Optical Methods for the Detection of Plant Pathogens and Diseases (Review)
Abstract
:1. Introduction
2. Fundamentals of Optical Methods’ Utilization for Plant Pathogen Diagnosis
3. Spectral Imaging
4. Spectroscopy (General Characteristics)
5. IR Spectroscopy
Spectroscopy Type | Wavelength | Object | Pathogen/Disease | Analysis | Ref. |
---|---|---|---|---|---|
Vis–NIR spectroscopy | 250–1000 nm | Pumpkin leaves | Pathogen type not determined/Powdery mildew | Vegetative indices | [69] |
450–1100 nm | Cucumber leaves | Podosphaera xanthii/Powdery mildew | Vegetative indices and SIMCA | [70] | |
NIR spectroscopy | 900–2600 nm | Potato | Candidatus Liberibacter solanacearum/Zebra chip disease | Stepwise regression in conjunction with canonical DA | [71] |
1100–2300 nm | Chestnuts | Mold | A genetic algorithm for feature selection in combination with image analysis grading and LDA, QDA and k-nearest neighbors (kNN) for classification; a Savitzky–Golay first derivative spectral pretreatment | [72] | |
NIR reflectance spectroscopy | 800–2500 nm | Honeycrisp apple fruits | Pathogen type not determined/Bitter pit | QDA, SVM | [73] |
1175–2170 nm | Korean hulled barley | Fusarium sp./Fusarium | PLS-DA; multiple mathematical pretreatments | [74] | |
1000–2500 nm | Intact garlic cloves | Fusarium proliferatum/Fusarium | PLSR | [75] | |
Vis–NIR reflectance spectroscopy | 350–2500 nm (1887, 1872 nm) | Wheat kernels | Fusarium sp./Fusarium | New spectral classification index (NSCI) method | [76] |
800–2500 nm | Almond kernels | Pathogen type not determined/Fungal | Canonical DA | [77] | |
MIR spectroscopy | 4000–400 cm−1 | Oilseed rape leaves | Sclerotinia sclerotiorum/Sclerotinia stem rot | PLSDA, SVM and extreme learning machine | [78] |
400–4000 cm−1 | Rice leaves | Magnaporthe grisea/Rice blast Rhizoctonia solani/Rice sheath Xanthomonas oryzae pv. oryzae/Rice leaf blight | Raw data fusion, feature fusion and decision fusion; PCA and autoencoder to extract features; regression and CNN models; identification using SVM | [54] | |
FTIR spectroscopy | 833–2500 nm | Wheat leaves | Puccnia striiformis f. sp./Stripe rust | Quantitative partial least squares (QPLS), support vector regression (SVR) and QPLS + SVR | [79] |
1000–2500 nm | Paddy rice | Fusarium sp./Fusarium | PLS; calibration models based on the partial least squares regression method | [80] | |
650–4000 cm−1 | Oil palm tree | Ganoderma boninense/Basal stem rot disease | Descriptive | [81] | |
4000–800 cm−1 | Powderized oil palm Ramet: roots, stems and leaves | Ganoderma boninense/Basal stem rot disease | Relative lignin/carbohydrate ratio | [32] | |
4000–400 cm−1 | Chilli plants | PYLCV (Pepper yellow leaf curl virus)/Leaf curl | Savitzky–Golay first derivative pre-processing method, DWT; cluster analysis, multilayer perceptron NN, SVM, LDA | [30] | |
FTIR spectroscopy+ thermal imaging | 2977, 1544, 1050 cm−1 | Cucumber leaf powder | Pseudoperonospora cubensis/Downy mildew | Cluster analysis | [82] |
ATR-FTIR spectroscopy | 1530–700 cm−1 | Sweet orange tree leaves | Xylella fastidiosa/Citrus variegated chlorosis | PLSR | [83] |
1800–900 cm−1 | Whole tomato fruit | Geotrichum candidum/Sour rot | PCA-LDA | [84] | |
650–4000 cm−1 | Perennial ryegrass | Neotyphodium sp./Choke disease | Multidimensional factor analysis, hierarchical cluster analysis | [85] | |
1000–2500 nm | Papaya leaves | Begomovirus/Leaf distortion | Multivariate exploratory methods: PCA, PLS-DA | [86] |
6. Raman Spectroscopy
Method | Object | Pathogen/Disease | Laser | Analysis | Ref. |
---|---|---|---|---|---|
Raman spectroscopy | Winter wheat seeds | Fusarium sp./Fusarium | 785 nm | t-test + FDR test | [36] |
Tomato plants | Sardinia virus/Tomato yellow leaf curl | 780 nm | ASCA, PLS-DA | [99] | |
Paddy rice leaves | Gibberella fujikuroi/Paddy rice blast | 532 nm | Spectral | [88] | |
Paddy rice leaves | Magnaporthe grisea/Blast disease | 532 nm | BP-ANN | [100] | |
Rose | Rose rosette virus (RRV)/Plant deformation | 830 nm | PLS-DA | [17] | |
Raman spectroscopy hand-held | Wheat and sorghum grain | Claviceps sp./Ergot | 1064 nm | PLS-DA | [93] |
Maize (Zea mays) kernels | A. flavus, A. niger and Diplodia spp. | 1064 nm | OPLS-DA | [101] | |
Orange trees | Liberibacter spp./Huanglongbing | 831 nm | OPLS-DA | [25] | |
Leaves of orange and grapefruit | Liberibacter spp./Huanglongbing | 831 nm | OPLS-DA | [45] | |
Tomatoes | Liberibacter solanacearum/Liberibacter disease | 780 nm | PLS-DA | [3] | |
Abutilon | Abutilon mosaic virus (AbMV)/Bright yellow mosaic | 1064 nm | ANOVA, optimal band ratio | [26] | |
Raman spectroscopy portable | Sweet orange, Persian lime, Mexican lime trees | Candidatus Liberibacter asiaticus/Huanglongbing | 632.8, 785 nm | PCA, LDA | [24] |
Intact rape leaves | Sclerotinia sclerotiorum/Sclerotinia disease | 514.5 nm | PCA, LS-SVM | [102] | |
Confocal Raman spectroscopy | Citrus leaves | Liberibacter spp./Huanglongbing | 785 nm | PCA, PLS-DA, BP-ANN | [90] |
Pear fruit | Alternaria alternate/Leaf spot, rot | 532 nm | PCA | [103] | |
Raman hyperspectral imaging | Watermelon seeds | Acidovorax citrull/Bacterial fruit spot disease | 785 nm | ANOVA, optimal band ratio | [31] |
Single maize kernel | Pathogen type not determined/Mildew | PLSR detection model | [95] | ||
SERS | Maize | Fusarium sp./Fusarium | 785 nm | Classification: KNN and LDA Quantification: MLR, PCR, PLSR | [104] |
Chinese cabbage plants | Turnip yellow mosaic virus (TYMV)/Leaf mosaic | 785 nm | PCA, LDA | [105] | |
Fresh sweet corns, kidney beans and oats | Fusarium sp./Fusarium | 785 nm | Linear correlation of SERS peak intensity with the concentration of deoxynivalenol | [97] | |
Banana pseudostems | Fusarium oxysporum f. sp./Fusarium wilt, different developmental stages | 785 nm | Comparisons of the SERS patterns | [106] |
7. Fluorescent Methods
Light Source | Excitation/Emission | Object | Pathogen/Disease | Ref. |
---|---|---|---|---|
Laser | 532 nm/547–850 nm | Citrus leaves | Xanthomonas citricitrus canker | [112] |
405 nm/420–900 nm | Citrus leaves | Liberibacter spp./Huanglongbing | [119] | |
442 nm/450–850 nm | Orange trees | Xanthomonas axonopodis pv. citri/Citrus canker | [120] | |
532 nm/550–850 nm | Citrus limonia plants | Xanthomonas axonopodis pv. citri/Citrus canker | [121] | |
405 nm/500–700 nm | Grapefruit plants | Xanthomonas axonopodis pv. citri/Citrus canker | [122] | |
337 nm/370-800 nm | Winter wheat leaves | Blumeria Graminis F. sp. Tritici/Powdery mildew | [123] | |
338 nm/410–620 nm | Winter wheat leaves | Blumeria Graminis F. sp. Tritici/Powdery mildew | [123] | |
405 nm/430–800 nm 527 nm/660–720 nm | Apple fruit and potato tuber | Pathogen type not determined/Rot | [124] | |
LED | 650 nm/670–850 nm | Olive tree orchards | Verticillium dahliae/Verticillium wilt | [43] |
655 nm/670–850 nm | Olive tree orchards | Verticillium dahliae/Verticillium wilt | [42] | |
635 nm/670–850 nm | Grapevine leaves | Grapevine leafroll-associated virus 3/Leaf curling | [38] | |
460 nm/500–540 nm | Tobacco leaves | Potato virus X/Leaf mosaic and mottling | [125] | |
650 nm/670–850 nm | Tobacco leaves | Cucumber mosaic virus/Leaf mosaic | [34] | |
405 nm/560, 580, 690 nm | Grapevine leaves | Erysiphe necator/Powdery mildew | [116] | |
470 nm/530, 550, 690 nm | Sweet orange tree leaves | Pathogen type not determined/Huanglongbing | [126] | |
650 nm/670–850 nm | Ginseng leaves | Pythium irregulare Buisman/Water molds | [127] | |
Wide-range light sources | 280–390 nm/390–600 nm | Grapevine leaves | Plasmopara viticola/Downy mildew | [115] |
200–400 nm/220–400 nm | Grapevine leaves | Venturia inaequalis/Scab and rot | [128] | |
232, 362, 424, 485, 528 nm/235–700 nm | Wheat, oat and barley seeds | Fusarium sp./Fusarium | [129] | |
200–400 nm/220–380 nm | Winter wheat seeds | Fusarium sp./Fusarium | [130] | |
200–3000 nm/747, 762, 780 nm | Olive tree orchards | Verticillium dahliae/Verticillium wilt | [43] | |
200–400 nm/440, 520, 680, 740 nm | Melon leaves | Dickeya dadantii/Soft rot | [131] | |
200–3000 nm/687, 759.5, 684, 757.5 nm | Cassava leaves | Cassava mosaic virus/Cassava mosaic virus disease | [113] | |
350–420 nm/550, 690 nm | Winter wheat leaves | Puccinia striiformis/Yellow rust | [132] |
8. Laser-Induced Breakdown Spectroscopy (LIBS) Method
9. Photoacoustic Spectroscopy (PAS)
10. Terahertz Time-Domain Spectroscopy
11. LiDAR Sensing
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, M.M.; Bachik, N.A.; Muhadi, N.A.; Yusof, T.N.T.; Gomes, C. Non-destructive techniques of detecting plant diseases: A review. Physiol. Mol. Plant Pathol. 2019, 108, 101426. [Google Scholar] [CrossRef]
- Farber, C.; Mahnke, M.; Sanchez, L.; Kurouski, D. Advanced spectroscopic techniques for plant disease diagnostics. A review. TrAC Trends Anal. Chem. 2019, 118, 43–49. [Google Scholar] [CrossRef]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Nor, M.Z.M. Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends Food Sci. Technol. 2020, 96, 208–221. [Google Scholar] [CrossRef]
- Donoso, A.; Valenzuela, S. In-field molecular diagnosis of plant pathogens: Recent trends and future perspectives. Plant Pathol. 2018, 67, 1451–1461. [Google Scholar] [CrossRef]
- Burmistrov, D.E.; Yanykin, D.V.; Simakin, A.V.; Paskhin, M.O.; Ivanyuk, V.V.; Kuznetsov, S.V.; Ermakova, J.A.; Alexandrov, A.A.; Gudkov, S.V. Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11, 10726. [Google Scholar] [CrossRef]
- Gudkov, S.; Andreev, S.; Barmina, E.; Bunkin, N.; Kartabaeva, B.; Nesvat, A.; Stepanov, E.; Taranda, N.; Khramov, R.; Glinushkin, A. Effect of visible light on biological objects: Physiological and pathophysiological aspects. Phys. Wave Phenom. 2017, 25, 207–213. [Google Scholar] [CrossRef]
- Karlo, J.; Prasad, R.; Singh, S.P. Biophotonics in food technology: Quo vadis? J. Agric. Food Res. 2022, 11, 100482. [Google Scholar] [CrossRef]
- Hamdy, O.; Mohammed, H.S. Post-heating Fluorescence-based Alteration and Adulteration Detection of Extra Virgin Olive Oil. J. Fluoresc. 2023, 33, 1631–1639. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Yang, C.; Li, Y. Optical sensing system for detection of the internal and external quality attributes of apples. Postharvest Biol. Technol. 2020, 162, 111101. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, L.; Fei, J.; Zhao, L.; Han, Z. Recognition of carrot appearance quality based on deep feature and support vector machine. Comput. Electron. Agric. 2021, 186, 106185. [Google Scholar] [CrossRef]
- Rizzo, M.; Marcuzzo, M.; Zangari, A.; Gasparetto, A.; Albarelli, A. Fruit ripeness classification: A survey. Artif. Intell. Agric. 2023, 7, 44–57. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, L.; Li, Y.; Ye, D. Detection of bruised potatoes using hyperspectral imaging technique based on discrete wavelet transform. Infrared Phys. Technol. 2019, 103, 103054. [Google Scholar] [CrossRef]
- Rady, A.M.; Guyer, D.E.; Watson, N.J. Near-infrared spectroscopy and hyperspectral imaging for sugar content evaluation in potatoes over multiple growing seasons. Food Anal. Methods 2021, 14, 581–595. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Xuan, G.; Wang, Y.; Gao, Z.; Hu, Z.; Han, X.; Gao, C.; Wang, K. Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. RSC Adv. 2020, 10, 33148–33154. [Google Scholar] [CrossRef] [PubMed]
- Khazaee, Y.; Kheiralipour, K.; Hosainpour, A.; Javadikia, H.; Paliwal, J. Development of a novel image analysis and classification algorithms to separate tubers from clods and stones. Potato Res. 2022, 65, 707–728. [Google Scholar] [CrossRef]
- Saranwong, S.; Thanapase, W.; Haff, R.; Kawano, S. Detection of fruit fly eggs and larvae in intact mango by near infrared spectroscopy and imaging. NIR News 2013, 24, 6–8. [Google Scholar] [CrossRef]
- Sanchez, L.; Farber, C.; Lei, J.; Zhu-Salzman, K.; Kurouski, D. Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal. Chem. 2019, 91, 1733–1737. [Google Scholar] [CrossRef]
- Abdullah, H.M.; Mohana, N.T.; Khan, B.M.; Ahmed, S.M.; Hossain, M.; Islam, K.S.; Redoy, M.H.; Ferdush, J.; Bhuiyan, M.; Hossain, M.M. Present and future scopes and challenges of plant pest and disease (P&D) monitoring: Remote sensing, image processing, and artificial intelligence perspectives. Remote Sens. Appl. Soc. Environ. 2023, 32, 100996. [Google Scholar]
- Senesi, G.S.; De Pascale, O.; Marangoni, B.S.; Caires, A.R.L.; Nicolodelli, G.; Pantaleo, V.; Leonetti, P. Chlorophyll fluorescence imaging (CFI) and laser-induced breakdown spectroscopy (LIBS) applied to investigate tomato plants infected by the root knot nematode (RKN) Meloidogyne incognita and tobacco plants infected by Cymbidium ringspot virus. Photonics 2022, 9, 627. [Google Scholar] [CrossRef]
- Skolik, P.; McAinsh, M.R.; Martin, F.L. Chapter Two—Biospectroscopy for Plant and Crop Science. In Comprehensive Analytical Chemistry; Lopes, J., Sousa, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 80, pp. 15–49. [Google Scholar]
- Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Borghese, A.N. Automatic detection of powdery mildew on grapevine leaves by image analysis: Optimal view-angle range to increase the sensitivity. Comput. Electron. Agric. 2014, 104, 1–8. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Baek, I.; Lee, K.-M.; Qin, J.; Kim, G.; Shin, B.K.; Chan, D.E.; Herrman, T.J.; Cho, S.-k.; Kim, M.S. Investigation of reflectance, fluorescence, and Raman hyperspectral imaging techniques for rapid detection of aflatoxins in ground maize. Food Control 2022, 132, 108479. [Google Scholar] [CrossRef]
- Mohd Hilmi Tan, M.I.S.; Jamlos, M.F.; Omar, A.F.; Dzaharudin, F.; Chalermwisutkul, S.; Akkaraekthalin, P. Ganoderma boninense Disease Detection by Near-Infrared Spectroscopy Classification: A Review. Sensors 2021, 21, 3052. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bueno, M.L.; Granum, E.; Pineda, M.; Flors, V.; Rodriguez-Palenzuela, P.; López-Solanilla, E.; Barón, M. Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii. Front. Plant Sci. 2016, 6, 1209. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.; Pant, S.; Irey, M.; Mandadi, K.; Kurouski, D. Detection and identification of canker and blight on orange trees using a hand-held Raman spectrometer. J. Raman Spectrosc. 2019, 50, 1875–1880. [Google Scholar] [CrossRef]
- Yeturu, S.; Jentzsch, P.V.; Ciobotă, V.; Guerrero, R.; Garrido, P.; Ramos, L.A. Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. Anal. Methods 2016, 8, 3450–3457. [Google Scholar] [CrossRef]
- Sanchez, L.; Pant, S.; Xing, Z.; Mandadi, K.; Kurouski, D. Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal. Bioanal. Chem. 2019, 411, 3125–3133. [Google Scholar] [CrossRef] [PubMed]
- Mansuri, S.M.; Chakraborty, S.K.; Mahanti, N.K.; Pandiselvam, R. Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling. Food Control 2022, 139, 109077. [Google Scholar] [CrossRef]
- Cui, R.; Li, J.; Wang, Y.; Fang, S.; Yu, K.; Zhao, Y. Hyperspectral imaging coupled with Dual-channel convolutional neural network for early detection of apple valsa canker. Comput. Electron. Agric. 2022, 202, 107411. [Google Scholar] [CrossRef]
- Agustika, D.K.; Mercuriani, I.; Purnomo, C.W.; Hartono, S.; Triyana, K.; Iliescu, D.D.; Leeson, M.S. Fourier transform infrared spectrum pre-processing technique selection for detecting PYLCV-infected chilli plants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 278, 121339. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.S.; Qin, J.; Park, E.; Song, Y.-R.; Oh, C.-S.; Cho, B.-K. Raman hyperspectral imaging for detection of watermelon seeds infected with Acidovorax citrulli. Sensors 2017, 17, 2188. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.Y.; Ting, A.S.Y. Influence of fungal infection on plant tissues: FTIR detects compositional changes to plant cell walls. Fungal Ecol. 2019, 37, 38–47. [Google Scholar] [CrossRef]
- Astashev, M.E.; Serov, D.A.; Gudkov, S.V. Application of Spectral Methods of Analysis for Description of Ultradian Biorhythms at the Levels of Physiological Systems, Cells and Molecules (Review). Mathematics 2023, 11, 3307. [Google Scholar] [CrossRef]
- Lei, R.; Jiang, H.; Hu, F.; Yan, J.; Zhu, S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep. 2017, 36, 327–341. [Google Scholar] [CrossRef]
- Lednev, V.N.; Grishin, M.Y.; Sdvizhenskii, P.A.; Kurbanov, R.K.; Litvinov, M.A.; Gudkov, S.V.; Pershin, S.M. Fluorescence Mapping of Agricultural Fields Utilizing Drone-Based LIDAR. Photonics 2022, 9, 963. [Google Scholar] [CrossRef]
- Moskovskiy, M.N.; Sibirev, A.V.; Gulyaev, A.A.; Gerasimenko, S.A.; Borzenko, S.I.; Godyaeva, M.M.; Noy, O.V.; Nagaev, E.I.; Matveeva, T.A.; Sarimov, R.M.; et al. Raman Spectroscopy Enables Non-Invasive Identification of Mycotoxins p. Fusarium of Winter Wheat Seeds. Photonics 2021, 8, 587. [Google Scholar] [CrossRef]
- Dorokhov, A.; Aksenov, A.; Sibirev, A.; Hort, D.; Mosyakov, M.; Sazonov, N.; Godyaeva, M. Development of an Optical System with an Orientation Module to Detect Surface Damage to Potato Tubers. Agriculture 2023, 13, 1188. [Google Scholar] [CrossRef]
- Montero, R.; Pérez-Bueno, M.L.; Barón, M.; Florez-Sarasa, I.; Tohge, T.; Fernie, A.R.; Ouad, H.E.A.; Flexas, J.; Bota, J. Alterations in primary and secondary metabolism in Vitis vinifera ‘Malvasía de Banyalbufar’upon infection with Grapevine leafroll-associated virus 3. Physiol. Plant. 2016, 157, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Bauriegel, E.; Herppich, W.B. Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. infections on wheat. Agriculture 2014, 4, 32–57. [Google Scholar] [CrossRef]
- Moshou, D.; Bravo, C.; Oberti, R.; West, J.; Bodria, L.; McCartney, A.; Ramon, H. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging 2005, 11, 75–83. [Google Scholar] [CrossRef]
- Raza, S.-e.-A.; Prince, G.; Clarkson, J.P.; Rajpoot, N.M. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE 2015, 10, e0123262. [Google Scholar] [CrossRef]
- Berdugo, C.; Zito, R.; Paulus, S.; Mahlein, A.K. Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 2014, 63, 1344–1356. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Tseliou, E.; Chondrogiannis, C.; Kalachanis, D.; Goudoudaki, S.; Manoussopoulos, Y.; Grammatikopoulos, G. Integration of biophysical photosynthetic parameters into one photochemical index for early detection of Tobacco Mosaic Virus infection in pepper plants. J. Plant Physiol. 2021, 267, 153542. [Google Scholar] [CrossRef] [PubMed]
- Pankin, D.; Povolotckaia, A.; Kalinichev, A.; Povolotskiy, A.; Borisov, E.; Moskovskiy, M.; Gulyaev, A.; Lavrov, A.; Izmailov, A. Complex Spectroscopic Study for Fusarium Genus Fungi Infection Diagnostics of “Zalp” Cultivar Oat. Agronomy 2021, 11, 2402. [Google Scholar] [CrossRef]
- Pandey, A.; Jain, K. A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smart phone captured real world images. Ecol. Inform. 2022, 70, 101725. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Oerke, E.-C.; Steiner, U.; Dehne, H.-W. Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 2012, 133, 197–209. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V.; Fedotov, A.; Eremenko, D. Current state of hyperspectral remote sensing for early plant disease detection: A review. Sensors 2022, 22, 757. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Song, L.; Wang, L.; Yang, Z.; He, L.; Feng, Z.; Duan, J.; Feng, W.; Guo, T. Comparison of algorithms for monitoring wheat powdery mildew using multi-angular remote sensing data. Crop J. 2022, 10, 1312–1322. [Google Scholar] [CrossRef]
- Pham, H.; Lim, Y.; Gardi, A.; Sabatini, R.; Pang, E. A novel bistatic lidar system for early-detection of plant diseases from unmanned aircraft. In Proceedings of the 31th Congress of the International Council of the Aeronautical Sciences (ICAS 2018), Belo Horizonte, Brazil, 9–14 September 2018; pp. 9–14. [Google Scholar]
- Su, W.-H.; Yang, C.; Dong, Y.; Johnson, R.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening. Food Chem. 2021, 343, 128507. [Google Scholar] [CrossRef]
- Furlanetto, R.H.; Nanni, M.R.; Mizuno, M.S.; Crusiol, L.G.T.; da Silva, C.R. Identification and classification of Asian soybean rust using leaf-based hyperspectral reflectance. Int. J. Remote Sens. 2021, 42, 4177–4198. [Google Scholar] [CrossRef]
- Feng, L.; Wu, B.; Zhu, S.; Wang, J.; Su, Z.; Liu, F.; He, Y.; Zhang, C. Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods. Front. Plant Sci. 2020, 11, 577063. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; Kwasniewski, M.T. Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors 2021, 21, 742. [Google Scholar] [CrossRef] [PubMed]
- Gorretta, N.; Nouri, M.; Herrero, A.; Gowen, A.; Roger, J.-M. Early detection of the fungal disease” apple scab” using SWIR hyperspectral imaging. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–4. [Google Scholar]
- Song, H.; Yoon, S.-R.; Dang, Y.-M.; Yang, J.-S.; Hwang, I.M.; Ha, J.-H. Nondestructive classification of soft rot disease in napa cabbage using hyperspectral imaging analysis. Sci. Rep. 2022, 12, 14707. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, R.; Pan, L.; Wang, X.; Tu, K. Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties. Food Chem. 2020, 321, 126704. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, D.; Liu, Y.; Zhou, H.; Sun, Y. Measurement of early disease blueberries based on vis/nir hyperspectral imaging system. Sensors 2020, 20, 5783. [Google Scholar] [CrossRef]
- Barbedo, J.G.; Tibola, C.S.; Fernandes, J.M. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2015, 131, 65–76. [Google Scholar] [CrossRef]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Developing Two Spectral Disease Indices for Detection of Wheat Leaf Rust (Pucciniatriticina). Remote Sens. 2014, 6, 4723–4740. [Google Scholar] [CrossRef]
- Devadas, R.; Lamb, D.; Simpfendorfer, S.; Backhouse, D. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis. Agric. 2009, 10, 459–470. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Young, A.; Britton, G. Carotenoids and stress. In Stress Responses in Plants: Adaptation, Acclimation Mechanisms; Cumming, J.R., Ed.; Wiley: New York, NY, USA, 1990; pp. 87–112. [Google Scholar]
- Zhang, J.-C.; Pu, R.-l.; Wang, J.-h.; Huang, W.-j.; Yuan, L.; Luo, J.-h. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Abbas, O.; Pissard, A.; Baeten, V. Near-infrared, mid-infrared, and Raman spectroscopy. In Chemical Analysis of Food; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–134. [Google Scholar]
- Weng, S.; Hu, X.; Wang, J.; Tang, L.; Li, P.; Zheng, S.; Zheng, L.; Huang, L.; Xin, Z. Advanced Application of Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy in Plant Disease Diagnostics: A Review. J. Agric. Food Chem. 2021, 69, 2950–2964. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Romero, C.A.; Palacios-Hernández, E.R.; Trejo-Durán, M.; Rodríguez-Liñán, M.d.C.; Olivera-Reyna, R.; Morales-Saldaña, J.A. Visible and near-infrared spectroscopy for detection of powdery mildew in Cucurbita pepo L. leaves. J. Appl. Remote Sens. 2020, 14, 044515. [Google Scholar] [CrossRef]
- Atanassova, S.; Nikolov, P.; Valchev, N.; Masheva, S.; Yorgov, D. Early detection of powdery mildew (Podosphaera xanthii) on cucumber leaves based on visible and near-infrared spectroscopy. AIP Conf. Proc. 2019, 2075, 160014. [Google Scholar]
- Liang, P.-S.; Haff, R.P.; Hua, S.-S.T.; Munyaneza, J.E.; Mustafa, T.; Sarreal, S.B.L. Nondestructive detection of zebra chip disease in potatoes using near-infrared spectroscopy. Biosyst. Eng. 2018, 166, 161–169. [Google Scholar] [CrossRef]
- Moscetti, R.; Monarca, D.; Cecchini, M.; Haff, R.P.; Contini, M.; Massantini, R. Detection of mold-damaged chestnuts by near-infrared spectroscopy. Postharvest Biol. Technol. 2014, 93, 83–90. [Google Scholar] [CrossRef]
- Kafle, G.K.; Khot, L.R.; Jarolmasjed, S.; Yongsheng, S.; Lewis, K. Robustness of near infrared spectroscopy based spectral features for non-destructive bitter pit detection in honeycrisp apples. Postharvest Biol. Technol. 2016, 120, 188–192. [Google Scholar] [CrossRef]
- Lim, J.; Kim, G.; Mo, C.; Oh, K.; Yoo, H.; Ham, H.; Kim, M.S. Classification of Fusarium-infected Korean hulled barley using near-infrared reflectance spectroscopy and partial least squares discriminant analysis. Sensors 2017, 17, 2258. [Google Scholar] [CrossRef]
- Tamburini, E.; Mamolini, E.; De Bastiani, M.; Marchetti, M.G. Quantitative determination of Fusarium proliferatum concentration in intact garlic cloves using near-infrared spectroscopy. Sensors 2016, 16, 1099. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Lin, F.; Weng, S.; Lei, Y.; Chen, G.; Gu, C.; Zheng, L. New spectral classification index for rapid identification of Fusarium infection in wheat kernel. Food Anal. Methods 2020, 13, 2165–2175. [Google Scholar] [CrossRef]
- Liang, P.-S.; Slaughter, D.C.; Ortega-Beltran, A.; Michailides, T.J. Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy. Biosyst. Eng. 2015, 137, 64–72. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, X.; Wang, J.; Liu, F.; He, Y.; Zhou, W. Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves. Plant Methods 2017, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gu, Y.; Qin, F.; Li, X.; Ma, Z.; Zhao, L.; Li, J.; Cheng, P.; Pan, Y.; Wang, H. Application of near-infrared spectroscopy to quantitatively determine relative content of Puccnia striiformis f. sp. tritici DNA in wheat leaves in incubation period. J. Spectrosc. 2017, 2017, 9740295. [Google Scholar] [CrossRef]
- Qiang, Z.; Fuguo, J.; Chenghai, L.; Jingkun, S.; Xianzhe, Z. Rapid detection of aflatoxin B1 in paddy rice as analytical quality assessment by near infrared spectroscopy. Int. J. Agric. Biol. Eng. 2014, 7, 127–133. [Google Scholar]
- Dayou, J.; Alexander, A.; Sipaut, C.S.; Phin, C.K.; Chin, L.P. On the possibility of using FTIR for detection of Ganoderma boninense in infected oil palm tree. Int. J. Adv. Agric. Environ. Eng. 2014, 1, 161–163. [Google Scholar]
- Wen, D.-M.; Chen, M.-X.; Zhao, L.; Ji, T.; Li, M.; Yang, X.-T. Use of thermal imaging and Fourier transform infrared spectroscopy for the pre-symptomatic detection of cucumber downy mildew. Eur. J. Plant Pathol. 2019, 155, 405–416. [Google Scholar] [CrossRef]
- do Brasil Cardinali, M.C.; Boas, P.R.V.; Milori, D.M.B.P.; Ferreira, E.J.; e Silva, M.F.; Machado, M.A.; Bellete, B.S. Infrared spectroscopy: A potential tool in huanglongbing and citrus variegated chlorosis diagnosis. Talanta 2012, 91, 1–6. [Google Scholar] [CrossRef]
- Skolik, P.; McAinsh, M.R.; Martin, F.L. ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. Planta 2019, 249, 925–939. [Google Scholar] [CrossRef]
- Brandl, H. Detection of fungal infection in Lolium perenne by Fourier transform infrared spectroscopy. J. Plant Ecol. 2013, 6, 265–269. [Google Scholar] [CrossRef]
- Haq, Q.M.; Mabood, F.; Naureen, Z.; Al-Harrasi, A.; Gilani, S.A.; Hussain, J.; Jabeen, F.; Khan, A.; Al-Sabari, R.S.; Al-Khanbashi, F.H. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 27–32. [Google Scholar]
- Erukhimovitch, V.; Hazanovsky, M.; Huleihel, M. Direct identification of potato’s fungal phyto-pathogens by Fourier-transform infrared (FTIR) microscopy. Spectroscopy 2010, 24, 609–619. [Google Scholar] [CrossRef]
- Yue, X.; Tan, Y.; Fan, W.; Song, S.; Ji, H.; Li, B. Raman spectroscopic analysis of paddy rice infected by three pests and diseases common in Northeast Asia. J. Phys. Conf. Ser. 2019, 1324, 012050. [Google Scholar] [CrossRef]
- Sharma, S.; Baran, C.; Tripathi, A.; Awasthi, A.; Tiwari, A.; Sharma, S.; Jaiswal, A.; Uttam, R.; Tandon, P.; Singh, R.; et al. Non-Destructive Monitoring of the Ripening of Plums Using Confocal Micro-Raman and Laser Induced Fluorescence Spectroscopy. Anal. Lett. 2023, 1–18. [Google Scholar] [CrossRef]
- Wang, K.; Liao, Y.; Meng, Y.; Jiao, X.; Huang, W.; Liu, T.C.-y. The early, rapid, and non-destructive detection of citrus Huanglongbing (HLB) based on microscopic confocal Raman. Food Anal. Methods 2019, 12, 2500–2508. [Google Scholar] [CrossRef]
- Sanchez, L.; Ermolenkov, A.; Tang, X.-T.; Tamborindeguy, C.; Kurouski, D. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta 2020, 251, 64. [Google Scholar] [CrossRef]
- Farber, C.; Shires, M.; Ong, K.; Byrne, D.; Kurouski, D. Raman spectroscopy as an early detection tool for rose rosette infection. Planta 2019, 250, 1247–1254. [Google Scholar] [CrossRef]
- Egging, V.; Nguyen, J.; Kurouski, D. Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held Raman spectrometer. Anal. Chem. 2018, 90, 8616–8621. [Google Scholar] [CrossRef]
- Baranski, R.; Baranska, M.; Schulz, H. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta 2005, 222, 448–457. [Google Scholar] [CrossRef]
- Long, Y.; Huang, W.; Wang, Q.; Fan, S.; Tian, X. Integration of textural and spectral features of Raman hyperspectral imaging for quantitative determination of a single maize kernel mildew coupled with chemometrics. Food Chem. 2022, 372, 131246. [Google Scholar] [CrossRef]
- Pan, T.-t.; Sun, D.-W.; Pu, H.; Wei, Q. Simple approach for the rapid detection of alternariol in pear fruit by surface-enhanced Raman scattering with pyridine-modified silver nanoparticles. J. Agric. Food Chem. 2018, 66, 2180–2187. [Google Scholar] [CrossRef]
- Yuan, J.; Sun, C.; Guo, X.; Yang, T.; Wang, H.; Fu, S.; Li, C.; Yang, H. A rapid Raman detection of deoxynivalenol in agricultural products. Food Chem. 2017, 221, 797–802. [Google Scholar] [CrossRef]
- Kang, W.; Duan, Y.; Lin, H.; Ahmad, W.; Chen, Q.; Li, H. Enhancing count of Aspergillus colony in wheat based on nanoparticles modified chemo-responsive dyes combined with visible/near-infrared spectroscopy. Sens. Actuators B Chem. 2022, 363, 131816. [Google Scholar] [CrossRef]
- Mandrile, L.; Rotunno, S.; Miozzi, L.; Vaira, A.M.; Giovannozzi, A.M.; Rossi, A.M.; Noris, E. Nondestructive Raman spectroscopy as a tool for early detection and discrimination of the infection of tomato plants by two economically important viruses. Anal. Chem. 2019, 91, 9025–9031. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Cai, Q.; Sun, X.; Ma, Z.; Hou, Z. Analyzing plant characteristics of rice suffering leaf blast in cold area based on Raman spectrum. Trans. Chin. Soc. Agric. Eng. 2015, 31, 191–196. [Google Scholar]
- Farber, C.; Kurouski, D. Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal. Chem. 2018, 90, 3009–3012. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, K.; Li, X.; He, Y. Application of Raman spectroscopy for early detection of rape sclerotinia on rapeseed leaves. Trans. Chin. Soc. Agric. Eng. 2017, 33, 206–211. [Google Scholar]
- Pan, T.-T.; Pu, H.; Sun, D.-W. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biol. Technol. 2017, 132, 119–129. [Google Scholar] [CrossRef]
- Lee, K.-M.; Herrman, T.J.; Bisrat, Y.; Murray, S.C. Feasibility of surface-enhanced Raman spectroscopy for rapid detection of aflatoxins in maize. J. Agric. Food Chem. 2014, 62, 4466–4474. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Chi, H.-Y.; Kim, M.-K.; Kim, J.-S.; Lee, S.-H.; Chung, H. Feasibility study for detection of Turnip yellow mosaic virus (TYMV) Infection of Chinese Cabbage Plants Using Raman Spectroscopy. Plant Pathol. J. 2013, 29, 105. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Lin, H.-K.; Lin, Y.-H. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS ONE 2020, 15, e0230330. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Forsberg, E.; Fu, S.; He, S. High-precision four-dimensional hyperspectral imager integrating fluorescence spectral detection and 3D surface shape measurement. Appl. Opt. 2022, 61, 2542–2551. [Google Scholar] [CrossRef]
- Shanmugam, M.; Ramasamy, A. Multi-crop Chlorophyll Meter System Design for Effective Fertilization. Res. J. Appl. Sci. Eng. Technol. 2015, 9, 98–105. [Google Scholar] [CrossRef]
- Dorokhov, A.; Moskovskiy, M.; Belyakov, M.; Lavrov, A.; Khamuev, V. Detection of Fusarium infected seeds of cereal plants by the fluorescence method. PLoS ONE 2022, 17, e0267912. [Google Scholar] [CrossRef]
- Moskovskiy, M.N.; Belyakov, M.V.; Dorokhov, A.S.; Boyko, A.A.; Belousov, S.V.; Noy, O.V.; Gulyaev, A.A.; Akulov, S.I.; Povolotskaya, A.; Efremenkov, I.Y. Design of Device for Optical Luminescent Diagnostic of the Seeds Infected by Fusarium. Agriculture 2023, 13, 619. [Google Scholar] [CrossRef]
- Nilsson, H. Remote sensing and image analysis in plant pathology. Annu. Rev. Phytopathol. 1995, 33, 489–528. [Google Scholar] [CrossRef] [PubMed]
- Lins, E.C.; Belasque, J.; Marcassa, L.G. Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precis. Agric. 2009, 10, 319–330. [Google Scholar] [CrossRef]
- Raji, S.N.; Subhash, N.; Ravi, V.; Saravanan, R.; Mohanan, C.N.; Nita, S.; Kumar, T.M. Detection of mosaic virus disease in cassava plants by sunlight-induced fluorescence imaging: A pilot study for proximal sensing. Int. J. Remote Sens. 2015, 36, 2880–2897. [Google Scholar] [CrossRef]
- Kim, M.S.; Chen, Y.; Mehl, P. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. ASAE 2001, 44, 721. [Google Scholar]
- Poutaraud, A.; Latouche, G.; Martins, S.; Meyer, S.; Merdinoglu, D.; Cerovic, Z.G. Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry. J. Agric. Food Chem. 2007, 55, 4913–4920. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, M.C.; Roger, J.M.; Cartolaro, P.; Viau, A.; Bellon-Maurel, V. Detection of powdery mildew in grapevine using remotely sensed UV-induced fluorescence. Int. J. Remote Sens. 2008, 29, 1707–1724. [Google Scholar] [CrossRef]
- Sambangi, P. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology; Mirza, H., Kamran, N., Eds.; IntechOpen: Rijeka, Croatia, 2022; p. Ch. 7. [Google Scholar] [CrossRef]
- Vibhakar, C.; Sheena, A.; Rohan, V.P.; Jigna, G.T. Physiological Function of Phenolic Compounds in Plant Defense System. In Phenolic Compounds; Farid, A.B., Ed.; IntechOpen: Rijeka, Croatia, 2021; p. Ch. 10. [Google Scholar] [CrossRef]
- Ranulfi, A.C.; Cardinali, M.C.; Kubota, T.M.; Freitas-Astua, J.; Ferreira, E.J.; Bellete, B.S.; da Silva, M.F.G.; Boas, P.R.V.; Magalhaes, A.B.; Milori, D.M. Laser-induced fluorescence spectroscopy applied to early diagnosis of citrus Huanglongbing. Biosyst. Eng. 2016, 144, 133–144. [Google Scholar] [CrossRef]
- Marcassa, L.G.; Gasparoto, M.; Belasque, J.; Lins, E.; Dias Nunes, F.; Bagnato, V.S. Fluorescence spectroscopy applied to orange trees. Laser Phys. 2006, 16, 884–888. [Google Scholar] [CrossRef]
- Belasque Jr, J.; Gasparoto, M.; Marcassa, L.G. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl. Opt. 2008, 47, 1922–1926. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Atta, B.M.; Ali, Z.; Bilal, M. Laser-induced fluorescence spectroscopy for early disease detection in grapefruit plants. Photochem. Photobiol. Sci. 2020, 19, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Bürling, K.; Hunsche, M.; Noga, G. Presymptomatic detection of powdery mildew infection in winter wheat cultivars by laser-induced fluorescence. Appl. Spectrosc. 2012, 66, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Matveyeva, T.A.; Sarimov, R.M.; Simakin, A.V.; Astashev, M.E.; Burmistrov, D.E.; Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Pershin, S.M.; Chilingaryan, N.O. Using fluorescence spectroscopy to detect rot in fruit and vegetable crops. Appl. Sci. 2022, 12, 3391. [Google Scholar] [CrossRef]
- Grishina, A.; Sherstneva, O.; Grinberg, M.; Zdobnova, T.; Ageyeva, M.; Khlopkov, A.; Sukhov, V.; Brilkina, A.; Vodeneev, V. Pre-symptomatic detection of viral infection in tobacco leaves using pam fluorometry. Plants 2021, 10, 2782. [Google Scholar] [CrossRef]
- Wetterich, C.B.; de Oliveira Neves, R.F.; Belasque, J.; Ehsani, R.; Marcassa, L.G. Detection of Huanglongbing in Florida using fluorescence imaging spectroscopy and machine-learning methods. Appl. Opt. 2017, 56, 15–23. [Google Scholar] [CrossRef]
- Ivanov, D.A.; Bernards, M.A. Chlorophyll fluorescence imaging as a tool to monitor the progress of a root pathogen in a perennial plant. Planta 2016, 243, 263–279. [Google Scholar] [CrossRef]
- Sarimov, R.M.; Lednev, V.N.; Sibirev, A.V.; Gudkov, S.V. The use of fluorescence spectra for the detection of scab and rot in fruit and vegetable crops. Front. Phys. 2021, 8, 640887. [Google Scholar] [CrossRef]
- Belyakov, M.V.; Moskovskiy, M.N.; Litvinov, M.A.; Lavrov, A.V.; Khamuev, V.G.; Efremenkov, I.Y.; Gerasimenko, S.A. Method of Optical Diagnostics of Grain Seeds Infected with Fusarium. Appl. Sci. 2022, 12, 4824. [Google Scholar] [CrossRef]
- Bashilov, A.M.; Efremenkov, I.Y.; Belyakov, M.V.; Lavrov, A.V.; Gulyaev, A.A.; Gerasimenko, S.A.; Borzenko, S.I.; Boyko, A.A. Determination of Main spectral and luminescent characteristics of winter wheat seeds infected with pathogenic microflora. Photonics 2021, 8, 494. [Google Scholar] [CrossRef]
- Pineda, M.; Pérez-Bueno, M.L.; Barón, M. Detection of bacterial infection in melon plants by classification methods based on imaging data. Front. Plant Sci. 2018, 9, 164. [Google Scholar] [CrossRef]
- Bravo, C.; Moshou, D.; Oberti, R.; West, J.; McCartney, A.; Bodria, L.; Ramon, H. Foliar disease detection in the field using optical sensor fusion. E-JOURNAL-CIGR 2004, 6, 1–14. [Google Scholar]
- Lichtenthaler, H.K.; Rinderle, U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem. 1988, 19, S29–S85. [Google Scholar] [CrossRef]
- Yanykin, D.V.; Burmistrov, D.E.; Simakin, A.V.; Ermakova, J.A.; Gudkov, S.V. Effect of up-converting luminescent nanoparticles with increased quantum yield incorporated into the fluoropolymer matrix on Solanum lycopersicum growth. Agronomy 2022, 12, 108. [Google Scholar] [CrossRef]
- Paskhin, M.O.; Yanykin, D.V.; Gudkov, S.V. Current Approaches to Light Conversion for Controlled Environment Agricultural Applications: A Review. Horticulturae 2022, 8, 885. [Google Scholar] [CrossRef]
- Grinberg, M.; Gromova, E.; Grishina, A.; Berezina, E.; Ladeynova, M.; Simakin, A.V.; Sukhov, V.; Gudkov, S.V.; Vodeneev, V. Effect of Photoconversion Coatings for Greenhouses on Electrical Signal-Induced Resistance to Heat Stress of Tomato Plants. Plants 2022, 11, 229. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Simakin, A.V.; Bunkin, N.F.; Shafeev, G.A.; Astashev, M.E.; Glinushkin, A.P.; Grinberg, M.A.; Vodeneev, V.A. Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes. J. Photochem. Photobiol. B Biol. 2020, 213, 112056. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Rys, M.; Juhász, C.; Surówka, E.; Janeczko, A.; Saja, D.; Tóbiás, I.; Skoczowski, A.; Barna, B.; Gullner, G. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: Chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol. Biochem. 2014, 83, 267–278. [Google Scholar] [CrossRef]
- Scholes, J.D.; Rolfe, S.A. Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: A phenomics perspective. Funct. Plant Biol. 2009, 36, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Inagaki, T.; Tsuchikawa, S. Development of a sensitivity-enhanced chlorophyll fluorescence lifetime spectroscopic method for nondestructive monitoring of fruit ripening and postharvest decay. Postharvest Biol. Technol. 2023, 198, 112231. [Google Scholar] [CrossRef]
- Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Nikitin, E.A.; Gudkov, S.V.; Pershin, S.M. Improving calibration strategy for LIBS heavy metals analysis in agriculture applications. Photonics 2021, 8, 563. [Google Scholar] [CrossRef]
- Lednev, V.; Sdvizhenskii, P.; Grishin, M.Y.; Gudkov, S.; Dorokhov, A.; Bunkin, A.; Pershin, S. Improving the LIBS analysis of heavy metals in heterogeneous agricultural samples utilizing large laser spotting. J. Anal. At. Spectrom. 2022, 37, 2563–2572. [Google Scholar] [CrossRef]
- Lednev, V.; Sdvizhenskii, P.; Dorohov, A.; Gudkov, S.; Pershin, S. Improving LIBS analysis of non-flat heterogeneous samples by signals mapping. Appl. Opt. 2023, 62, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
- Lednev, V.; Sdvizhenskii, P.; Grishin, M.Y.; Stavertiy, A.Y.; Tretyakov, R.; Asyutin, R.; Pershin, S. Laser welding spot diagnostics by laser-induced breakdown spectrometry. Phys. Wave Phenom. 2021, 29, 221–228. [Google Scholar] [CrossRef]
- Pereira, F.M.V.; Milori, D.M.B.P.; Venâncio, A.L.; Russo, M.d.S.T.; Martins, P.K.; Freitas-Astúa, J. Evaluation of the effects of Candidatus Liberibacter asiaticus on inoculated citrus plants using laser-induced breakdown spectroscopy (LIBS) and chemometrics tools. Talanta 2010, 83, 351–356. [Google Scholar] [CrossRef]
- Sankaran, S.; Ehsani, R.; Morganc, K.T. Detection of Anomalies in Citrus Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2015, 69, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Song, K.; Zhu, H.; Kong, W.; Liu, F.; Shen, T.; He, Y. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 2017, 7, 44551. [Google Scholar] [CrossRef]
- Rai, N.K.; Singh, J.P.; Rai, A.K. Chapter 23—Photoacoustic spectroscopy: A novel optical characterization technique in agricultural science. In Photoacoustic and Photothermal Spectroscopy; Thakur, S.N., Rai, V.N., Singh, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 491–509. [Google Scholar]
- Gaoqiang, L.; Changwen, D.; Fei, M.; Yazhen, S.; Jianmin, Z. Responses of leaf cuticles to rice blast: Detection and identification using depth-profiling fourier transform mid-infrared photoacoustic Spectroscopy. Plant Dis. 2020, 104, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Pieczywek, P.; Cybulska, J.; Szymańska-Chargot, M.; Siedliska, A.; Zdunek, A.; Nosalewicz, A.; Baranowski, P.; Kurenda, A. Early detection of fungal infection of stored apple fruit with optical sensors–Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence. Food Control 2018, 85, 327–338. [Google Scholar] [CrossRef]
- Husin, N.A.; Khairunniza-Bejo, S.; Abdullah, A.F.; Kassim, M.S.; Ahmad, D.; Azmi, A.N. Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of basal stem rot (BSR) disease. Sci. Rep. 2020, 10, 6464. [Google Scholar] [CrossRef] [PubMed]
- Lobachevsky, Y.; Dorokhov, A.; Aksenov, A.; Sibirev, A.; Moskovskiy, M.; Mosyakov, M.; Sazonov, N.; Godyaeva, M. RAMAN and Fluorimetric Scattering Lidar Facilitated to Detect Damaged Potatoes by Determination of Spectra. Appl. Sci. 2022, 12, 5391. [Google Scholar] [CrossRef]
- Du, C.; Zhou, J. Fourier Transform Mid-Infrared Photoacoustic Spectroscopy for Presymptomatic Detection of Powdery Mildew Infection in Rubus corchorifolius L. Spectrosc. Lett. 2015, 48, 610–615. [Google Scholar] [CrossRef]
- Penkov, N.V.; Goltyaev, M.V.; Astashev, M.E.; Serov, D.A.; Moskovskiy, M.N.; Khort, D.O.; Gudkov, S.V. The application of terahertz time-domain spectroscopy to identification of potato late blight and fusariosis. Pathogens 2021, 10, 1336. [Google Scholar] [CrossRef]
- Di Girolamo, F.; Pagano, M.; Tredicucci, A.; Bitossi, M.; Paoletti, R.; Barzanti, G.; Benvenuti, C.; Roversi, P.; Toncelli, A. Detection of fungal infections in chestnuts: A terahertz imaging-based approach. Food Control 2021, 123, 107700. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhou, Z.; Zhang, Y.; Wang, X. Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology. Foods 2023, 12, 535. [Google Scholar] [CrossRef]
- Hongyi, G.; Fei, W.; Yuying, J.; Li, L.; Yuan, Z.; Keke, J. Identification of wheat mold using terahertz images based on Broad Learning System. Chin. J. Quantum Electron. 2023, 40, 360. [Google Scholar]
- Ge, H.; Lv, M.; Lu, X.; Jiang, Y.; Wu, G.; Li, G.; Li, L.; Li, Z.; Zhang, Y. Applications of THz spectral imaging in the detection of agricultural products. Photonics 2021, 8, 518. [Google Scholar] [CrossRef]
- Myasnikov, A.; Pershin, S.; Grishin, M.Y.; Zavozin, V.; Makarov, V.; Ushakov, A. Estimation of the influence of meteorological factors on the aerosol lidar signal in tunnels above the Elbrus Volcano Chamber. Phys. Wave Phenom. 2022, 30, 119–127. [Google Scholar] [CrossRef]
- Lednev, V.; Grishin, M.Y.; Sdvizhenskii, P.; Zavozin, V.; Bunkin, A.; Kurbanov, R.; Litvinov, M.; Tretinnikov, O.; Pershin, S. Drone Based Fluorescence LIDAR for Agriculture Fields in Situ Diagnostics. Bull. Lebedev Phys. Inst. 2023, 50, 103–107. [Google Scholar] [CrossRef]
- Rosell, J.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 2012, 81, 124–141. [Google Scholar] [CrossRef]
Comparative Characteristics | Methods | |
---|---|---|
Optical | Laboratory | |
Non-invasiveness | Yes | Almost always not |
Speed of obtaining results | Less than tens of seconds | Several hours to days |
Early diagnosis | Yes | Often not |
Study of large areas | Yes | No |
User professionalism | Not important | Important |
Price per analysis | Comparatively low | Comparatively high |
Determining the type of pathogen | No | Often yes |
Pathogen can be found | Surfaces | Anywhere |
Wavelength | Object | Pathogen, Disease | Analysis | Ref. |
---|---|---|---|---|
382–1030 nm | Barley kernels | Deoxynivalenol (FHB) | LWPLSR, CARS-ISSPA method for selection of feature variables, PLS-DA for discrimination | [52] |
350–2500 nm | Soybean leaves | Asian soybean rust (fungus Phakopsora pachyrhizi) | Spectral analysis and LDA, with optimum wavelengths chosen by successive procedure | [53] |
400–1000 nm | Rice leaves | Rice blast and rice sheath blight (fungal), rice leaf blight (bacterial) | Raw data, features and decision fusion; PCA and autoencoder to extract features; regression and CNN models; identification using SVM | [54] |
400–1000 nm | Grapevine | Grapevine vein-clearing virus, early asymptomatic stage | Deep learning; discriminative indices | [55] |
1000–2600 nm | Apple leaves | Fungus Venturia Inaequalis, apple scab, early detection | PLS-DA classification model | [56] |
900–1700 nm | Napa cabbage | Pectobacterium, soft rot disease | Significant wavelengths by PLS-DA mode; Golay’s derivative data preparation approach with subsequent choise of wavelength based on projection scores; flexible significance | [57] |
550–1000 nm | Peach fruits | Fungus Rhizopus stolonifer | Diffusion model to obtain optical absorption (µa) and reduced scattering (μs’); PCA to downgrade dimensionality and reveal features; Pearson’s correlation coefficient to discover connection of quality evaluation with optical criteria | [58] |
400–1000 nm | Blueberries | Early disease during post-harvest or storage | Spectral correlation analysis; PLS-DA models; adequate spectral band definition along with special self-adjusting data pre-processing | [59] |
528−1785 nm | Wheat kernels | Fusarium head blight | Fusarium index (1411 nm) | [60] |
450−1000 nm | Wheat leaf rust | Puccinia triticina | SMA, least squares method, Fisher function, spectral disease indices (605, 695, 455 nm) | [61] |
Principle | Method | Object | Pathogen/ Disease | Light Source | Analyzed Parameters | Analysis of Data | Ref. |
---|---|---|---|---|---|---|---|
Atomic emission spectroscopy | LIBS | Citrus leaves | Liberibacter spp./Huanglongbing and Xanthomonas spp./Citrus canker | Pulsed Nd:YAG laser (1064 nm, 25 mJ, 4 ns) | Peak analysis (200–1000 nm) | PCA for feature extraction; two models, quadratic discriminant analysis and support vector machine (SVM). Pre-processing techniques: baseline correction, wavelet multivariate denoising and normalization | [147] |
LIBS + vis/NIR HSI + MIR | Rice leaves | Pathogen type not determined/Rice blast and rice sheath blight, rice leaf blight | Pulsed Nd:YAG laser (Second harmonic, 532 nm, 8 ns) | Peak analysis (230–880 nm) | Raw data, feature and decision fusion; PCA and autoencoder to extract features; regression and CNN models; identification using SVM | [54] | |
Photoacoustic spectroscopy | FT MIR photoacoustic spectroscopy | Wheat leaves | Pathogen type not determined/Brown rust | Continuous He-Ne laser (632.8 nm, 10 mW, linearly polarized) | Peak analysis (350–750 nm) | Descriptive | [149] |
FTIR photoacoustic spectroscopy | Rice leaves | Pathogen type not determined/Rice rust | Wide-range light source | Peak analysis (500–4000 cm−1) | PCA + probabilistic neural network | [150] | |
Interferometry | Biospeckle, hyperspectral imaging and chlorophyll fluorescence | Apple fruit | Pezicula malicorticis/ Bull’s eye rot | Continuous diode lasers (473, 532, 830 nm) | Biospeckle activity | The correlation coefficient (BA), Fujii index, moment of inertia (IM) and frequency analysis-based method | [151] |
LiDAR | Bistatic LiDAR | Strawberry | Pathogen type not determined/Powdery mildew | Laser (1572.38 to 1572.98 nm) | CO2 concentration | Uncertainty analysis | [51] |
Phase-shift mode LiDAR | Oil palm | Ganoderma boninense/Basal stem rot | Pulsed laser (905 nm) | Canopy geometry properties | One-way ANOVA | [152] | |
Raman and fluorescence LiDAR | Potato tubers | Pathogen type not determined/Mechanical damage | Pulsed laser (307 nm) | Peak analysis (600–700 nm) | PCA | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudkov, S.V.; Matveeva, T.A.; Sarimov, R.M.; Simakin, A.V.; Stepanova, E.V.; Moskovskiy, M.N.; Dorokhov, A.S.; Izmailov, A.Y. Optical Methods for the Detection of Plant Pathogens and Diseases (Review). AgriEngineering 2023, 5, 1789-1812. https://doi.org/10.3390/agriengineering5040110
Gudkov SV, Matveeva TA, Sarimov RM, Simakin AV, Stepanova EV, Moskovskiy MN, Dorokhov AS, Izmailov AY. Optical Methods for the Detection of Plant Pathogens and Diseases (Review). AgriEngineering. 2023; 5(4):1789-1812. https://doi.org/10.3390/agriengineering5040110
Chicago/Turabian StyleGudkov, Sergey V., Tatiana A. Matveeva, Ruslan M. Sarimov, Alexander V. Simakin, Evgenia V. Stepanova, Maksim N. Moskovskiy, Alexey S. Dorokhov, and Andrey Yu. Izmailov. 2023. "Optical Methods for the Detection of Plant Pathogens and Diseases (Review)" AgriEngineering 5, no. 4: 1789-1812. https://doi.org/10.3390/agriengineering5040110
APA StyleGudkov, S. V., Matveeva, T. A., Sarimov, R. M., Simakin, A. V., Stepanova, E. V., Moskovskiy, M. N., Dorokhov, A. S., & Izmailov, A. Y. (2023). Optical Methods for the Detection of Plant Pathogens and Diseases (Review). AgriEngineering, 5(4), 1789-1812. https://doi.org/10.3390/agriengineering5040110