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Abstract: This study aimed to delineate the most suitable areas for sustainable citrus production by
integrating multi-criteria decision analysis, time-series remote sensing, and principal component analysis
in a portion of the northern citrus belt of Mexico, particularly in the Rioverde Valley. Fourteen specific
factors were grouped into four main factors, i.e., topography, soil, climate, and proximity to water
sources, to carry out a multi-criteria decision analysis for classifying production areas according to
suitability levels. To explore the effect of precipitation on land suitability for citrus production, we
analyzed the historical record of annual precipitation estimated by processing 20-year NDVI daily data.
The multi-criteria model was run for every precipitation year. The final map of land suitability was
obtained by using the first component after principal component analysis on annual land suitability
maps. The results indicate that approximately 30% of the study area is suitable for growing orange
groves, with specific areas designated as suitable based on both mean annual precipitation (MAP)
and principal component analysis (PCA) criteria, resulting in 84,415.7 ha and 95,485.5 ha of suitable
land, respectively. The study highlighted the importance of remotely sensed data-based time-series
precipitation in predicting potential land suitability for growing orange groves in semiarid lands. Our
results may support decision-making processes for the effective land management of orange groves in
the Mexico’s Rioverde region.

Keywords: geographic information systems; land suitability mapping; land use planning;
multi-criteria decision analysis; MCD43A4

1. Introduction

Mexico is the fifth most important orange producing country in the world, after Brazil,
the United States, China and India. Mexican orange production is mainly distributed across
four states, including Veracruz, Tamaulipas, San Luis Potosí, and Nuevo León. Particularly
in the state of San Luis Potosí, the Rioverde region produces quality oranges, which gives it
a high value in the market [1]. During 2020 and 2021, San Luis Potosí exhibited a production
of approximately 376,613 t of oranges (Citrus sinensis); and in particular, the Rioverde region
(including the municipality of Rioverde and Ciudad Fernández) produced 120,000 t on a
sown area of 5650 ha, that is, approximately 30% of orange production for the whole state,
positioning the Rioverde region as an important place regarding citrus production in the
state of San Luis Potosí [2].

Mexico’s orange production has faced several constraints over the past decade, in-
cluding water scarcity, diseases, and land use change. Orange production relies heavily
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on groundwater from wells, which are recharged by precipitation. A recent drought, how-
ever, resulting in decreased rainfall, has posed a threat to orange production in the study
area [3,4]. The rainfall normally ranged between 375 and 604 mm annually [5] but now
is currently showing an entirely different pattern. According to information provided
by CONAGUA’s National Meteorological System (SMN), the average rainfall has been
between 300 and 400 mm per year in the study area in recent years [6]. Therefore, water
scarcity, mainly due to precipitation anomalies [7–9], has led to pest and disease prob-
lems [10]. Additionally, other causes exist for the diminishing orange grove area, including
land use change mainly driven by urban growth. Urban growth engulfs orange groves for a
number of reasons: (1) a lack of profitability in orange production caused by crop diseases,
leading to decisions to sell the land to urban developers; (2) orange groves are inherited
by heirs, but they do not want to be farmers; therefore, they themselves also decide to sell
their land property; and (3) the same family decides to build inside the grove [11].

Citrus trees are adaptable to various soils, but their shallow root system and limited
root hairs make nutrient absorption challenging. Soil characteristics are vital for cultivation.
Citrus trees thrive in light soils like sandy loam, loam, or clay loam, with good drainage and
aeration. Heavy or clayey soils with poor drainage are unsuitable and can lead to growth
issues and root diseases. Citrus trees can tolerate a pH range of 4 to 9, but the optimal pH is
5.5 to 6. They can handle up to 30% acidity saturation, but aluminum saturation should not
exceed 20%. Citrus trees can still grow in soils with a pH above 7, as long as salt or sodium
accumulation is not a problem. In such conditions, monitoring micronutrient deficiencies
is mandatory, as they can significantly impact yield [12].

Geographic information systems have been used to assess the suitability of land for
crop production. Selecting potential locations for establishing new fruit orchards is an
important issue for planning future land use toward sustainable agriculture [13]. A widely
used method for mapping land suitability is the so-called multi-criteria decision analysis
(MCDA). This method has been used to solve complex problems combining numerous
variables at different levels of interaction [14,15]. Some agricultural applications of MCDA
in agriculture can be found in recent the literature, i.e., land suitability for tea crops [16],
Eragrostis tef for flour production in bread-making [17], land suitability for wheat [18],
land suitability for barley production [19], rice production [20], land suitability for wheat
and maize [21], land suitability for maize [22], and land suitability for Moringa oleifera [23].

In particular, for citrus crops, Elsheikh et al. [24] developed a tool for assessing the
suitability of agricultural land for planning tropical and subtropical crops, including citrus
in Malaysia. Zabihi et al. [25] mapped land suitability for sustainable citrus planning
in a northern region of Iran using the analytical network process (ANP) within a GIS
environment. Mokarram and Mirsoleimani [26] mapped land suitability for citrus crops
in the province of Fars, Iran, using multi-criteria decision analysis. Tercan and Dereli [27]
developed a land suitability model for citrus cultivation in the Mediterranean region of
Turkey. Orhan [28] determined land suitability for citrus cultivation using MCDA in Mersin,
Turkey. Although the studies mentioned above have made significant contributions to
the use of MCDA in the context of citrus crops, our motivation was to assess biophysical
factors, e.g., interannual rainfall estimated with remotely sensed data, possibly related to
land suitability for citrus cultivation.

Principal component analysis (PCA) is a multivariate technique for data dimension
reduction used in multiple fields of study [29]. In the context of spatial science, PCA may
be used spatially and temporally. When used spatially, this technique can be applied to
highlight spectral features on remotely sensed data, e.g., in a single-date satellite scene,
PCA can fuse spectral bands into new principal components that capture biophysical
features such as chlorophyll (greenness) and moisture (wetness) [30]. Researchers have
created RGB-composite imagery with the three first principal components to emphasize
the spectral characteristics of natural cover [31]; others have used PCA as a noise-detection
technique [32], and moreover, others have used it as a denoising technique [33]. When
used temporally, this technique can be employed in time-series data for analyzing temporal
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patterns of a single variable, e.g., NDVI. In this case, the first principal component assimi-
lates all the whole radiometric behavior that is common throughout the time series. The
second principal component incorporates characteristics not included in the first principal
component and is interpreted as a component for change analysis [34,35].

Time-series analysis of remotely sensed data has been conducted using both desktop
mapping and cloud computing analysis, such as Google Earth Engine. In the case of Mexico,
there have been limited studies on the use of time-series remotely sensed data to monitor
environmental biophysical variables using vegetation indexes as proxies. Noteworthy
works by Colditz et al. have focused on studying phenology [36], land use changes [37],
and NDVI trends [38] in Mexico based on time-series remotely sensed data. However,
for the state of San Luis Potosí, research on the analysis of the Normalized Difference
Vegetation Index (NDVI) was carried out until 2012 [35]. In this study, MODIS time series
data from 2000 to 2010 were employed, with a spatial resolution of 500 m, revealing dry
conditions from 2000 to 2005 and wet conditions from 2006 to 2010. Additionally, these
researchers developed a nonlinear model to predict annual precipitation based on NDVI
maxima. All these methodological advantages of remote sensing research in the study area
have amalgamated a number of conditions to the use of use of remotely sensed data to
predict annual precipitation using remotely sensed data for a long-time data series of NDVI
trend, in order to have a spatiotemporal estimation of precipitation.

Otherwise, precision agriculture in semiarid lands is challenging [39]. Farmers are re-
quired to tackle water scarcity when producing specialty crops to supply local and external
demand for food products [40]. Remote sensing plays a key role when monitoring envi-
ronmental variables, i.e., precipitation, for agricultural production in semiarid lands [41].
Particularly, spectral indices built by using remotely sensed time-series data may be used
as a proxy for precipitation monitoring [35,42]. As an authentic concern on the continuity
of growing orange groves in the Rioverde region, this research was designed to inves-
tigate the status of land suitability for orange grove cultivation under a spatiotemporal
perspective using 20-year remotely sensed time-series data as a proxy for precipitation
in the context of the MCDA approach by combining different criteria, including topogra-
phy, soil, climate, and proximity factors, in the Mexico’s Rioverde region. Therefore, we
hypothesize that spatiotemporal shifts in land suitability can be elucidated through the
examination of precipitation variations, inferred from remotely sensed data. Consequently,
this study seeks to evaluate how these inferred precipitation variations have influenced the
overall suitability of land for orange grove cultivation, emphasizing their role alongside
multiple criteria such as topography, soil properties, climate conditions, and proximity to
water sources.

2. Materials and Methods
2.1. Study Area

This study was conducted in a portion of Mexico’s citrus production belt, particu-
larly in the Rioverde region in the middle zone of the state of San Luis Potosí. The study
area was located within the political–administrative boundaries of the Rioverde aquifer,
which is delimited between the meridians 100◦15′36.19′′ W and 99◦44′52′′ W and the paral-
lels 22◦29′35′′ and 21◦38′12′′ N (Figure 1), covering an area of 2782.66 km2. This aquifer
is granular, and its dynamics highly depend on the abundance of annual rainfall [43].
More than 80% of orange production in the Rioverde region depends on groundwater
obtained from wells. In 2015 and 2020, the Rioverde aquifer exhibited annual water
availability of 78,842,614 m3 and 29,582,580 m3, respectively [44,45], as evidence of
groundwater depletion.

The study area is mostly plain with average elevations of approximately 1000 m above
sea level; in the southwest direction, however, some mountains emerge with elevations
ranging from 900 to 2170 m above sea level [46]. The climate is dry steppe in the northern
lowlands; toward the southwest, environmental moisture increases gradually, becoming
rainy temperate. The average annual temperature is 21.5 ◦C. Rainfall normally occurs in
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the summer, with an average annual rainfall of 484 mm. The temperature can reach up to
40 ◦C in the spring and summer, and the winter is usually cool [47].
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The Rioverde valley is covered by approximately 18 springs [48], which supply water
for human activities, including agriculture and urban consumption. Some of them are
the origin of small water bodies that are visited by tourists, e.g., the spring known as
“La Media Luna” located at 100◦01′40.36′′ W, 21◦51′37.49′′ N, the spring known as “Los
Peroles” located at 99◦54′3.6′′ W, 22◦11′13.2′′ N, and the spring known as “San Sebastian”
located at 99◦49′58.8′′ W, 21◦46′30′′ N, among others. Groundwater in the northern part
of the Rioverde aquifer is typically characterized by high levels of calcium sulfate and
calcium bicarbonate, which can result in lower quality water that may not be suitable for
drinking or other purposes. However, in the southern region of the aquifer, the water
quality is generally higher, and the groundwater is often considered potable or safe for
human consumption [5].

2.2. Data

The spatial datasets used for carrying out the land suitability analysis for growing
orange groves in the Rioverde region are presented in Figure 2. We built four main
criteria using 14 subcriteria. The main criteria were as follows: topography, soil, climate,
and proximity to water sources. The topography criterion comprised three subcriteria,
including elevation, slope and aspect. The soil criterion consisted of the subcriteria pH, soil
depth, electrical conductivity, and soil texture. The climate criteria were built with relative
humidity, precipitation, mean minimum temperature, and mean maximum temperature.
The proximity to water sources criterion collected the spatial variability in the distance to
rivers and streams, distance to springs and distance to wells.

The topography criterion was considered by using a digital elevation model at 15 m
spatial resolution obtained from the National Institute of Statistics and Geography of
Mexico [46]. Slope and aspect were obtained by processing the digital elevation model
using a geographic information system.
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The soil criterion was built using the national soil map. The soil maps used were
San Luis Potosí (F14-4), Ciudad Mante (F14-5), Guanajuato (F14-7), and Ciudad Valles
(F14-8) [49–52], and for quantitative soil variables, we used the national database of soil
profiles, which includes nearly 4418 data points on soil characteristics [53]. The dataset
provides comprehensive environmental data, encompassing site features like vegetation,
geology, temperature, precipitation, altitude, and physical and chemical analyses. We
extracted 42-data points from the database, which corresponded to the spatial extent of
our study area. Subsequently, we utilized these data points to construct spatial datasets
for soil depth, pH, and electrical conductivity. This construction was achieved through
the application of the inverse distance weighting algorithm, employing the 12 nearest
neighbors and utilizing a 15 m spatial resolution as our digital elevation model [54]. All
variables used for interpolation were previously averaged across all layers in the soil profile.
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With regard to the climate criterion, the relative humidity was built with data gathered
within a period from 1961 to 1990 by the Climatic Research Unit of the University of
East Anglia [55]. The mean minimum and maximum temperatures were derived from
climate normal data spanning the period from 1991 to 2020. These data were collected from
33 meteorological stations operated by the National Meteorological Service [6]. Such climate
stations include data collected during a period longer than 50 years. Relative humidity
and mean minimum and mean maximum temperature point data were interpolated using
the inverse distance weighting algorithm specifying 12 nearest neighbors and 15 m spatial
resolution [56]. Precipitation was obtained by using remotely sensed time-series data. To
do this, daily MCD43A4 MODIS product data were downloaded from the Earth Data
Search platform (https://search.earthdata.nasa.gov/) (accessed on 15 July 2021) for the
period of 24 February 2000 to 31 December 2019, totaling 20 years of remote sensing daily
observations. MCD43A4 stands for Modis Combined Dataset version 6 and consists of a
Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR)
dataset. The term “Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) dataset” refers to a collection of remote sensing data that has been
processed to account for variations in surface reflectance caused by factors such as sun
angle, viewing angle, and atmospheric conditions. This adjustment helps provide more
accurate and consistent measurements of surface reflectance, making it a valuable resource
for various applications in Earth observation and environmental monitoring. “Nadir”
indicates that the data are collected directly below the satellite, and “BRDF” refers to
the mathematical model used to describe how light is reflected from surfaces at different
angles [57]. Such data came in sinusoidal map projection (EPSG:9001, method: Sinusoidal),
and they were first reprojected to Platé-Carrée (EPSG:4326) and then to Universal Transverse
Mercator (EPSG:32614). Red and infrared bands were used to compute the Normalized
Difference Vegetation Index (NDVI) on a daily basis [58,59] by using the following formula:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR is the near-infrared spectral band (Band 2) and RED is the red spectral band
(Band 1).

The annual maximum NDVI was computed using the maximum value composite
algorithm [60,61]. After obtaining the maximum NDVI for every year, we used the equation
proposed by Miranda-Aragón et al. [35] to estimate annual precipitation.

The water availability criterion drawn by the distance to rivers was created using
vector data from topographic maps at a 50,000 scale [62]. The maps used were Cerritos
(F14A76), Peotillos (F14A75), La Angostura (F14A86), San Francisco (F14A87), Rio Verde
(F14C17), La Libertad (F14A77), Tierra Nueva (F14C25), San Ciro (F14C27), Mineral El
Realito (F14C26), Santa Catarina (F14A85), El Refugio (F14C16), and La Salitrera (F14C15).
The distance to springs was created using 18 georeferenced data points gathered by the
authors from field campaigns during June 2017. The distance to wells was created using
520 data points gathered by the National Water Commission of Mexico [38]. Once vector
data were prepared, the Euclidean distance algorithm was executed to obtain raster datasets
of distance to rivers and streams, distance to springs, and distance to wells. All geospatial
processing tasks were performed using QGIS software version 3.16 [63].

2.3. Criteria Standardization

The criteria involved in land suitability determination for growing orange groves in-
teract in different ways. To make them more appropriate for accounting for land suitability
for orange groves, the criteria were standardized using a scale from 1 to 4, giving a greater
score for higher values of orange land suitability and vice versa, and using the technical
literature about the biological limits of orange growth [64]. The criteria involved in land
suitability determination for growing orange groves are quantitatively described in Table 1.

https://search.earthdata.nasa.gov/
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Table 1. Standardization values for subcriteria.

Subcriteria Value Ranges Land
Suitability

Standardized
Value Area (%)

Elevation 700–900 High 4 67.26
(m.a.s.l.) 900–1100 Moderate 3 0.28

1100–1500 Low 2 28.28
>1500 Exclusion 1 4.19

Slope 0–10 High 4 70.11
(%) 0–20 Moderate 3 8.45

20–25 Low 2 3.55
>25 Exclusion 1 17.89

Aspect
Flat, south High 4 43.59
Southeast,

Moderate 3 16.89southwest
(categorical nominal) East, west Low 2 17.31

North, northeast, northwest Exclusion 1 22.21

pH 6.0–7.0 High 4 11.88
(dimensionless) 7.0–7.5 Moderate 3 27.21

7.5–8 Low 2 36.41
>8 Exclusion 1 24.51

Soil depth 0–50 Exclusion 1 8.10
(cm) 50–80 Low 2 32.34

80–100 Moderate 3 34.66
>100 High 4 24.91

Electrical conductivity 0–1.7 High 4 66.36
1.7–2.3 Moderate 3 16.72

dS/m 2.3–3.3 Low 2 10.78
>3.3 Exclusion 1 6.14

Soil texture Fine High 4 77.87
(categorical ordinal) Medium Low 3 21.76

Coarse Exclusion 1 0.37

Relative humidity 59–63 Exclusion 1 0.50
(%) 63–65 Low 2 4.22

65–68 Moderate 3 33.10
>68 High 4 62.17

Mean minimum
temperature 11.2–12.5 Low 2 15.73

(◦C) 12.5–13 Moderate 3 20.95
>13 High 4 63.32

Mean maximum
temperature >29 Moderate 3 21.62

(◦C) 29–29.5 High 4 55.81
>29.5 Low 2 22.56

Precipitation 0–500 Low 2 54.91
(mm) 500–600 Moderate 3 24.51

>600 High 4 20.58

Distance to rivers and
streams 0–1 High 4 26.58

(km) 1.0–2.0 Moderate 3 41.90
3.0–5.0 Low 2 22.87

>5 Exclusion 1 8.65

Distance to wells 0–0.5 High 4 10.75
(km) 0.5–1.0 Moderate 3 9.61

1.0–2.0 Low 2 9.26
>2.0 Exclusion 1 70.38

Distance to springs 0–2 High 4 5.90
(km) 2.0–4.0 Moderate 3 10.80

4.0–6.0 Low 2 13.84
>6 Exclusion 1 69.46

Topography influences the productivity of orange groves. The recommendation for
elevation for orange growing is between 500 and 1800 m.a.s.l. in the tropics [65]. The
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elevation ranges from 700 to 2170 m.a.s.l. in the study area. It was classified into four land
suitability classes based on the rationale that lower elevation fosters higher productivity in
the study area. Lowlands in the study area are reserved for the valley and are expected to
be more suitable for orange growing. Elevations higher than 1500 m.a.s.l. were excluded
from the analysis due to the high risk of frost. Slope is not generally advised as a limiting
factor for orange growth. However, gentle slopes favor harvest. The upper limit for
slope was set to 25% following recommendations by Zabihi et al. [21], giving a greater
suitability score to flat places. Aspect is directly related to sunlight radiation and then to
photosynthetic activity. Although the orange crop is a neutral day plant, a better orange
yield is expected in places with greater sunlight radiation. Given that south-oriented crop
fields are supposed to have greater sunlight radiation, an aspect-based land suitability
score was set by assigning greater values to flat and south orientations [27]. The remaining
orientations were symmetrically assigned lower suitability scores.

Soil characteristics are essential for quality crops. Orange crops grow acceptably in
soils with pH values ranging from 4 to 9, with an optimum between 5.5 and 6.8. The pH is
distributed from southeast to northwest in the study area, exhibiting values ranging from 6
to greater than 8. High land suitability levels were assigned to weakly acidic and neutral
pH locations (6 and 7), while lower suitability levels were assigned to greater pH values.
pH > 8 was considered unsuitable for orange grove growth [12]. Soil depth is extremely
linked to landform and erosion processes; therefore, a valley is a soil catchment area. In the
study area, soil depth is inversely distributed in a gradient from northeast to southwest.
The effective depth of soil stands for the maximum depth at which plant roots penetrate
without encountering obstacles and then reach normal growth. Orange tree roots grow
in the first 1-m depth, with 70% of the root system in the first 50 cm and the remaining
30% in the second 50 cm [64]. For orange growing, deeper soils are preferred; therefore,
soil-depth-based higher land suitability is reserved for deep soils. Electrical conductivity
is related to the salt content in soil. Orange crops tolerate low salt levels in soil. When
the electrical conductivity is lower than 1.7 dS/m, no yield losses in orange production
are observed. However, when the electrical conductivity is between 1.7 and 2.3 dS/m,
10% losses are expected; between 2.3 and 3.3 dS/m, 25% losses are expected; and between
3.3 and 4.8 dS/m, 50% losses are expected [65]. Therefore, lower electrical conductivity
is preferable for growing orange groves. Soil texture is strongly related to the available
water capacity in soil. However, when poor drainage exists, orange crops are susceptible
to fungal diseases [12]. High and low land suitability were assigned to silt and clay
soils, respectively.

Climate strongly influences orange growth through temperature and precipitation.
Most favorable production conditions occur in regions with tropical and subtropical cli-
mates between latitudes 23.5 and 40◦ north and south. A greater relative humidity rate
(RH > 50%) influences orange growth because it fosters thinner shells in fruit and improves
juice production in quality and quantity [66]. The study area exhibits relative humidity
between 59% and 70, with an increasing pattern from west to east. This subcriterion
was divided into four symmetrical classes following Tercan and Dereli’s [27] work and
increasingly ascending according to higher land suitability, giving a higher score to greater
relative humidity conditions. Temperature is critical for orange growth because it is related
to phenological stages of the plant, e.g., flowering, fructification and ripening. Extreme
minimum and maximum temperatures may be limiting factors for orange production
because they may trigger flower dropping. Therefore, extreme limits of temperature in the
study area were assigned to moderate and low land suitability for orange growth, and the
temperate portion of the study area, distributed in the center of the aquifer, was assigned
to higher land suitability scores. In the study area, the mean minimum temperature varies
from 11.2 ◦C to 14.7 ◦C, and the mean maximum temperature fluctuates from 25.9 ◦C to
30 ◦C; therefore, such values are within the optimal range for orange production, which
is between 24 ◦C and 32 ◦C [25]. Orange groves in the study area depend on both rainfall
and groundwater. Annual variability in precipitation strongly influences water availability
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throughout the year. In summer, orange groves are naturally irrigated by rainfall, but when
water shortage is exacerbated, groundwater obtained from wells is used to supply water
needed for trees. The mean annual precipitation in the study area oscillates from 293 to
683 mm, and it is spatially distributed following a gradient from northeast to southwest.
This subcriterion was divided into three symmetrical classes, giving a higher score to
greater precipitation conditions.

Orange production in the Rioverde region largely depends on irrigation [5]. The
proximity to water sources is a proxy for accessibility to water. If an orange grove is grown
nearest to a river, spring, or well, fruit production may be assured [65,67]. Therefore, to
account for proximity to water sources, we computed three subcriteria: distance to rivers,
distance to springs, and distance to wells. The rationale employed to assign land suitability
scores to the subcriteria regarding proximity to water sources was the system used for water
extraction and distribution. For rivers and wells, water is extracted and distributed by
using pumping systems that require electricity, becoming costly as distance increases [68].
For springs, water is simply funneled through channels built with concrete; therefore, the
liquid can travel longer distances with no additional costs. For this reason, distance ranges
assigned to higher land suitability scores are shorter in the case of the subcriteria distance
to rivers and wells, since electricity is required to run the pumping system.

2.4. Analytical Hierarchy Process

The analytical hierarchy process (AHP) is a widely used approach designed to find
an integrative score that qualifies a feature based on certain criteria/subcriteria (fac-
tor/subfactor), e.g., for the spatial case, it may be used for determining land suitability. It
consists of obtaining weights for each criterion or factor on the basis of the computation of
the eigenvector of the pairwise comparison matrix that uses the 9-point scale of Saaty [69].
To gather expert judgment on citrus cultivation, a survey was conducted among five ex-
perts from Mexico’s Instituto Nacional de Investigaciones Agrícolas Forestales y Pecuarias.
This survey was conducted to obtain the opinions of experts regarding their point of view
on the importance of factors involved in orange production. The questions posed were
designed to assess the relative importance of each of these factors in the experts’ view and
to obtain a paired comparison judgment using the methodology of Thomas Saaty. The
paired comparison scores (experts’ responses) were averaged using the mode operator to
provide a comprehensive and integrated perspective from the various surveys conducted,
enabling us to tap into their collective knowledge regarding the optimal conditions for or-
ange cultivation. The weights were calculated using the Weight Module in IDRISI [70]. The
survey aimed to prioritize factors and subfactors for calculating weightings to standardize
original scores for environmental variables.

In this research, two types of pairwise comparison matrices were used: (1) a within-
criteria comparison matrix and (2) a between-criteria comparison matrix. In the within-
criteria comparison matrix, four matrices were built (Appendix A, Table A1). In the between-
criteria comparison matrix, only one matrix was created (Appendix A, Table A2). As a
measure of the degree of consistency for each pairwise comparison matrix, a consistency
ratio (CR) lower than 0.1 was used. Table 2 shows the weights calculated for each pairwise
comparison matrix. The sum of weights for each subcriterion is equal to 1, and the same
applies for the weights of each criterion [27,68,71].

Table 2. Criteria and subcriteria weights.

Main Criteria Weight Subcriteria Weight

Topography 0.1201
Elevation 0.4054

Slope 0.1140
Aspect 0.4806
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Table 2. Cont.

Main Criteria Weight Subcriteria Weight

Soil 0.4131

pH 0.2876
Soil depth 0.3943

Soil texture 0.0956
Electrical conductivity 0.2243

Climate 0.3603

Relative humidity 0.0645

Mean minimum temperature 0.1431

Mean maximum temperature 0.2876

Precipitation 0.5048

Proximity to water sources 0.1064
Distance to rivers 0.2583
Distance to wells 0.6370

Distance to springs 0.1047

Total -

2.5. Weighted Linear Combination

To combine the individual subcriteria into a consolidated score, we used the weighted
linear combination (WLC) approach. This method consists of applying a weight to each
subcriterion/criterion and then summing partial scores to obtain integrated metrics [71,72].
The general formula of WLC is as follows:

LS = ∑ wixi (2)

where LS is land suitability for growing orange groves, wi is the weight of criterion/
subcriterion i, and xi is the standardized score of criterion/subcriterion i. Table 3 shows the
equations used for determining land suitability by each criterion, namely, topography, soil,
climate, and proximity to water sources. Table 4 presents the equation used for determining
overall land suitability considering all criteria. LS values were grouped into four classes,
i.e., exclusion (0–1), low (1–2), moderate (2–3), and high (3–4).

Table 3. Equations used for determining land suitability by subcriterion for growing orange groves
in Rioverde, Mexico.

Criterion Subcriterion 1 Subcriterion 2 Subcriterion 3 Subcriterion 4

LS.topo = Elevation × 0.4054 + Slope × 0.1140 + Aspect × 0.4806
LS.soil = pH × 0.2876 + Soil depth × 0.3943 + Soil texture × 0.0956 + Electrical conductivity × 0.2243

LS.climate = Relative humidity × 0.0645 + Mean minimum
temperature × 0.1431 + Mean maximum

temperature × 0.2876 + Precipitation × 0.5048

LS.proximity = Distance to rivers × 0.2583 + Distance to
wells × 0.6370 + Distance to springs × 0.1047

LS.topo: land suitability for the criterion topography; LS.soil: land suitability for the criterion soil; LS.climate:
land suitability for the criterion climate; and LS.proximity: land suitability for the criterion proximity.

Table 4. Equation used for determining final land suitability for growing oranges in Rioverde, Mexico.

Land Suitability Criterion 1 Criterion 2 Criterion 3 Criterion 4

LS.orangegrove = LS.topo × 0.1201 + LS.soil × 0.4131 + LS.climate × 0.3603 + LS.proximity × 0.1064

LS.orangegrove: land suitability for growing orange groves in the study area.

2.6. Principal Component Analysis for Assembling Multiyear Land Suitability

Principal component analysis builds a new set of uncorrelated variables called “prin-
cipal components” (PCs), which are linear combinations of the original variables that
sequentially grasp the maximum variability in the initial dataset, leading to minimal in-
formation loss. Since PCs are orthogonal to each other and uncorrelated, they do not
contain redundant information and may be analyzed independently [34,35]. These pow-
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erful characteristics make them an ideal tool for decomposing a complex problem into a
simple one.

To extract the PCs from the dataset, first, the covariance matrix (S) is computed with
the following equation [73]:

S =
1
n

X′
(

In −
1
n

11′
)

X (3)

where X = {LS1, LS2, LS3, . . . , LS20}, and LS1 are the land suitability of the first year
corresponding to 2000, and LS2 corresponds to the land suitability of the second year
corresponding to 2001. LS20 corresponds to the land suitability of year 20, i.e., 2019.
In = n × n identity matrix, 1 = n × 1 vector of all-ones, 1′ corresponds to the transpose of 1,
and n corresponds to the total number of observations (pixels).

The eigenvalues (λ1, λ2, λ3, . . . , λ20) represent the variability in each principal compo-
nent. They were obtained by diagonalizing the variance–covariance matrix (S) of the form
ΓΛΓ′. The n×n matrix Λ contains λ1, λ2, λ3, . . . , λ20 at the diagonal. The n×n matrix Γ con-
tains the eigenvectors u1, u2, u3, . . . , u20 in the columns, i.e., u′

1 = (u1,1, u2,1, u3,1, . . . u20,1).
These are the coefficients used for the linear combination to compute each PC. Such eigen-
vectors represent a new set of uncorrelated sources of variation.

Because the first PC captures the largest possible variability in the original dataset, it
was used to fuse the 20 land suitability maps (LS1, LS2, LS3, . . . , LS20) into an integrated
land suitability map (PC1), including the spatial variability caused by annual variation
in precipitation. Therefore, the first principal component (PC1) was obtained as follows,
hereafter mentioned as the PCA-based land suitability map:

PC1 =
20

∑
i=1

LSi · ui,1 (4)

The correlation between the i-th original variable LSi and the j-th principal component
PCj can be calculated as follows:

Corr
(

LSi, PCj
)
= Var(LSi)

− 1
2 ·λj

− 1
2 ·

20

∑
k=1

Cov(LS i, LSk)·uk,j (5)

2.7. Estimated Land Suitability vs. Current Spatial Distribution of Orange Groves

To obtain metrics for validation purposes of land suitability maps, we compared them
against the current spatial distribution of orange groves. The spatial database of orange
groves was obtained from CESAVESLP [74] in polygon vector format, specifically using the
shapefile data format. The dataset comprises 2234 groves within the study area, serving
as the ground truth reference. Descriptive statistics for orange grove areas in the study
area are as follows: the smallest grove spans 0.1 ha, the average grove covers 13.37 ha,
and the largest grove extends over 37.24 ha, with a cumulative grove area totaling 2995.34
ha. The orange grove boundary was intersected against previously vectorized MAP- and
PCA-based land suitability maps. MAP stands for mean annual precipitation. Moderate
and high land suitability from both maps were considered valid estimates of land suitability.
In order to have an indication of the model’s ability to distinguish between the presence and
absence of orange groves, the area under the ROC curve (AUC) analysis was carried out. A
higher AUC value suggests better model performance [75]. Figure 3 shows the flowchart
of the integrated methodology to obtain the MAP- and PCA-based land suitability maps.
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Figure 3. Flowchart of the methodology used [35].

3. Results

3.1. Spatiotemporal Variation in Precipitation

Figure 4 shows the estimated precipitation pattern in the study area, bounded by the
limit of the aquifer, for the years 2000–2019 computed by using the temporal composite of
maximum annual NDVI, built with daily remotely sensed data. When analyzing Figure 4,
two temporal patterns can be seen. The first pattern can be considered from 2000 to 2006,
while the second pattern can be seen from 2011 to 2019. The years 2007, 2008 and 2010 were
wetter years, although 2009 was a drier year. In general, mostly the northern and middle
regions of the study area, with a spatial pattern from northwest to east-central, have been
mostly affected by water shortages, experiencing precipitation lower than 500 mm.

3.2. Spatial Pattern of Annual Land Suitability for Growing Orange Groves

Figure 5 reveals the spatiotemporal pattern of land suitability for growing orange
groves in the Rioverde region for every year, with an emphasis on the annual variability
in precipitation. This spatial pattern of land suitability is strongly influenced by annual
rainfall. Two areas of high land suitability for growing orange groves can be identified. The
first land portion is at the center-south portion of the study area and can be distinguished
as the greatest area of high land suitability (in blue), while a small portion of land is also
exhibited in the northwest part of the study area.
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Figure 5. Land suitability for orange groves estimated by using remote-sensing-based annual
precipitation for every year: 2000–2019.

3.3. Principal Component Analysis

Table A3 in Appendix A presents the coefficients obtained for each principal compo-
nent based on annual land suitability for growing orange groves in the Rioverde region.
The first principal component captured 99.62% of the variance associated with the spatial
distribution of land suitability of orange groves regarding the spatiotemporal behavior of
annual precipitation in the study area; that is, the first component efficiently incorporated
the spatial and temporal distribution of every annual land suitability map computed using
the NDVI-based annual precipitation. Indeed, the coefficients and loadings calculated for
the first principal component were the same for all the years (0.22 and 0.99, respectively)
(Appendix A, Tables A3 and A4). This reveals that all years were successfully represented by
the first principal component; therefore, it captured deep detail of all principal components
in the first one.

3.4. Integrated Land Suitability for Growing Orange Groves

Figure 6 shows the spatial distribution of orange groves in the Rioverde region based
on MAP and PCA land suitability approaches. MAP-based land suitability reflects the
spatial patterns of mean annual rainfall on land suitability, while PCA-based land suitability
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exhibits hidden spatial patterns of interannual variation in precipitation. Figure 7 presents
a zoom-in of the main area for growing orange groves in the study area. According to the
results shown in Table 5, the total area of PCA-based high land suitability increased by
5392.9 ha with respect to the MAP-based high land suitability, i.e., an increase of 52.6% of
the area with high land suitability.
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Table 5. Estimated land suitability for orange groves in Rioverde, Mexico.

Land Suitability
MAP-Based Land Suitability PCA-Based Land Suitability

Area (ha) Area (%) Area (ha) Area (%)

Exclusion 185,986.9 66.79 126,864.5 45.59
Low 7864.1 2.85 55,916.7 20.09

Moderate 74,168.8 26.67 79,845.7 28.69
High 10,246.9 3.69 15,639.8 5.62

3.5. Comparison of Land Suitability Maps vs. Spatial Distribution of Orange Groves

Table 6 presents the areal comparisons of MAP- and PCA-based land suitability
estimates against the current orange grove map (ground truth). Regarding the MAP-based
land suitability, 2294.6 ha, i.e., 80.73% of the total area of existing orange groves, were
located in middle and high land suitability zones within the study area. Regarding PCA-
based land suitability, it was discovered that 2626.8 ha, i.e., 92.42% of the total area of
present orange groves, were located in middle and high land suitability zones within the
study area.

Table 6. Areal comparison of current orange grove locations to estimated land suitability in
Rioverde, Mexico.

Land Suitability
MAP-Based Land Suitability PCA-Based Land Suitability

Area (ha) Area (%) Area (ha) Area (%)

Exclusion 547.47 19.26 44.1 1.55
Low 0.25 0.01 171.4 6.03

Moderate 550.46 19.37 493.7 17.37
High 1744.13 61.36 2133.1 75.05

Total 2842.3 100 2842.3 100
MAP: mean annual precipitation, PCA: principal component analysis.

4. Discussion

4.1. Spatiotemporal Variation in Precipitation

This study presented a methodology framework for modeling land suitability for
growing orange groves in a portion of the citrus belt region in northern Mexico. Hyper-
temporal (daily) remote sensing data were highly effective in capturing the interannual
variability in precipitation at the pixel level in the study area. Twenty-year NDVI time-
series daily data were used to compute the maximum yearly NDVI and, therefore, annual
precipitation. The spatiotemporal variation in precipitation was used to find the most
suitable places for growing orange groves in terms of water availability. When observ-
ing the NDVI shown in Figure 4, the effect of precipitation on vegetation was revealed.
Three great drought periods may be detected: 2000–2006; the sole year 2009; and 2011–2019.

Hypertemporal, i.e., time-series-based remote sensing, has been utilized for a variety
of conditions or purposes. From worldwide studies to very local studies, hypertemporal
remote sensing has remained a strategic tool for analyzing a variety of biophysical variables,
including vegetation, i.e., flower bloom [76], impervious surfaces [77], land surface temper-
ature [78], vegetation phenology [79], etc. Depending on the geographical extent, the spatial
and temporal resolution may be compromised to find the best choice of hypertemporal
analysis. Regarding the NDVI–rainfall relationship, some key studies have documented
the relationship of the effect of rainfall on vegetation [80].

Few studies have been reported on the use of time-series remotely sensed data in
Mexico. Although some studies have focused on land use change or phenology, the number
of such studies is still limited. Miranda-Aragón et al. [35] conducted a study examining
NDVI–rainfall trends over a larger area using 15-day remotely sensed data spanning a
decade. Our study builds upon this work by utilizing Miranda-Aragón et al.’s exponential
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equation to estimate mean annual precipitation from daily temporal resolution time-series
data ranging from 2000 to 2019. Upon comparing both studies’ remotely sensed data, a
strong visual correlation during the first 11 years (2000–2010) is evident, with the dry years
in their time series corresponding to the dry years in ours. Our study extends over a longer
period, ranging from 2000 to 2020, and confirms that 2007, 2008, and 2010 were the wettest
years of the period from 2000 to 2010, as found by Miranda-Aragón et al.’s work.

4.2. Spatial Pattern of Annual Land Suitability for Growing Orange Groves

This study utilized time-series remote sensing data to estimate annual precipitation,
allowing us to evaluate the suitability of land for orange grove cultivation on an annual
basis. This approach provided a spatiotemporal perspective of the Rioverde region and
revealed the variation in land suitability over time. Notably, our results indicate that the
northern portion of the study area is particularly sensitive to climate variation, particularly
interannual rainfall variation. On the other hand, a noticeable condition in Figure 5 can
also be perceived: the middle and southern parts of the study area show high stability
of the spatial pattern of land suitability for orange groves. Both conditions demonstrate
that the temporal pattern of land suitability in the Rioverde aquifer, our study area, ex-
hibits strong variation; in specific areas, however, this pattern is relatively homogeneous
over time.

Multi-criteria decision analyses are commonly employed to determine land suitability
for crop cultivation, guided by several distinct rationales, including (1) the assessment of a
single date or situation [81,82], (2) sensitivity analysis that considers some environmental
criteria, e.g., freezing [24], soil salinity [83], and climate indexes [84], (3) consideration of
planning scenarios devised by experts in relevant fields or stakeholders [85], (4) assessment
of the impacts of climatic or land use potential scenarios [86], and (5) analysis of the
effects of interannual NDVI on the variable of response, such as land suitability [18].
According to a study conducted in our research area, water availability, which is greatly
influenced by climate variability, emerges as the most critical factor, after soil, affecting crop
production [5]. Therefore, we investigated the impact of interannual rainfall variability on
the determination of land suitability for orange groves, capturing land suitability variation
for the period from 2000 to 2019 with an annual temporal resolution.

4.3. Integrated Land Suitability for Growing Orange Groves

Figure 6 depicts land suitability for growing orange groves in the Rioverde region.
This study analyzed the spatial distribution of orange groves in the Rioverde region using
both MAP and PCA land suitability approaches. The results showed that the PCA-based
approach revealed hidden spatial patterns of interannual variation in precipitation, leading
to a 52.6% increase in the total area with high land suitability compared with the MAP-based
approach. PCA and MCDA are versatile approaches that have been used in a variety of
situations and contexts. For example, Li and Yeh [87] used PCA to reduce the dimensionality
of distance variables before running MCDA in a simulation of land use in Dongguan,
Southern China. Carlón-Allende et al. [88] employed principal component analysis to
identify the more dynamic variables in watershed hydrogeological regionalization in a
study of watershed prioritization in Cuizeo Lake, and the final score for each watershed
was obtained by using multi-criteria decision techniques. Seyedmohammadi et al. [19]
applied multi-criteria decision techniques to determine the best location for growing
maize, rapeseed, and soybean in northern Iran; the PCA technique was used to select
important criteria for crop yield. All the aforementioned applications of both PCA and
MCDA have been used separately or in a complementary way. In this research, PCA
was used to assimilate the interannual variability effect of precipitation on annual land
suitability. Therefore, the integration of the annual land suitability maps generated a
more comprehensive and precise global map, indicating the advantages of using PCA in
land suitability studies. This demonstrates the effectiveness of assimilating interannual
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variability effects using PCA, leading to improved accuracy and a better understanding of
the spatial distribution of land suitable for growing oranges in the Rioverde region.

Studies have also highlighted the importance of analyzing land suitability and crop
productivity, particularly in the context of climate change and water scarcity. For example,
Jayathilaka et al. [89] conducted a study to determine land suitability for tea, rubber, and
coconut crops in Sri Lanka using a multi-criteria decision analysis approach. The study
analyzed data on rainfall, relative humidity, temperature, and evapotranspiration for two
study periods: 1980–1992 and 1993–2007. The authors found that there was a decreasing
trend in annual rainfall in the wet zone, which is located in the middle of the country.
They also observed a significant increase of 1.4 ◦C in mean temperature across the entire
country. These changing climatic conditions have led to a shift in the spatial patterns of
crops throughout Sri Lanka. López-Blanco et al. [90] studied the land suitability for rainfed
maize cultivation under climate change projections in Mexico at the national level. The
authors concluded that a reduction in rainfall and an increase in temperature would have
serious implications for national agriculture, particularly for rainfed maize. The study
identified areas with high climate stability as well as regions that are more vulnerable to
reduced maize yields in the future. By highlighting these zones, the study provides insight
into the potential impacts of climate change on rainfed maize cultivation in Mexico.

4.4. Validation

Land suitability estimates obtained through MAP-based and PCA-based methods
were compared against the spatial distribution of 2234 orange groves as ground truth.
The results showed that both methods were effective in identifying areas with high and
moderate suitability for orange groves, as the majority of existing orange groves were
located in these zones. Specifically, 80.73% of existing orange groves were in the high
and medium land suitability zones identified by the MAP-based method, while 92.42% of
existing orange groves were located in the same zones according to the PCA-based method.

Figure 8 illustrates the Receiver Operating Characteristic (ROC) curves for two dis-
tinct land suitability assessment models: one based on mean annual precipitation (MAP)
and the other employing principal component analysis (PCA). These curves effectively
demonstrated each model’s capability in accurately distinguishing between areas with
and without orange groves (AUC = 0.90 and 0.99, respectively). The ROC curves are
instrumental in evaluating the overall efficacy of these land suitability models. In terms of
interpreting the area under the curve (AUC) values derived from these ROC curves, they
can be categorized as follows: AUC values ranging from 0.90 to 1.00 indicate ‘Excellent’
model performance, indicating a high level of accuracy in predictions. Values between
0.80 and 0.90 are indicative of ‘Good’ performance, reflecting competent but not flawless
prediction capabilities. AUC values in the range of 0.70 to 0.80 are classified as ‘Fair,’ sug-
gesting moderate predictive accuracy. ‘Poor’ model performance is associated with values
between 0.60 and 0.70, where the models begin to show significant limitations. Finally,
AUC values falling between 0.50 and 0.60 suggest that the model’s performance is no better
than random chance, essentially lacking any discriminative ability.

In the context of MCDA, some researchers have validated their land suitability results
in slightly different but interesting ways. Li et al. [16] validated their land suitability
maps for tea crops in Zhejiang, China, using 3745 validation points obtained by global
positioning system (GPS) receptors. After analyzing the tea crop locations located in
highly and moderately suitable regions, the accuracy obtained was 87.91%. Dedeoğlu
and Dengiz [18] employed a simple linear regression model to validate their analysis of
wheat land suitability. They compared yield data as ground truth (response variable)
against land suitability classes and NDVI to ensure accuracy. Remarkably, the study
successfully validated the analysis by obtaining high determination coefficients of 0.83
(yield data vs. land suitability classes) and 0.78 (NDVI data vs. land suitability classes).
Layomi-Jayasinghe et al. [91] validated their land suitability maps for tea crops by overlay-
ing a spatial data layer of tea plantings with the predicted land suitability using MCDA.
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Their validation approach involved only considering agricultural fields that overlapped
with very highly suitable and highly suitable areas. Impressively, this method resulted in
an accuracy rate of 92.46%. Others have employed further validation approaches, such
as the work of Tshabalala et al. [23] who used the so-called relative operating character-
istic under the logistic regression framework. The authors evaluated land suitability for
Moringa oleifera in South Africa and used logistic regression to estimate the area under the
ROC curve, reporting an accuracy of 81%.
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An additional perspective for validating our approach was to analyze the consistency
ratio (CR < 0.1), which was obtained for both within-criteria and between-criteria pairwise
comparison matrices. These matrices were used to calculate the weights in the context of
MCDA. By examining the consistency ratio, we could measure any inconsistency in the
judgment given by the expert and therefore gain further insight into the reliability of our
approach. In this sense, all matrices had values lower than 0.1, that is, 0.03 for the criterion
topography, 0.06 for the criterion soil, 0.07 for the criterion climate, 0.03 for the criterion
proximity to water sources; finally, considering all four criteria, the consistency ratio was
0.01 [68]. Although consistency ratio measures do not guarantee the accuracy of our results,
they can be used as an important signal of the robustness of our approach [71].

5. Conclusions

This study focused on exploring land suitability for establishing orange groves in a
portion of the northern Mexican orange belt by combining variables related to topogra-
phy, soil, climate, and proximity to water sources. Additionally, it utilized daily remote
sensing data to infer historical annual precipitation patterns as part of a spatial variability
analysis of land suitability or a form of land suitability sensitivity analysis based on the
behavior of estimated annual precipitation using remote sensing data. The analysis was
conducted from two perspectives: a) determining soil suitability using environmental
variables while considering mean annual precipitation and b) considering precipitation as
the integration of spatiotemporal patterns from daily remote sensing data collected over a
20-year period using principal component analysis. The first case resulted in a relatively
homogeneous map of land suitability for establishing orange groves, whereas the second
case initially revealed a larger area but with hidden patterns of land suitability for orange
grove establishment.
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Based on the analysis of land suitability classes, four conclusions can be drawn. For the
class known as the exclusion class, the MAP-based approach depicts a vast majority of land
as unsuitable (185,986.9 ha, 66.79% of the study area). This approach may overshadow the
potential identified by a more integrative PCA approach (126,864.5 ha, 45.59%). The latter’s
use of remotely sensed data likely captures a richer, more diverse environmental profile,
suggesting that nearly half of the previously excluded land may have untapped agricultural
potential. For the low-suitability class, low-suitability lands represent a small fraction when
MAP-based land suitability is used (7864.1 ha, 2.85%). However, the PCA-based land
suitability approach expands this category substantially, translating to a sevenfold increase
in the identified area (55,916.7 ha, 20.09%). This indicates a considerable amount of land that,
while not ideal, could be cultivated with appropriate agronomic management practices. For
the moderate suitability class, the moderately suitable areas are comparable between the
two methodologies (26.67% and 28.69%, respectively), with the PCA-based land suitability
approach revealing slightly more land (79,845.7 ha). Based on remotely sensed data, these
areas are likely to have favorable conditions but may still require enhancements in order to
reach their full potential. For the high suitability class, high-suitability zones are critical
for strategic cultivation due to their optimal conditions. The PCA-based land suitability
approach indicates that a greater extent of land falls under this classification (15,639.8 ha,
5.62%) compared to the MAP-based land suitability approach (10,246.9 ha, 3.69%). This
illustrates the importance of using sophisticated analytical tools to determine the best
locations for cultivation.

The combination of these two methodologies offers valuable insights for agricultural
planning and policy making. The MAP-based land suitability approach may be more
conservative, potentially underestimating the land’s agricultural suitability. In contrast, the
PCA-based land suitability approach, with its inclusion of remotely sensed data, provides
a more expansive and potentially accurate assessment of land suitability. For effective
agricultural development, it is crucial to leverage the PCA methodology’s comprehensive
insights to identify areas where interventions can be most effective. This could involve
enhancing water management in low-suitability areas or improving soil conditions in
moderately suitable zones. The PCA-based land suitability approach also highlights the
importance of remote sensing as a tool for agricultural assessment, offering a data-rich
perspective that can guide precision agriculture practices. Overall, the study suggests that
an integrative approach, combining precipitation data with remotely sensed information,
can significantly improve the assessment of land suitability for orange crop cultivation.
Such a methodological synergy could lead to informed decisions that promote sustainable
agricultural expansion and optimization, ultimately leading to enhanced food security and
economic development.

These research findings revealed the potential of principal component analysis of
time-series remote sensing data to assimilate rainfall variation over time and then estimate
a long-term land suitability map for growing orange groves. The modeling strategy
exhibited new locations to grow citrus crops to tackle the problem of a reduction in the
agricultural area due to urban growth in the Rioverde region (Mexico) as well as the effect of
recurrent drought on water availability. Therefore, using more efficient irrigation systems,
i.e., drop irrigation for producing specialty crops, will be the best option for optimizing
water use. This methodology may be particularly relevant to those who need to make
informed decisions about land use and water management strategies, especially in areas
that are prone to climate variability and water scarcity. By integrating multiple criteria
decision analysis, time-series remote sensing, and principal component analysis, this
study offers a comprehensive approach to delineate the most suitable areas for sustainable
citrus production in northern Mexico’s citrus belt. The results of this study may support
decision-making processes for the effective land management of orange groves in the
Rioverde region and provide valuable insights for managing agricultural production in
other semiarid regions. Finally, this study demonstrates that the integration of MCDA and
PCA could effectively identify areas that have been suitable for growing orange groves.
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Appendix A

Table A1. Within-criteria pairwise comparison matrices.

Criterion: Topography

Elevation Slope Aspect

Elevation 1
Slope 1/3 1

Aspect 1 5 1

C.R. = 0.03
Criterion: Soil

pH Soil depth Soil texture Electrical
conductivity

pH 1
Soil depth 3 1

Soil texture 3 1 1
Electrical conductivity 3 1/3 1 1

C.R. = 0.06
Criterion: Climate

Relative humidity Mean minimum
temperature

Mean maximum
temperature Precipitation

Relative humidity 1
Mean minimum

temperature 3 1

Mean maximum
temperature 5 3 1

Precipitation 5 3 3 1

C.R. = 0.07
Criterion: Proximity to water sources

Distance to rivers Distance to wells Distance to
springs

Distance to rivers 1
Distance to springs 1/3 1
Distance to wells 3 5 1

C.R. = 0.03
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Table A2. Between-criteria pairwise comparison matrices.

All four criteria

Topography Soil Proximity to water
sources Climate

Topography 1
Soil 3 1

Proximity to water
sources 5 3 1

Climate 5 3 3 1

C.R. = 0.01

Table A3. Matrix of eigenvalues, eigenvectors, and variance explained obtained from the principal
component analysis executed to integrate annual land suitability values into a homogenous PCA-
based land suitability map, i.e., PC1 map.

PC’s PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

% Variance explained 99.62 0.09 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00
Eigenvalue 19.92 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Eigenvector 1 (Year 2000) 0.22 −0.21 −0.36 0.22 −0.59 0.56 −0.18 0.04 −0.03 0.13 −0.05 0.00 0.01 0.02 −0.01 −0.10 0.00 −0.03 −0.01 0.00
Eigenvector 2 (Year 2001) 0.22 0.15 0.11 −0.15 0.09 0.07 −0.07 0.12 −0.20 0.06 −0.17 0.01 −0.07 −0.20 0.52 −0.46 −0.47 0.18 0.01 0.00
Eigenvector 3 (Year 2002) 0.22 −0.17 −0.07 −0.29 0.06 0.11 0.33 0.26 −0.29 −0.11 −0.05 0.53 0.04 −0.43 −0.19 0.13 0.16 0.00 0.00 0.00
Eigenvector 4 (Year 2003) 0.22 −0.05 −0.04 −0.41 −0.09 0.00 0.04 0.56 0.08 −0.27 0.19 −0.35 −0.28 0.32 −0.10 0.11 −0.13 −0.02 0.00 0.00
Eigenvector 5 (Year 2004) 0.22 −0.12 0.05 −0.10 0.12 −0.12 −0.53 −0.16 −0.47 0.10 0.46 0.22 0.00 0.27 −0.11 −0.04 0.04 0.10 −0.02 0.00
Eigenvector 6 (Year 2005) 0.22 −0.05 −0.11 −0.31 −0.19 −0.29 −0.12 −0.12 0.66 0.17 0.27 0.16 0.08 −0.25 −0.02 −0.22 0.04 0.07 −0.01 0.00
Eigenvector 7 (Year 2006) 0.22 −0.30 −0.28 0.16 0.11 −0.25 −0.27 −0.23 0.00 −0.63 −0.23 −0.14 −0.12 −0.24 0.07 0.05 −0.01 −0.02 0.00 0.00
Eigenvector 8 (Year 2007) 0.22 0.30 −0.02 0.02 0.00 −0.11 −0.05 −0.04 −0.06 0.12 −0.05 0.07 −0.27 −0.04 −0.01 −0.06 0.00 −0.86 0.04 0.00
Eigenvector 9 (Year 2008) 0.22 0.42 −0.12 0.14 −0.06 −0.10 0.05 −0.05 0.00 0.03 −0.07 0.07 −0.25 0.02 −0.07 0.17 0.03 0.27 −0.74 0.00
Eigenvector 10 (Year 2009) 0.22 −0.17 0.06 −0.27 −0.11 −0.07 0.17 −0.29 0.09 0.00 −0.46 0.31 0.09 0.59 0.14 0.12 −0.08 −0.02 0.02 0.00
Eigenvector 11 (Year 2010) 0.22 0.41 −0.15 0.18 −0.08 −0.11 0.09 −0.07 −0.02 0.04 −0.02 0.08 −0.29 0.02 −0.12 0.14 0.01 0.35 0.67 0.00
Eigenvector 12 (Year 2011) 0.22 0.35 −0.12 0.07 0.05 0.09 0.23 −0.08 −0.03 −0.38 0.15 −0.05 0.57 0.18 −0.23 −0.39 −0.01 −0.06 −0.01 0.00
Eigenvector 13 (Year 2012) 0.22 0.23 −0.04 0.00 0.12 0.09 −0.26 0.19 0.10 0.05 0.02 −0.04 0.49 −0.08 0.38 0.60 0.03 −0.06 0.06 0.00
Eigenvector 14 (Year 2013) 0.22 −0.04 0.20 −0.07 0.19 0.08 −0.24 0.00 0.05 0.26 −0.39 −0.24 0.14 −0.15 −0.63 0.04 −0.29 0.05 0.01 0.00
Eigenvector 15 (Year 2014) 0.22 −0.11 0.06 −0.18 −0.27 −0.17 0.37 −0.38 −0.33 0.20 0.15 −0.51 0.10 −0.19 0.10 0.15 0.04 0.00 −0.01 0.00
Eigenvector 16 (Year 2015) 0.22 −0.08 0.20 0.02 0.39 0.58 0.16 −0.36 0.26 −0.10 0.30 0.00 −0.27 −0.02 0.06 0.12 −0.08 −0.01 −0.01 0.00
Eigenvector 17 (Year 2016) 0.22 0.05 0.21 −0.09 0.13 0.11 −0.12 0.08 0.02 0.06 −0.25 −0.20 −0.06 0.03 0.12 −0.27 0.79 0.09 0.03 0.00
Eigenvector 18 (Year 2017) 0.22 −0.15 0.43 0.37 −0.16 −0.15 0.08 0.17 0.06 −0.06 0.07 0.08 0.03 0.00 0.02 0.00 −0.04 −0.01 0.00 −0.71
Eigenvector 19 (Year 2018) 0.22 −0.15 0.43 0.37 −0.16 −0.15 0.08 0.17 0.06 −0.06 0.07 0.08 0.03 0.00 0.02 0.00 −0.04 −0.01 −0.01 0.71
Eigenvector 20 (Year 2019) 0.22 −0.31 −0.45 0.31 0.46 −0.17 0.26 0.20 0.04 0.40 0.04 −0.08 0.03 0.17 0.07 −0.10 0.00 0.00 −0.02 0.00

Table A4. Matrix of loadings for principal components.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Loading Year 2000 0.9972 −0.0283 −0.0313 0.0160 −0.0422 0.0394 −0.0114 0.0025 −0.0018 0.0075
Loading Year 2001 0.9986 0.0207 0.0095 −0.0110 0.0065 0.0049 −0.0042 0.0075 −0.0116 0.0035
Loading Year 2002 0.9982 −0.0231 −0.0061 −0.0208 0.0046 0.0077 0.0209 0.0156 −0.0170 −0.0059
Loading Year 2003 0.9983 −0.0066 −0.0039 −0.0296 −0.0062 0.0000 0.0028 0.0337 0.0048 −0.0152
Loading Year 2004 0.9983 −0.0164 0.0045 −0.0071 0.0084 −0.0084 −0.0337 −0.0095 −0.0274 0.0055
Loading Year 2005 0.9982 −0.0070 −0.0094 −0.0227 −0.0134 −0.0207 −0.0077 −0.0070 0.0385 0.0095
Loading Year 2006 0.9975 −0.0417 −0.0243 0.0114 0.0077 −0.0174 −0.0169 −0.0140 0.0000 −0.0353
Loading Year 2007 0.9985 0.0411 −0.0019 0.0016 −0.0002 −0.0075 −0.0032 −0.0026 −0.0034 0.0068
Loading Year 2008 0.9978 0.0573 −0.0103 0.0102 −0.0046 −0.0068 0.0029 −0.0028 −0.0002 0.0019
Loading Year 2009 0.9983 −0.0239 0.0052 −0.0195 −0.0076 −0.0052 0.0106 −0.0178 0.0054 0.0003
Loading Year 2010 0.9977 0.0567 −0.0129 0.0130 −0.0055 −0.0079 0.0056 −0.0044 −0.0009 0.0021
Loading Year 2011 0.9976 0.0480 −0.0104 0.0052 0.0039 0.0063 0.0145 −0.0051 −0.0018 −0.0214
Loading Year 2012 0.9983 0.0316 −0.0037 −0.0003 0.0083 0.0065 −0.0165 0.0112 0.0060 0.0027
Loading Year 2013 0.9986 −0.0061 0.0175 −0.0050 0.0132 0.0057 −0.0151 −0.0001 0.0032 0.0143
Loading Year 2014 0.9982 −0.0155 0.0056 −0.0132 −0.0189 −0.0122 0.0235 −0.0228 −0.0195 0.0109
Loading Year 2015 0.9979 −0.0109 0.0174 0.0014 0.0275 0.0405 0.0101 −0.0220 0.0155 −0.0054
Loading Year 2016 0.9988 0.0067 0.0186 −0.0067 0.0090 0.0078 −0.0078 0.0051 0.0011 0.0033
Loading Year 2017 0.9985 −0.0202 0.0375 0.0272 −0.0115 −0.0102 0.0048 0.0101 0.0035 −0.0035
Loading Year 2018 0.9985 −0.0202 0.0375 0.0273 −0.0115 −0.0103 0.0048 0.0101 0.0035 −0.0035
Loading Year 2019 0.9970 −0.0424 −0.0391 0.0228 0.0326 −0.0122 0.0163 0.0123 0.0024 0.0220

PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

Loading Year 2000 −0.0025 −0.0001 0.0004 0.0008 −0.0005 −0.0046 0.0001 −0.0011 −0.0002 0.0000
Loading Year 2001 −0.0092 0.0006 −0.0035 −0.0103 0.0253 −0.0221 −0.0213 0.0067 0.0002 0.0000
Loading Year 2002 −0.0025 0.0286 0.0023 −0.0223 −0.0090 0.0061 0.0072 0.0001 −0.0001 0.0000
Loading Year 2003 0.0105 −0.0191 −0.0151 0.0165 −0.0047 0.0051 −0.0057 −0.0006 0.0001 0.0000
Loading Year 2004 0.0251 0.0120 0.0002 0.0138 −0.0054 −0.0017 0.0017 0.0035 −0.0005 0.0000
Loading Year 2005 0.0150 0.0088 0.0044 −0.0131 −0.0009 −0.0103 0.0016 0.0024 −0.0003 0.0000
Loading Year 2006 −0.0128 −0.0076 −0.0065 −0.0123 0.0036 0.0024 −0.0002 −0.0008 0.0001 0.0000
Loading Year 2007 −0.0025 0.0039 −0.0144 −0.0022 −0.0007 −0.0028 −0.0002 −0.0317 0.0011 0.0000
Loading Year 2008 −0.0040 0.0038 −0.0133 0.0009 −0.0035 0.0079 0.0013 0.0099 −0.0198 0.0000
Loading Year 2009 −0.0253 0.0167 0.0047 0.0304 0.0067 0.0058 −0.0037 −0.0006 0.0006 0.0000
Loading Year 2010 −0.0009 0.0044 −0.0158 0.0009 −0.0057 0.0066 0.0006 0.0129 0.0178 0.0000
Loading Year 2011 0.0083 −0.0029 0.0306 0.0092 −0.0113 −0.0185 −0.0004 −0.0021 −0.0002 0.0000
Loading Year 2012 0.0010 −0.0024 0.0263 −0.0041 0.0185 0.0284 0.0012 −0.0024 0.0016 0.0000
Loading Year 2013 −0.0216 −0.0129 0.0073 −0.0078 −0.0305 0.0021 −0.0129 0.0018 0.0003 0.0000
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Table A4. Cont.

Loading Year 2014 0.0084 −0.0277 0.0052 −0.0100 0.0047 0.0073 0.0017 −0.0001 −0.0003 0.0000
Loading Year 2015 0.0165 0.0000 −0.0145 −0.0010 0.0028 0.0056 −0.0035 −0.0003 −0.0003 0.0000
Loading Year 2016 −0.0138 −0.0108 −0.0035 0.0017 0.0058 −0.0130 0.0358 0.0034 0.0007 0.0000
Loading Year 2017 0.0041 0.0044 0.0018 0.0002 0.0007 0.0002 −0.0016 −0.0004 0.0000 −0.0001
Loading Year 2018 0.0040 0.0044 0.0018 0.0002 0.0007 0.0002 −0.0016 −0.0003 −0.0002 0.0001
Loading Year 2019 0.0023 −0.0042 0.0018 0.0086 0.0032 −0.0048 −0.0001 −0.0002 −0.0006 0.0000
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