.0106 | −0.0178 | 0.0054 | 0.0003 |
Loading Year 2010 | 0.9977 | 0.0567 | −0.0129 | 0.0130 | −0.0055 | −0.0079 | 0.0056 | −0.0044 | −0.0009 | 0.0021 |
Loading Year 2011 | 0.9976 | 0.0480 | −0.0104 | 0.0052 | 0.0039 | 0.0063 | 0.0145 | −0.0051 | −0.0018 | −0.0214 |
Loading Year 2012 | 0.9983 | 0.0316 | −0.0037 | −0.0003 | 0.0083 | 0.0065 | −0.0165 | 0.0112 | 0.0060 | 0.0027 |
Loading Year 2013 | 0.9986 | −0.0061 | 0.0175 | −0.0050 | 0.0132 | 0.0057 | −0.0151 | −0.0001 | 0.0032 | 0.0143 |
Loading Year 2014 | 0.9982 | −0.0155 | 0.0056 | −0.0132 | −0.0189 | −0.0122 | 0.0235 | −0.0228 | −0.0195 | 0.0109 |
Loading Year 2015 | 0.9979 | −0.0109 | 0.0174 | 0.0014 | 0.0275 | 0.0405 | 0.0101 | −0.0220 | 0.0155 | −0.0054 |
Loading Year 2016 | 0.9988 | 0.0067 | 0.0186 | −0.0067 | 0.0090 | 0.0078 | −0.0078 | 0.0051 | 0.0011 | 0.0033 |
Loading Year 2017 | 0.9985 | −0.0202 | 0.0375 | 0.0272 | −0.0115 | −0.0102 | 0.0048 | 0.0101 | 0.0035 | −0.0035 |
Loading Year 2018 | 0.9985 | −0.0202 | 0.0375 | 0.0273 | −0.0115 | −0.0103 | 0.0048 | 0.0101 | 0.0035 | −0.0035 |
Loading Year 2019 | 0.9970 | −0.0424 | −0.0391 | 0.0228 | 0.0326 | −0.0122 | 0.0163 | 0.0123 | 0.0024 | 0.0220 |
PC11 | PC12 | PC13 | PC14 | PC15 | PC16 | PC17 | PC18 | PC19 | PC20 | |
Loading Year 2000 | −0.0025 | −0.0001 | 0.0004 | 0.0008 | −0.0005 | −0.0046 | 0.0001 | −0.0011 | −0.0002 | 0.0000 |
Loading Year 2001 | −0.0092 | 0.0006 | −0.0035 | −0.0103 | 0.0253 | −0.0221 | −0.0213 | 0.0067 | 0.0002 | 0.0000 |
Loading Year 2002 | −0.0025 | 0.0286 | 0.0023 | −0.0223 | −0.0090 | 0.0061 | 0.0072 | 0.0001 | −0.0001 | 0.0000 |
Loading Year 2003 | 0.0105 | −0.0191 | −0.0151 | 0.0165 | −0.0047 | 0.0051 | −0.0057 | −0.0006 | 0.0001 | 0.0000 |
Loading Year 2004 | 0.0251 | 0.0120 | 0.0002 | 0.0138 | −0.0054 | −0.0017 | 0.0017 | 0.0035 | −0.0005 | 0.0000 |
Loading Year 2005 | 0.0150 | 0.0088 | 0.0044 | −0.0131 | −0.0009 | −0.0103 | 0.0016 | 0.0024 | −0.0003 | 0.0000 |
Loading Year 2006 | −0.0128 | −0.0076 | −0.0065 | −0.0123 | 0.0036 | 0.0024 | −0.0002 | −0.0008 | 0.0001 | 0.0000 |
Loading Year 2007 | −0.0025 | 0.0039 | −0.0144 | −0.0022 | −0.0007 | −0.0028 | −0.0002 | −0.0317 | 0.0011 | 0.0000 |
Loading Year 2008 | −0.0040 | 0.0038 | −0.0133 | 0.0009 | −0.0035 | 0.0079 | 0.0013 | 0.0099 | −0.0198 | 0.0000 |
Loading Year 2009 | −0.0253 | 0.0167 | 0.0047 | 0.0304 | 0.0067 | 0.0058 | −0.0037 | −0.0006 | 0.0006 | 0.0000 |
Loading Year 2010 | −0.0009 | 0.0044 | −0.0158 | 0.0009 | −0.0057 | 0.0066 | 0.0006 | 0.0129 | 0.0178 | 0.0000 |
Loading Year 2011 | 0.0083 | −0.0029 | 0.0306 | 0.0092 | −0.0113 | −0.0185 | −0.0004 | −0.0021 | −0.0002 | 0.0000 |
Loading Year 2012 | 0.0010 | −0.0024 | 0.0263 | −0.0041 | 0.0185 | 0.0284 | 0.0012 | −0.0024 | 0.0016 | 0.0000 |
Loading Year 2013 | −0.0216 | −0.0129 | 0.0073 | −0.0078 | −0.0305 | 0.0021 | −0.0129 | 0.0018 | 0.0003 | 0.0000 |
Loading Year 2014 | 0.0084 | −0.0277 | 0.0052 | −0.0100 | 0.0047 | 0.0073 | 0.0017 | −0.0001 | −0.0003 | 0.0000 |
Loading Year 2015 | 0.0165 | 0.0000 | −0.0145 | −0.0010 | 0.0028 | 0.0056 | −0.0035 | −0.0003 | −0.0003 | 0.0000 |
Loading Year 2016 | −0.0138 | −0.0108 | −0.0035 | 0.0017 | 0.0058 | −0.0130 | 0.0358 | 0.0034 | 0.0007 | 0.0000 |
Loading Year 2017 | 0.0041 | 0.0044 | 0.0018 | 0.0002 | 0.0007 | 0.0002 | −0.0016 | −0.0004 | 0.0000 | −0.0001 |
Loading Year 2018 | 0.0040 | 0.0044 | 0.0018 | 0.0002 | 0.0007 | 0.0002 | −0.0016 | −0.0003 | −0.0002 | 0.0001 |
Loading Year 2019 | 0.0023 | −0.0042 | 0.0018 | 0.0086 | 0.0032 | −0.0048 | −0.0001 | −0.0002 | −0.0006 | 0.0000 |
References
- USDA. Citrus Annual; United States Department of Agriculture: Washington, DC, USA, 2021; p. 14. [Google Scholar]
- Lozano, E. Citrus Annual. Available online: https://bit.ly/476DJ9l (accessed on 19 December 2023).
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater Depletion Embedded in International Food Trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Campos-Aranda, D.F. Comparison of the Standardized Palmer Drought Index (SPDI) in Three Climatic Locations in San Luis Potosi, Mexico. Tecnol. Cienc. Agua. 2018, 9, 246–279. [Google Scholar] [CrossRef]
- Charcas-Salazar, H.; Olivares-Sáenz, E.; Aguirre-Rivera, J.A. Irrigation water in Rioverde region, San Luis Potosi, Mexico. Ing. Hidraul. Mex. 2002, 17, 37–56. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA) Normales Climatológicas por Estado (1951–2010): San Luis Potosí. Available online: https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=slp (accessed on 24 March 2020).
- Chávez, L. Drought Conditions in Mexico and Its Effect on Agriculture; United States Department of Agriculture, Foreing Agricultural Service, Global Agricultural Information Network: Washington, DC, USA, 2021; p. 11. [Google Scholar]
- Dobler-Morales, C.; Bocco, G. Social and Environmental Dimensions of Drought in Mexico: An Integrative Review. Int. J. Disaster Risk Reduct. 2021, 55, 102067. [Google Scholar] [CrossRef]
- USDA. Citrus: World Markets and Trade; United States Department of Agriculture, Foreign Agricultural Service, World Agricultural Outlook Board/USDA: Washington, DC, USA, 2023. [Google Scholar]
- Hernández-Morales, L.M.; García-Pérez, E.; Cortés-Flores, J.I.; Villegas-Monter, A.; Mora-Aguilera, J.A. Integral fertilization in Maarrs orange trees under production with Citrus Tristeza Virus (CTV) and HuangLongBing symptoms. Rev. Fitotec. Mex. 2021, 44, 59–66. [Google Scholar]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A Global Analysis of Land Take in Cropland Areas and Production Displacement from Urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Molina, E. Nutrición y Fertilización de la Naranja; International Plant Nutrition Institute (IPNI): San Carlos, Costa Rica, 2000; p. 8. [Google Scholar]
- Shaloo; Bisht, H.; Jain, R.; Singh, R.P. Cropland Suitability Assessment Using Multi Criteria Evaluation Techniques and Geo-Spatial Technology: A Review. Indian J. Agri. Sci. 2022, 92, 554–562. [Google Scholar] [CrossRef]
- Cicciù, B.; Schramm, F.; Schramm, V.B. Multi-Criteria Decision Making/Aid Methods for Assessing Agricultural Sustainability: A Literature Review. Environ. Sci. Policy 2022, 138, 85–96. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-Based Land-Use Suitability Analysis: A Critical Overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Li, B.; Zhang, F.; Zhang, L.W.; Huang, J.F.; Jin, Z.F.; Gupta, D.K. Comprehensive Suitability Evaluation of Tea Crops Using GIS and a Modified Land Ecological Suitability Evaluation Model. Pedosphere 2012, 22, 122–130. [Google Scholar] [CrossRef]
- Flynn, K.C. Site Suitability Analysis for Tef (Eragrostis Tef) within the Contiguous United States. Comput. Electron. Agric. 2019, 159, 119–128. [Google Scholar] [CrossRef]
- Dedeoğlu, M.; Dengiz, O. Generating of Land Suitability Index for Wheat with Hybrid System Aproach Using AHP and GIS. Comput. Electron. Agric. 2019, 167, 105062. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; McDowell, R.W. Development of a Model Using Matter Element, AHP and GIS Techniques to Assess the Suitability of Land for Agriculture. Geoderma 2019, 352, 80–95. [Google Scholar] [CrossRef]
- Amini, S.; Rohani, A.; Aghkhani, M.H.; Abbaspour-Fard, M.H.; Asgharipour, M.R. Assessment of Land Suitability and Agricultural Production Sustainability Using a Combined Approach (Fuzzy-AHP-GIS): A Case Study of Mazandaran Province, Iran. Inf. Process. Agric. 2020, 7, 384–402. [Google Scholar] [CrossRef]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated Fuzzy, AHP and GIS Techniques for Land Suitability Assessment in Semi-Arid Regions for Wheat and Maize Farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Akbari, M.; Eftekhari, M. Land Suitability Assessment for Maize Farming Using a GIS-AHP Method for a Semi- Arid Region, Iran. J. Saudi Soc. Agric. Sci. 2020, 19, 332–338. [Google Scholar] [CrossRef]
- Tshabalala, T.; Ncube, B.; Moyo, H.P.; Abdel-Rahman, E.M.; Mutanga, O.; Ndhlala, A.R. Predicting the Spatial Suitability Distribution of Moringa oleifera Cultivation Using Analytical Hierarchical Process Modelling. S. Afr. J. Bot. 2020, 129, 161–168. [Google Scholar] [CrossRef]
- Elsheikh, R.; Mohamed Shariff, A.R.B.; Amiri, F.; Ahmad, N.B.; Balasundram, S.K.; Soom, M.A.M. Agriculture Land Suitability Evaluator (ALSE): A Decision and Planning Support Tool for Tropical and Subtropical Crops. Comput. Electron. Agric. 2013, 93, 98–110. [Google Scholar] [CrossRef]
- Zabihi, H.; Ahmad, A.; Vogeler, I.; Said, M.N.; Golmohammadi, M.; Golein, B.; Nilashi, M. Land Suitability Procedure for Sustainable Citrus Planning Using the Application of the Analytical Network Process Approach and GIS. Comput. Electron. Agric. 2015, 117, 114–126. [Google Scholar] [CrossRef]
- Mokarram, M.; Mirsoleimani, A. Using Fuzzy-AHP and Order Weight Average (OWA) Methods for Land Suitability Determination for Citrus Cultivation in ArcGIS (Case Study: Fars Province, Iran). Phys. A 2018, 508, 506–518. [Google Scholar] [CrossRef]
- Tercan, E.; Dereli, M.A. Development of a Land Suitability Model for Citrus Cultivation Using GIS and Multi-Criteria Assessment Techniques in Antalya Province of Turkey. Ecol. Indic. 2020, 117, 106549. [Google Scholar] [CrossRef]
- Orhan, O. Land Suitability Determination for Citrus Cultivation Using a GIS-Based Multi-Criteria Analysis in Mersin, Turkey. Comput. Electron. Agric. 2021, 190, 106433. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95442-4. [Google Scholar]
- Millward, A.A.; Piwowar, J.M.; Howarth, P.J. Time-Series Analysis of Medium-Resolution, Multisensor Satellite Data for Identifying Landscape Change. Photogramm. Eng. Remote Sens. 2006, 72, 653–663. [Google Scholar] [CrossRef]
- Aguirre-Salado, C.A.; Treviño-Garza, E.J.; Aguirre-Calderón, O.A.; Jiménez-Pérez, J.; González-Tagle, M.A.; Miranda-Aragón, L.; Valdez-Lazalde, J.R.; Aguirre-Salado, A.I.; Sánchez-Díaz, G. Forest Cover Mapping in North-Central Mexico: A Comparison of Digital Image Processing Methods. GIScience Remote Sens. 2012, 49, 895–914. [Google Scholar] [CrossRef]
- Corner, B.R.; Narayanan, R.M.; Reichenbach, S.E. Noise Reduction in Remote Sensing Imagery Using Data Masking and Principal Component Analysis. In Proceedings of the Applications of Digital Image Processing XXIII, San Diego, CA, USA, 31 July–3 August 2000; Tescher, A.G., Ed.; Society of Photo-Optical Instrumentation Engineers: San Diego, CA, USA, 2000; pp. 1–11. [Google Scholar]
- Mohan-Babu, M.Y.; Subramanyam, M.V.; Giri-Prasad, M.N. PCA Based Image Denoising. Signal Image Process. Int. J. 2012, 3, 236–244. [Google Scholar] [CrossRef]
- Lasaponara, R. On the Use of Principal Component Analysis (PCA) for Evaluating Interannual Vegetation Anomalies from SPOT/VEGETATION NDVI Temporal Series. Ecol. Model. 2006, 194, 429–434. [Google Scholar] [CrossRef]
- Miranda-Aragón, L.; Treviño-Garza, E.; Jiménez-Pérez, J.; Aguirre-Calderón, O.A.; González-Tagle, M.A.; Pompa-García, M.; Aguirre-Salado, C.A. NDVI-Rainfall Relationship Using Hyper-Temporal Satellite Data in a Portion of North Central Mexico (2000–2010). Afr. J. Agric. Res. 2012, 7, 1023–1033. [Google Scholar] [CrossRef]
- Colditz, R.R.; Cord, A.; Conrad, C.; Mora, F.; Maeda, P.; Ressl, R. Analyzing Phenological Characteristics of Mexico with MODIS Time Series Products. In Proceedings of the MultiTemp2009, Mystic, CT, USA, 28 July 2009. [Google Scholar]
- Colditz, R.R.; Llamas, R.M.; Ressl, R.A. Detecting Change Areas in Mexico Between 2005 and 2010 Using 250 m MODIS Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3358–3372. [Google Scholar] [CrossRef]
- Colditz, R.R.; Ressl, R.A.; Bonilla-Moheno, M. Trends in 15-Year MODIS NDVI Time Series for Mexico. In Proceedings of the 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France, 22–24 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Behe, B.; Hall, C.R.; Ingram, D.L.; Lamm, A.J.; Warner, L.A.; White, S.A. Social and Economic Aspects of Water Use in Specialty Crop Production in the USA: A Review. Water 2019, 11, 2337. [Google Scholar] [CrossRef]
- Jurišić, M.; Radočaj, D.; Šiljeg, A.; Antonić, O.; Živić, T. Current Status and Perspective of Remote Sensing Application in Crop Management. J. Cent. Eur. Agric. 2021, 22, 156–166. [Google Scholar] [CrossRef]
- Svoboda, M.D.; Fuchs, B.A. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016; ISBN 978-92-63-11173-9. [Google Scholar]
- DOF Agreement Disclosing the Technical Studies of National Groundwater of the Río Verde Aquifer, Code 2415, in the State of San Luis Potosí, Northern Gulf Administrative Hydrological Region—In Spanish: Acuerdo por el que se dan a Conocer los Estudios Técnicos de Aguas Nacionales Subterráneas del Acuífero Río Verde, Code 2415, en el Estado de San Luis Potosí, Región Hidrológico Administrativa Golfo Norte. Available online: https://bit.ly/3FfBaXc (accessed on 10 March 2023).
- Comisión Nacional del Agua (CONAGUA) Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Rio Verde (2415), Estado de San Luis Potosí. Available online: https://bit.ly/3ZUm3dS (accessed on 10 March 2023).
- Comisión Nacional del Agua (CONAGUA) Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Rio Verde (2415), Estado de San Luis Potosí. Available online: https://bit.ly/3mLruh2 (accessed on 10 March 2023).
- Instituto Nacional de Estadística y Geografía (INEGI) Continuo de Elevaciones Mexicano (CEM) Version 3.0. Aguascalientes, Aguascalientes, México. Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 11 October 2021).
- Yáñez-Rodríguez, M.A. Caracterización del Acuífero Río Verde, San Luis Potosí con el Método Magnetotelúrico. Master’s Thesis, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico, 2019. [Google Scholar]
- Díaz-Rivera, J.C. Análisis de la Dinámica Espacio-Temporal y Distribución Potencial de los Manantiales en el Valle de Rioverde, San Luis Potosí. Master’s Thesis, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, 2018. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI) Conjunto de Datos Vectorial Edafológico, Serie II, Escala 1:250,000, Continuo Nacional San Luis Potosí. Aguascalientes, Aguascalientes, México. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235673 (accessed on 25 June 2022).
- Instituto Nacional de Estadística y Geografía (INEGI) Conjunto de Datos Vectorial Edafológico, Serie II, Escala 1:250,000, Continuo Nacional Ciudad Mante. Aguascalientes, Aguascalientes, México. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235680 (accessed on 25 June 2022).
- Instituto Nacional de Estadística y Geografía (INEGI) Conjunto de Datos Vectorial Edafológico, Serie II, Escala 1:250,000, Continuo Nacional Ciudad Valles. Aguascalientes, Aguascalientes, México. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235710 (accessed on 25 June 2022).
- Instituto Nacional de Estadística y Geografía (INEGI) Conjunto de Datos Vectorial Edafológico, Serie II, Escala 1:250,000, Continuo Nacional Guanajuato. Aguascalientes, Aguascalientes, México. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235703 (accessed on 25 June 2022).
- Instituto Nacional de Estadística y Geografía (INEGI) Conjunto de Datos de Perfiles de Suelos. Escala 1:250,000. Serie II (Continuo Nacional). Aguascalientes, Aguascalientes, México. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707 (accessed on 25 June 2022).
- Sannidi, S.; Bindu, G.S.M.; Neelima, T.L.; Umadevi, M. Soil Quality Mapping in the Groundnut Belt of Erstwhile Mahabubnagar District, Telangana, India Using GIS. Curr. Sci. India 2022, 122, 600. [Google Scholar] [CrossRef]
- New, M.; Lister, D.; Hulme, M.; Makin, I. A High-Resolution Data Set of Surface Climate over Global Land Areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef]
- Boz, A.O.; Donmez, Y.; Ozyavuz, M. Use of Climate Maps in Determining Sustainable Agriculture Areas. J. Environ. Prot. Ecol. 2020, 21, 1062–1071. [Google Scholar]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Shuai, Y.; Román, M.O. Capturing Rapid Land Surface Dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) Products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Rouse, R.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA’s Goddard Space Flight Center: Greenbelt, MD, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sens. 2022, 14, 3967. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, L.; Zhang, Z.; Li, X.; Wang, H.; Xi, X. Spatiotemporal Variation and Influence Factors of Vegetation Cover in the Yellow River Basin (1982–2021) Based on GIMMS NDVI and MOD13A1. Water 2022, 14, 3274. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI) Mapas Topográficos. Escala 1:50,000. Serie III. San Luis Potosí. Aguascalientes, Aguascalientes, México. Available online: https://bit.ly/3JiGkTU (accessed on 15 April 2019).
- QGIS Development Team QGIS Geographic Information System. 2021. Available online: https://qgis.org/en/site/ (accessed on 19 December 2023).
- Ruiz-Corral, J.A.; Medina-García, G.; González-Acuña, I.J.; Flores-López, H.E.; Ramírez-Ojeda, G.; Ortíz Trejo, C.; Byerly Murphy, K.; Martínez-Parra, R.A. Requerimientos Agroecológicos de Cultivos, 2nd ed.; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP): Tepatitlán de Morelos, Mexico, 2013; ISBN 978-607-37-0188-4. [Google Scholar]
- Doorembos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979; p. 193. [Google Scholar]
- Anderson, C.M. Manual Para Productores de Naranja y Mandarina de La Región Del Río Uruguay. Diversificación Productiva. Manual Serie “A” 2. Secretaría de Agricultura, Pesca y Alimentación, Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concordia, Concordia, Entre Ríos, Argentina. Available online: https://bit.ly/4b5gr6M (accessed on 25 June 2022).
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; Steduto, P., Ed.; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italiy,, 2012; ISBN 978-92-5-107274-5. [Google Scholar]
- Cengiz, T.; Akbulak, C. Application of Analytical Hierarchy Process and Geographic Information Systems in Land-Use Suitability Evaluation: A Case Study of Dümrek Village (Çanakkale, Turkey). Int. J. Sust. Dev. World. 2009, 16, 286–294. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI Selva; Clark University: Worcester, MA, USA, 2012. [Google Scholar]
- Rahman, R.; Saha, S.K. Remote Sensing, Spatial Multi Criteria Evaluation (SMCE) and Analytical Hierarchy Process (AHP) in Optimal Cropping Pattern Planning for a Flood Prone Area. J. Spat. Sci. 2008, 53, 161–177. [Google Scholar] [CrossRef]
- Zolekar, R.B.; Bhagat, V.S. Multi-Criteria Land Suitability Analysis for Agriculture in Hilly Zone: Remote Sensing and GIS Approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Díaz Monroy, L.G. Estadística Multivariada: Inferencia y Métodos, 2nd ed.; Colección Textos; Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia: Bogotá, Colombia, 2007; ISBN 978-958-701-195-1. [Google Scholar]
- CESAVESLP Datos de Distribución Espacial de las Huertas de Naranja en el Valle de Rioverde en San Luis Potosí (Mexico) 2022. Available online: http://www.cesaveslp.org.mx/ (accessed on 19 December 2023).
- Aissaoui, M.; Maizi, D.; Benhamza, M.; Azzouz, K.; Belaroui, A.; Bengusmia, D. Identification and Mapping of Potential Recharge in the Middle Seybouse Sub-Catchment of the Guelma Region (North East of Algeria): Contribution of Remote Sensing, Multi-Criteria Analysis, ROC-Curve and GIS. AS-ITJGW 2023, 12, 25–37. [Google Scholar] [CrossRef]
- Zang, Y.; Chen, X.; Chen, J.; Tian, Y.; Shi, Y.; Cao, X.; Cui, X. Remote Sensing Index for Mapping Canola Flowers Using MODIS Data. Remote Sens. 2020, 12, 3912. [Google Scholar] [CrossRef]
- Xu, T.; Li, E.; Samat, A.; Li, Z.; Liu, W.; Zhang, L. Estimating Large-Scale Interannual Dynamic Impervious Surface Percentages Based on Regional Divisions. Remote Sens. 2022, 14, 3786. [Google Scholar] [CrossRef]
- Xiong, Q.; Chen, W.; Luo, S.; He, L.; Li, H. Temporal and Spatial Variation of Land Surface Temperature in Recent 20 Years and Analysis of the Effect of Land Use in Jiangxi Province, China. Atmosphere 2022, 13, 1278. [Google Scholar] [CrossRef]
- Wu, W.; Xin, Q. Characterizing Spring Phenological Changes of the Land Surface across the Conterminous United States from 2001 to 2021. Remote Sens. 2023, 15, 737. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.S.; Tucker, C.J. Recent Trends in Vegetation Dynamics in the African Sahel and Their Relationship to Climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Binte-Mostafiz, R.; Noguchi, R.; Ahamed, T. Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices. Land 2021, 10, 223. [Google Scholar] [CrossRef]
- Akhavan, S.; Jalalian, A.; Toomanian, N.; Honarjo, N. “Use of a GIS-Based Multicriteria Decision-Making Approach, to Increase Accuracy in Determining Soil Suitability”, Iran. Commun. Soil Sci. Plant Anal. 2023, 54, 690–705. [Google Scholar] [CrossRef]
- Shafiezadeh, M.; Moradi, H.; Fakheran, S. Evaluating and Modeling the Spatiotemporal Pattern of Regional-Scale Salinized Land Expansion in Highly Sensitive Shoreline Landscape of Southeastern Iran. J. Arid Land 2018, 10, 946–958. [Google Scholar] [CrossRef]
- Badr, G.; Hoogenboom, G.; Moyer, M.; Keller, M.; Rupp, R.; Davenport, J. Spatial Suitability Assessment for Vineyard Site Selection Based on Fuzzy Logic. Precis. Agric. 2018, 19, 1027–1048. [Google Scholar] [CrossRef]
- Corral, S.; Legna-de la Nuez, D.; Romero-Manrique de Lara, D. Integrated Assessment of Biofuel Production in Arid Lands: Jatropha Cultivation on the Island of Fuerteventura. Renew. Sust. Ener. Rev. 2015, 52, 41–53. [Google Scholar] [CrossRef]
- Zabihi, H.; Vogeler, I.; Amin, Z.M.; Gourabi, B.R. Mapping the Sensitivity of Citrus Crops to Freeze Stress Using a Geographical Information System in Ramsar, Iran. Weather Clim. Extrem. 2016, 14, 17–23. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Urban Simulation Using Principal Components Analysis and Cellular Automata for Land-Use Planning. Photogramm. Eng. Remote Sens. 2002, 68, 341–351. [Google Scholar]
- Carlón-Allende, T.; Mendoza, M.E.; López-Granados, E.M.; Morales-Manilla, L.M. Hydrogeographical Regionalisation: An Approach for Evaluating the Effects of Land Cover Change in Watersheds. A Case Study in the Cuitzeo Lake Watershed, Central Mexico. Water Resour. Manag. 2009, 23, 2587–2603. [Google Scholar] [CrossRef]
- Jayathilaka, P.M.S.; Soni, P.; Perret, S.R.; Jayasuriya, H.P.W.; Salokhe, V.M. Spatial Assessment of Climate Change Effects on Crop Suitability for Major Plantation Crops in Sri Lanka. Reg. Environ. Chang. 2012, 12, 55–68. [Google Scholar] [CrossRef]
- López-Blanco, J.; Pérez-Damián, J.L.; Conde-Álvarez, A.C.; Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Land Suitability Levels for Rainfed Maize under Current Conditions and Climate Change Projections in Mexico. Outlook Agric. 2018, 47, 181–191. [Google Scholar] [CrossRef]
- Layomi-Jayasinghe, J.; Kumar, L.; Sandamali, J. Assessment of Potential Land Suitability for Tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach. Agriculture 2019, 9, 148. [Google Scholar] [CrossRef]
Subcriteria | Value Ranges | Land Suitability | Standardized Value | Area (%) |
---|---|---|---|---|
Elevation | 700–900 | High | 4 | 67.26 |
(m.a.s.l.) | 900–1100 | Moderate | 3 | 0.28 |
1100–1500 | Low | 2 | 28.28 | |
>1500 | Exclusion | 1 | 4.19 | |
Slope | 0–10 | High | 4 | 70.11 |
(%) | 0–20 | Moderate | 3 | 8.45 |
20–25 | Low | 2 | 3.55 | |
>25 | Exclusion | 1 | 17.89 | |
Aspect | Flat, south | High | 4 | 43.59 |
Southeast, | Moderate | 3 | 16.89 | |
southwest | ||||
(categorical nominal) | East, west | Low | 2 | 17.31 |
North, northeast, northwest | Exclusion | 1 | 22.21 | |
pH | 6.0–7.0 | High | 4 | 11.88 |
(dimensionless) | 7.0–7.5 | Moderate | 3 | 27.21 |
7.5–8 | Low | 2 | 36.41 | |
>8 | Exclusion | 1 | 24.51 | |
Soil depth | 0–50 | Exclusion | 1 | 8.10 |
(cm) | 50–80 | Low | 2 | 32.34 |
80–100 | Moderate | 3 | 34.66 | |
>100 | High | 4 | 24.91 | |
Electrical conductivity | 0–1.7 | High | 4 | 66.36 |
1.7–2.3 | Moderate | 3 | 16.72 | |
dS/m | 2.3–3.3 | Low | 2 | 10.78 |
>3.3 | Exclusion | 1 | 6.14 | |
Soil texture | Fine | High | 4 | 77.87 |
(categorical ordinal) | Medium | Low | 3 | 21.76 |
Coarse | Exclusion | 1 | 0.37 | |
Relative humidity | 59–63 | Exclusion | 1 | 0.50 |
(%) | 63–65 | Low | 2 | 4.22 |
65–68 | Moderate | 3 | 33.10 | |
>68 | High | 4 | 62.17 | |
Mean minimum temperature | 11.2–12.5 | Low | 2 | 15.73 |
(°C) | 12.5–13 | Moderate | 3 | 20.95 |
>13 | High | 4 | 63.32 | |
Mean maximum temperature | >29 | Moderate | 3 | 21.62 |
(°C) | 29–29.5 | High | 4 | 55.81 |
>29.5 | Low | 2 | 22.56 | |
Precipitation | 0–500 | Low | 2 | 54.91 |
(mm) | 500–600 | Moderate | 3 | 24.51 |
>600 | High | 4 | 20.58 | |
Distance to rivers and streams | 0–1 | High | 4 | 26.58 |
(km) | 1.0–2.0 | Moderate | 3 | 41.90 |
3.0–5.0 | Low | 2 | 22.87 | |
>5 | Exclusion | 1 | 8.65 | |
Distance to wells | 0–0.5 | High | 4 | 10.75 |
(km) | 0.5–1.0 | Moderate | 3 | 9.61 |
1.0–2.0 | Low | 2 | 9.26 | |
>2.0 | Exclusion | 1 | 70.38 | |
Distance to springs | 0–2 | High | 4 | 5.90 |
(km) | 2.0–4.0 | Moderate | 3 | 10.80 |
4.0–6.0 | Low | 2 | 13.84 | |
>6 | Exclusion | 1 | 69.46 |
Main Criteria | Weight | Subcriteria | Weight |
---|---|---|---|
Topography | 0.1201 | Elevation | 0.4054 |
Slope | 0.1140 | ||
Aspect | 0.4806 | ||
Soil | 0.4131 | pH | 0.2876 |
Soil depth | 0.3943 | ||
Soil texture | 0.0956 | ||
Electrical conductivity | 0.2243 | ||
Climate | 0.3603 | Relative humidity | 0.0645 |
Mean minimum temperature | 0.1431 | ||
Mean maximum temperature | 0.2876 | ||
Precipitation | 0.5048 | ||
Proximity to water sources | 0.1064 | Distance to rivers | 0.2583 |
Distance to wells | 0.6370 | ||
Distance to springs | 0.1047 | ||
Total | - |
Criterion | Subcriterion 1 | Subcriterion 2 | Subcriterion 3 | Subcriterion 4 | |||
---|---|---|---|---|---|---|---|
LS.topo = | Elevation × 0.4054 | + | Slope × 0.1140 | + | Aspect × 0.4806 | ||
LS.soil = | pH × 0.2876 | + | Soil depth × 0.3943 | + | Soil texture × 0.0956 | + | Electrical conductivity × 0.2243 |
LS.climate = | Relative humidity × 0.0645 | + | Mean minimum temperature × 0.1431 | + | Mean maximum temperature × 0.2876 | + | Precipitation × 0.5048 |
LS.proximity = | Distance to rivers × 0.2583 | + | Distance to wells × 0.6370 | + | Distance to springs × 0.1047 |
Land Suitability | Criterion 1 | Criterion 2 | Criterion 3 | Criterion 4 | |||
---|---|---|---|---|---|---|---|
LS.orangegrove = | LS.topo × 0.1201 | + | LS.soil × 0.4131 | + | LS.climate × 0.3603 | + | LS.proximity × 0.1064 |
Land Suitability | MAP-Based Land Suitability | PCA-Based Land Suitability | ||
---|---|---|---|---|
Area (ha) | Area (%) | Area (ha) | Area (%) | |
Exclusion | 185,986.9 | 66.79 | 126,864.5 | 45.59 |
Low | 7864.1 | 2.85 | 55,916.7 | 20.09 |
Moderate | 74,168.8 | 26.67 | 79,845.7 | 28.69 |
High | 10,246.9 | 3.69 | 15,639.8 | 5.62 |
Land Suitability | MAP-Based Land Suitability | PCA-Based Land Suitability | ||
---|---|---|---|---|
Area (ha) | Area (%) | Area (ha) | Area (%) | |
Exclusion | 547.47 | 19.26 | 44.1 | 1.55 |
Low | 0.25 | 0.01 | 171.4 | 6.03 |
Moderate | 550.46 | 19.37 | 493.7 | 17.37 |
High | 1744.13 | 61.36 | 2133.1 | 75.05 |
Total | 2842.3 | 100 | 2842.3 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Rivera, J.C.; Aguirre-Salado, C.A.; Miranda-Aragón, L.; Aguirre-Salado, A.I. Some Geospatial Insights on Orange Grove Site Selection in a Portion of the Northern Citrus Belt of Mexico. AgriEngineering 2024, 6, 259-284. https://doi.org/10.3390/agriengineering6010016
Díaz-Rivera JC, Aguirre-Salado CA, Miranda-Aragón L, Aguirre-Salado AI. Some Geospatial Insights on Orange Grove Site Selection in a Portion of the Northern Citrus Belt of Mexico. AgriEngineering. 2024; 6(1):259-284. https://doi.org/10.3390/agriengineering6010016
Chicago/Turabian StyleDíaz-Rivera, Juan Carlos, Carlos Arturo Aguirre-Salado, Liliana Miranda-Aragón, and Alejandro Ivan Aguirre-Salado. 2024. "Some Geospatial Insights on Orange Grove Site Selection in a Portion of the Northern Citrus Belt of Mexico" AgriEngineering 6, no. 1: 259-284. https://doi.org/10.3390/agriengineering6010016
APA StyleDíaz-Rivera, J. C., Aguirre-Salado, C. A., Miranda-Aragón, L., & Aguirre-Salado, A. I. (2024). Some Geospatial Insights on Orange Grove Site Selection in a Portion of the Northern Citrus Belt of Mexico. AgriEngineering, 6(1), 259-284. https://doi.org/10.3390/agriengineering6010016