Non-Destructive Methods Used to Determine Forage Mass and Nutritional Condition in Tropical Pastures
Abstract
:1. Introduction
2. Utilizing UAVs and Mobile Devices for Pasture Management
2.1. Perspectives on the Inclusion of UAVs in Pasture Management
2.2. The Use of Mobile Devices in Agricultural Environments
3. Determination of Forage Mass and Nutritional Condition of Forage Plants in Tropical Climates Using Non-Destructive Methods
3.1. Utilization of Satellite Imagery in Pasture Management
3.2. Determination of Forage Biomass Using NDVI
3.3. NDVI Index for Assessing the Nutritional Status of Grasses
3.4. SPAD Index Is Used as an Indicator of Nutritional Requirements in Forage Plants
4. Remote Tools Used in Pasture Management
- (a)
- Stocking rate and lot weight control: With Manejo Remoto, it is possible to monitor and adjust the number of animals in specific areas, ensuring proper distribution and avoiding overloading or underutilizing pastures. Additionally, the tool allows for tracking lot weights, assisting in nutritional planning and identifying potential health or performance issues.
- (b)
- Buying and selling animal control: Through Remote Management®, all transactions related to buying and selling animals can be recorded, from negotiation to delivery. This feature allows for maintaining an accurate transaction history, facilitating financial management, and supporting strategic decision-making.
- (c)
- Animal repositioning between paddocks: The tool also offers the ability to reposition animals between different paddocks on the property, according to specific management needs. This enables better utilization of available resources, optimizing grazing and avoiding excessive grazing in certain areas.
5. Key Considerations to Be Considered in Studies Using Remote Sensing Methods to Estimate Biomass and Nutritional Condition in Tropical Pasturelands
- (a)
- Based on studies conducted in pastoral environments, the selection of models considering the chemical composition of forage (crude protein, neutral detergent fiber, acid detergent fiber, lignin, ether extract, in vitro dry matter digestibility) is not observed, as the models are trained with a bias to estimate only productivity and/or availability of forage biomass. The current model selection criteria may overlook factors that compromise canopy quality (e.g., flowering period or stem elongation), leading to undesirable accumulation of morphological components with lower nutritive value, which compromises animal performance in pastoral environments [60,61,62]. Therefore, it is necessary to train models to generate estimates of more productive pastures with higher leaf biomass.
- (b)
- It is important to consider that grazing intensity has a significant influence on pasture growth dynamics. Studies conducted with Marandu palisadegrass (Urochloa brizantha cv. Marandu) indicate that management at lower heights, under continuous stocking, results in shorter leaf length and increased tiller population, while management at higher heights leads to reduced tiller population and increased leaf length of the tiller [63]. Due to phenotypic plasticity, this grass may exhibit growth dynamics adapted to specific management conditions when managed under intermittent stocking. Therefore, it is necessary to assess the need for parameterization of prediction models for each management condition.
- (c)
- The age of tillers influences forage biomass accumulation, as observed in pastures of Megathyrsus maximus (Mombaça guinea grass and Tanzania guinea grass), white ‘Suvernola’ digit grass (Digitaria eriantha), and Marandu palisadegrass, where under high defoliation frequencies, it impacts the production of young tillers, thus exposing the canopy to higher growth vigor [64,65,66,67].
- (d)
- Regarding pastures in the Brazilian savanna (Cerrado), it is important to note that between the months of June and August, there is a decrease in temperature, with values lower or equal to 15 °C, combined with water deficit. These conditions can slow down tissue flow in tillers, change the structure of the forage canopy, and consequently modify the relationship between forage biomass and the different evaluated indices [64,65].
- (e)
- The fertility requirements and nutritional condition of the canopy associated with other abiotic factors (temperature, light, and precipitation) can cause fluctuations in dry matter accumulation in the forage canopy [68]. To assist Brazilian producers in understanding the specific characteristics of existing cultivars, Barrios et al. [69] proposed an application called ‘Pasto Certo®’ (https://urlfr.ee/c1xxa, accessed on 3 January 2023).
- (f)
- From the analysis of Figure 1A, it is possible to observe that it is necessary to train models capable of predicting the daily accumulation rate of forage biomass and the ideal timing to initiate grazing in pastures with lower height and higher population density of tillers. In Figure 1B, the model should be able to estimate the forage growth rate, as well as the appropriate forage biomass to initiate grazing. In a practical sense, models capable of predicting the better time to start grazing can be more useful than models of dry matter quantity prediction.
- (g)
- Furthermore, it is crucial to develop algorithms and modeling techniques specifically tailored to the growth of pastures in tropical climates, taking into account unique conditions such as high temperatures, seasonal precipitation, and phenotypic plasticity. This not only enhances the understanding and management of these ecosystems but also promotes sustainable agricultural practices and environmental conservation in tropical regions.
6. Models to Determine the Forage Accumulation Rate in Tropical Pasturelands
7. Considerations for the Main Remote and Non-Destructive Methods Used to Measure Forage Biomass and Nutritional Condition of Pastures
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braz, T.G.D.S.; Martuscello, J.A.; Jank, L.; da Fonseca, D.M.; Resende, M.D.V.; Evaristo, A.B. Genotypic value in hybrid progenies of Panicum maximum Jacq. Ciênc. Rural 2017, 47, e20160599. [Google Scholar] [CrossRef]
- Ferreira, M.R.; Martuscello, J.A.; Braz, T.G.; Nascimento, A.A.; Jank, L.; Assis, J.A.; Goulart, O.A.; Reis, G.A.; Santos, M.V.; Santos, M.F. Repeatability and genotypic stability of agronomic characteristics in Panicum maximum Jacq. Chil. J. Agric. Res. 2019, 79, 547–556. [Google Scholar] [CrossRef]
- Figueiredo, U.J.; Berchembrock, Y.V.; Valle, C.B.D.; Barrios, S.C.L.; Quesenberry, K.; Munoz, P.; Nunes, J.A.R. Evaluating early selection in perennial tropical forages. Crop Breed. Appl. Biotechnol. 2019, 19, 291–299. [Google Scholar] [CrossRef]
- Gouveia, B.T.; Barrios, S.C.L.; do Valle, C.B.; Gomes, R.D.C.; Machado, W.K.R.; Bueno Filho, J.S.D.S.; Nunes, J.A.R. Selection strategies for increasing the yield of high nutritional value leaf mass in Urochloa hybrids. Euphytica 2020, 216, 38. [Google Scholar] [CrossRef]
- Dias, M.B.C.; Costa, K.A.P.; Severiano, E.C.; Bilego, U.O.; Almeida, D.P.; Brand, S.C.; Vilela, L.; Furtini-Neto, A.E. Brachiaria and Panicum maximum in an integrated crop-livestock system and a second-crop maize system in succession with soybean. J. Agric. Sci. 2020, 158, 206–217. [Google Scholar] [CrossRef]
- Fernandes, P.B.; Barbosa, R.A.; Morais, M.G.; Medeiros-Neto, C.; Sbrissia, A.F.; Fernandes, H.J.; Difante, G.S. Defoliation Dynamics on Grazing Horizons in Pastures Intercropped by Panicum maximum, Brachiaria brizantha, and Brachiaria decumbens. Trop. Anim. Sci. J. 2020, 43, 314–321. [Google Scholar] [CrossRef]
- Miqueloto, T.; de Medeiros Neto, C.; Martins, C.D.M.; Barbosa, R.A.; Da Silva, S.C.; Sbrissia, A.F. Herbage utilisation efficiency of continuously stocked pastures during periods of restricted pasture growth. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 208–214. [Google Scholar] [CrossRef]
- Barsotti, M.P.; Almeida, R.G.; Macedo, M.C.; Laura, V.A.; Alves, F.V.; Werner, J.; Dickhoefer, U. Assessing the freshwater fluxes related to beef cattle production: A comparison of integrated crop-livestock systems and a conventional grazing system. Agric. Water Manag. 2022, 269, 107665. [Google Scholar] [CrossRef]
- Euclides, V.P.B.; Montagner, D.B.; Araujo, A.R.; Pereira, M.A.; Difante, G.S.; Araújo, I.M.M.; Barbosa, L.F.; Barbosa, R.A.; Gurgel, A.L.C. Biological and economic responses to increasing nitrogen rates in Mombaça guinea grass pastures. Sci. Rep. 2022, 12, 1937. [Google Scholar] [CrossRef]
- Campos, N.R.F.; Difante, G.S.; Gurgel, A.L.C.; Costa, C.M.; Montagner, D.B.; Emerenciano Neto, J.V.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Netto, R.T.C.; Veras, E.L.L.; et al. Effect of supplementation of ewes in the final third of gestation on the development of their lambs. Rev. Bras. Zootec. 2022, 51, e20210094. [Google Scholar] [CrossRef]
- Coca, F.O.C.G.; Gomes, E.N.O.; Junges, L.; Ítavo, L.C.V.; Nonato, L.M.; Gomes, F.K.; Ítavo, C.C.B.F.; Difante, G.D.S.; Dias, A.M. Protodioscin Content, Degradation Kinetics, and In Vitro Digestibility of Marandu Palisadegrass Hay as were Affected by Cutting Interval of the Canopy. Trop. Anim. Sci. J. 2022, 45, 299–307. [Google Scholar] [CrossRef]
- Silva, C.S.; Euclides, V.P.B.; Montagner, D.B.; Araújo, I.M.M.; Difante, G.S.; Orrico Junior, M.A.P. Effects of different supplements on performance of steers grazing Mombaça guineagrass (Megathyrsus maximus) during the dry period. Trop. Grassl.-Forrajes Trop. 2022, 10, 44–51. [Google Scholar] [CrossRef]
- Bonin, M.N.; Ítavo, C.C.B.F.; Ítavo, L.C.V.; Gomes, M.N.B.; Souza, A.I.; Difante, G.S.; Arco, T.F.F.S.; Ferelli, K.L.S.M. Extruded urea could replace true protein source in supplements for lambs finished in tropical pastures. Arq. Bras. Med. Veterinária Zootec. 2023, 75, 89–97. [Google Scholar] [CrossRef]
- Soares, E.S.M.; Ítavo, C.C.B.F.; Ítavo, L.C.V.; Nazario, C.E.D.; Melo, G.K.A.; Arco, T.F.F.S.; Miguel, A.A.S.; Godoy, C.; Andrade, P.B.; Osorio, J.A.C.; et al. Yerba mate (Ilex paraguariensis) as a source of antioxidants with soybean grain in supplementation of lactating ewes reared in tropical pastures. Trop. Anim. Health Prod. 2023, 55, 13. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.A.; Queiroz, H.P. Régua de Manejo de Pastagens—Edição Revisada; Embrapa: Campo Grande, Brazil, 2017; 7p.
- Veras, E.L.L.; Difante, G.S.; Gurgel, A.L.C.; Costa, C.M.; Emerenciano Neto, J.V.; Rodrigues, J.G.; Costa, A.B.G.; Pereira, M.G.; Itavo, L.C.V. Tillering Capacity of Brachiaria Cultivars in the Brazilian Semi-Arid Region during the Dry Season. Trop. Anim. Sci. J. 2020, 43, 133–140. [Google Scholar] [CrossRef]
- Batistoti, J.; Marcato Junior, J.; Ítavo, L.; Matsubara, E.; Gomes, E.; Oliveira, B.; Souza, M.; Siqueira, H.; Salgado Filho, G.; Akiyama, T.; et al. Estimating Pasture Biomass and Canopy Height in Brazilian Savanna Using UAV Photogrammetry. Remote Sens. 2019, 11, 2447. [Google Scholar] [CrossRef]
- Sinde-González, I.; Gil-Docampo, M.; Arza-García, M.; Grefa-Sánchez, J.; Yánez-Simba, D.; Pérez-Guerrero, P.; Abril-Porras, V. Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102355. [Google Scholar] [CrossRef]
- Santos, L.; Junior, J.M.; Zamboni, P.; Santos, M.; Jank, L.; Campos, E.; Matsubara, E.T. Deep Learning Regression Approaches Applied to Estimate Tillering in Tropical Forages Using Mobile Phone Images. Sensors 2022, 22, 4116. [Google Scholar] [CrossRef]
- Dingre, S.K.; Gorantiwar, S.D.; Kadam, S.A. Correlating the field water balance derived crop coefficient (Kc) and canopy reflectance-based NDVI for irrigated sugarcane. Precis. Agric. 2021, 22, 1134–1153. [Google Scholar] [CrossRef]
- Edalat, M.; Naderi, R.; Egan, T.P. Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. J. Plant Nutr. 2019, 42, 2310–2322. [Google Scholar] [CrossRef]
- Obanawa, H.; Yoshitoshi, R.; Watanabe, N.; Sakanoue, S. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods. Sensors 2020, 20, 4809. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; Dos Santos Difante, G.; Miyake, A.W.A.; Gurgel, A.L.C.; Santana, J.C.S.; Ítavo, C.C.B.F.; Ítavo, L.C.V.; Dias, A.M.; Júnior, M.A.F. Technologies used in ruminant grazing management: An integrative review. Trop. Anim. Health Prod. 2022, 54, 357. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Osco, L.P.; Nogueira, K.; Ramos, A.P.M.; Pinheiro, M.M.F.; Furuya, D.E.G.; Gonçalves, W.N.; Jorge, L.A.D.C.; Junior, J.M.; dos Santos, J.A. Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery. Precis. Agric. 2021, 22, 1171–1188. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Wang, H.; Tan, T.; Cui, M.; Huang, Z.; Wang, P.; Zhang, L. Multi-Species Individual Tree Segmentation and Identification Based on Improved Mask R-CNN and UAV Imagery in Mixed Forests. Remote Sens. 2022, 14, 874. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Marcato Junior, J.; Polidoro, C.; Osco, L.P.; Siqueira, H.; Rodrigues, L.; Jank, L.; Barrios, S.; Valle, C.; Simeão, R.; et al. Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing. Sensors 2021, 21, 3971. [Google Scholar] [CrossRef]
- Deng, R.; Jiang, Y.; Tao, M.; Huang, X.; Bangura, K.; Liu, C.; Lin, J.; Qi, L. Deep learning-based automatic detection of productive tillers in rice. Comput. Electron. Agric. 2020, 177, 105703. [Google Scholar] [CrossRef]
- Laamrani, A.; Pardo Lara, R.; Berg, A.A.; Branson, D.; Joosse, P. Using a Mobile Device “App” and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields. Sensors 2018, 18, 708. [Google Scholar] [CrossRef]
- Theodoro, G.F.; Golin, H.O.; Da Silva, M.S.; Rezende, R.P.; Abreu, V.L.S. Influência de sistemas de preparo na manutenção da palhada e resistência do solo à penetração. Rev. Agric. Neotrop. 2018, 5, 25–30. [Google Scholar] [CrossRef]
- Jorge, L.A.C.; Silva, D.J.C.B. SisCob: Manual de Utilização; Embrapa Instrumentação Agropecuária: São Carlosm, Brazil, 2009; 18p.
- Bretas, I.L.; Valente, D.S.M.; de Oliveira, T.F.; Montagner, D.B.; Euclides, V.P.B.; Chizzotti, F.H.M. Canopy Height and Biomass Prediction in Mombaça Guinea Grass Pastures Using Satellite Imagery and Machine Learning. Precis. Agric. 2023, 24, 1638–1662. [Google Scholar] [CrossRef]
- Batista, P.H.D.; Almeida, G.L.P.; Silva, J.L.B.; Pandorfi, H.; Silva, M.V.; Silva, R.A.B.; Melo, M.V.N.; Lins, F.A.C.; Cordeiro Junior, J.J.F. Short-term grazing and its impacts on soil and pasture degradation. DYNA 2020, 87, 123–128. [Google Scholar] [CrossRef]
- Silva, M.; Pandorfi, H.; Almeida, G.L.; Lima, R.; Santos, A.; Jardim, A.; Rolim, M.; Silva, J.L.; Batista, P.H.; Silva, R.A. Spatio-temporal monitoring of soil and plant indicators under forage cactus cultivation by geoprocessing in the Brazilian semi-arid region. J. South Am. Earth Sci. 2021, 107, 103155. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A. Monitoring the Vernal Advancements and Retro Gradation of Natural Vegetation; Remote Sensing Center: Greenbelt, MD, USA, 1974. [Google Scholar]
- Capo, L.; Blandino, M. Minimizing Yield Losses and Sanitary Risks through an Appropriate Combination of Fungicide Seed and Foliar Treatments on Wheat in Different Production Situations. Agronomy 2021, 11, 725. [Google Scholar] [CrossRef]
- Sambandham, V.T.; Shankar, P.; Mukhopadhaya, S. Early Onset Yellow Rust Detection Guided by Remote Sensing Indices. Agriculture 2022, 12, 1206. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, W.; Rezaei, E.E.; Li, J.; Sun, Z.; Zhang, J. The Optimal Phenological Phase of Maize for Yield Prediction with High-Frequency UAV Remote Sensing. Remote Sens. 2022, 14, 1559. [Google Scholar] [CrossRef]
- Fariña, C.; Aramayo, V.; Perri, D.; Martín Albarracín, V.; Umaña, F.; Bruzzone, O.A.; Easdale, M.H. Relationship between NDVI of Patches and Cover Area of Grasses, Shrubs and Bare Soil Components of a Semi-Arid Steppe from North-West Patagonia, Argentina. Grasses 2023, 2, 23–30. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Andersson, K.; Trotter, M.; Robson, A.; Schneider, D.; Frizell, L.; Saint, A.; Lamb, D.; Blore, C. Estimating pasture biomass with active optical sensors. Adv. Anim. Biosci. 2017, 8, 754–757. [Google Scholar] [CrossRef]
- Pulina, A.; Rolo, V.; Hernández-Esteban, A.; Seddaiu, G.; Roggero, P.P.; Moreno, G. Long-term legacy of sowing legume-rich mixtures in Mediterranean wooded grasslands. Agric. Ecosyst. Environ. 2023, 348, 108397. [Google Scholar] [CrossRef]
- Schaefer, M.T.; Lamb, D.W. A Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca arundinacea var. Fletcher). Remote Sens. 2016, 8, 109. [Google Scholar] [CrossRef]
- Campana, M.; Valle, T.A.D.; Fernandes, L.S.; Pereira, F.R.S.; Garcia, T.M.; Osório, J.A.C.; Facco, F.B.; Morais, J.P.G. Canopeo and GreenSeeker applications as tools to support tropical pasture management. Ciênc. Rural 2023, 53, 1. [Google Scholar] [CrossRef]
- Carnevalli, R.A.; Da Silva, S.C.; Bueno, A.A.O.; Uebele, M.C.; Bueno, F.O.; Hodgson, J.; Silva, G.N.; Morais, J.P.G. Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing management. Trop. Grassl. 2006, 40, 165–176. [Google Scholar]
- Sozzi, M.; Kayad, A.; Gobbo, S.; Cogato, A.; Sartori, L.; Marinello, F. Economic Comparison of Satellite, Plane, and UAV-Acquired NDVI Images for Site-Specific Nitrogen Application: Observations from Italy. Agronomy 2021, 11, 2098. [Google Scholar] [CrossRef]
- Vian, A.L.; Bredemeier, C.; Turra, M.A.; Giordano, C.P.D.S.; Fochesatto, E.; Silva, J.A.D.; Drum, M.A. Nitrogen management in wheat based on the normalized difference vegetation index (NDVI). Ciênc. Rural 2018, 48, 9. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Serrano, J.M. Delineating site-specifc management zones on pasture soil using a probabilistic and objective model and geostatistical techniques. Precis. Agricult. 2020, 21, 620–636. [Google Scholar] [CrossRef]
- Valle Júnior RF, d.o.; Siqueira, H.E.; Valera, C.A.; Oliveira, C.F.; Sanches Fernandes, L.F.; Moura, J.P.; Pacheco, F.A.L. Diagnosis of Degraded Pastures Using an Improved NDVI-Based Remote Sensing Approach: An Application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sens. Appl. 2019, 14, 20–33. [Google Scholar] [CrossRef]
- Valente, G.F.; Ferraz, G.A.e.S.; Santana, L.S.; Ferraz, P.F.P.; Mariano, D.d.C.; dos Santos, C.M.; Okumura, R.S.; Simonini, S.; Barbari, M.; Rossi, G. Mapping Soil and Pasture Attributes for Buffalo Management through Remote Sensing and Geostatistics in Amazon Biome. Animals 2022, 12, 2374. [Google Scholar] [CrossRef]
- Bernardi, A.C.d.C.; Grego, C.R.; Andrade, R.G.; Rabello, L.M.; Inamasu, R.Y. Spatial variability of vegetation index and soil properties in an integrated crop-livestock system. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 513–518. [Google Scholar] [CrossRef]
- Batista, P.H.D.; de Almeida, G.L.P.; da Silva, J.L.B.; Lins, F.A.C.; da Silva, M.V.; Cordeiro, J.J.F. Hydro-physical properties of soil and pasture vegetation coverage under animal trampling. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 854–860. [Google Scholar] [CrossRef]
- Conrado, J.A.D.A.; Lopes, M.N.; Cândido, M.J.; Santos-Neto, C.F.D.; Morais, L.F.D.; Torres, A.F.; Nascimento, D.R.; Carneiro, M.S.D.S. Characterization of Brachiaria decumbens ‘Basilisk’ pasture subjected to flexible grazing by sheep. Chil. J. Agric. Res. 2021, 81, 338–350. [Google Scholar] [CrossRef]
- Minolta. Chlorophyll Meter SPAD-502 Instruction Manual; Minolta Co., Ltd.: Osaka, Japan, 1989.
- Almeida, E.M.; Montagner, D.B.; Difante, G.S.; Araújo, A.R.; Santana, J.C.S.; Gurgel, A.L.C.; Scariot, C. Growth dynamics and nutrient uptake of Panicum maximum under nitrogen fertilisation. N. Z. J. Agric. Res. 2022, 66, 244–258. [Google Scholar] [CrossRef]
- Zanine, A.; Farias, L.; Ferreira, D.; Farias, L.; Ribeiro, M.; Souza, A.; Rodrigues, R.; Santos, E.; Oliveira, J.; Sousa, L.; et al. Effect of Season and Nitrogen Fertilization on the Agronomic Traits and Efficiency of Piatã Grass in Brazilian Savanna. Agriculture 2020, 10, 337. [Google Scholar] [CrossRef]
- Kandel, B.P. Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Res. Notes 2020, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture 2023, 13, 974. [Google Scholar] [CrossRef]
- Nantes, N.N.; Euclides, V.P.B.; Montagner, D.B.; Lempp, B.; Barbosa, R.A.; Gois, P.O. Animal performance and characteristics of Piatã grass pastures subjected to different grazing intensities. Pesq. Agropec. Bras. 2013, 48, 114–121. [Google Scholar] [CrossRef]
- Euclides, V.P.B.; Montagner, D.B.; Barbosa, R.A.; Valle, C.B.; Nantes, N.N. Animal performance and sward characteristics of two cultivars of Brachiaria brizantha (BRS Paiaguás and BRS Piatã). Rev. Bras. Zootec. 2016, 45, 85–92. [Google Scholar] [CrossRef]
- Euclides, V.B.P.; Carpejani, G.C.; Montagner, D.B.; Nascimento-Junior, D.; Barbosa, R.A.; Difante, G.S. Maintaining post-grazing sward height of Panicum maximum (cv. Mombaça) at 50 cm led to higher animal performance compared with post-grazing height of 30 cm. Grass Forage Sci. 2017, 73, 174–182. [Google Scholar] [CrossRef]
- Sbrissia, A.F.; Duchini, P.G.; Zanini, G.D.; Santos, G.T.; Padilha, D.A.; Schmitt, D. Defoliation strategies in pastures submitted to intermittent stocking method: Underlying mechanisms buffering forage accumulation over a range of grazing heights. Crop Sci. 2018, 58, 945–954. [Google Scholar] [CrossRef]
- Montagner, D.B.; Nascimento-Junior, D.; Sousa, B.M.L.; Vilela, H.H.; Euclides, V.P.B.; Da Silva, S.C.; Sbrissia, A.F.; Carloto, M.N. Morphogenetic and structural characteristics of tillers of guinea grass of different age and grazing severities. Rev. Bras. Zootec. 2011, 40, 2105–2110. [Google Scholar] [CrossRef]
- Barbosa, R.A.; Nascimento Júnior, D.D.; Vilela, H.H.; Sousa, B.M.D.L.; Silva, S.C.D.; Euclides, V.P.B.; Silveira, M.C.T.D. Morphogenetic and structural characteristics of guinea grass tillers at different ages under intermittent stocking. Rev. Bras. Zootec. 2012, 41, 1583–1588. [Google Scholar] [CrossRef]
- Alves, L.C.; Santos, M.E.R.; Techio, L.E.; Carvalho, B.H.R.; Vasconcelos, K.A.; Ávila, A.B. Morphogenesis of age groups of Marandu palisade grass tillers deferred and fertilised with nitrogen. Semina: Ciênc. Agrar. 2019, 40, 2683–2692. [Google Scholar] [CrossRef]
- Sousa, B.M.L.; Rizato, C.A.; Fagundes, J.L.; Fontes, P.T.N.; Backes, A.A.; Oliveira Junior, L.F.G.; Nascimento, C.S. Tillering dynamics of digit grass subject to different defoliation frequencies. Pesqui. Agropecu. Bras. 2019, 54, 133–140. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: Review of the underlying ecophysiological processes. Agriculture 2015, 5, 1146–1171. [Google Scholar] [CrossRef]
- Barrios, S.C.L.; Carromeu, C.; Silva, M.A.I.; Matsubara, E.T.; Valle, C.B.; Jank, L.; Santos, M.F.; Assis, G.M.L.; Crivellaro, L.L.; Gonçalves, T.D.T.; et al. Pasto Certo® version 2.0—An application about Brazilian tropical forage cultivars for mobile and desktop devices. Trop. Grassl.-Forrajes Trop. 2020, 8, 162–166. [Google Scholar] [CrossRef]
- Klingman, D.L.; Miles, S.; Mott, G. The cage method for determining consumption and yield of pasture herbage. Agron. J. 1943, 35, 739–746. [Google Scholar] [CrossRef]
- Cunha, B.A.L.; Nascimento Júnior, D.D.; Silveira, M.C.T.; Montagner, D.B.; Euclides, V.P.B.; Silva, S.C.; Sbrissia, A.F.; Rodrigues, C.S.; Sousa, B.M.L.; Pena, K.S.; et al. Effects of two post-grazing heights on morphogenic and structural characteristics of guinea grass under rotational grazing. Trop. Grassl. 2010, 44, 253–259. [Google Scholar]
- Pereira, G.F.; Emerenciano Neto, J.V.; Difante, G.S.; Assis, P.O.; Lima, P.O. Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semina Ciênc. Agr. 2019, 40, 283–292. [Google Scholar] [CrossRef]
- Montoya-Santiyanes, L.A.; Chay-Canul, A.J.; Camacho-Pérez, E.; Rodríguez-Abreo, O. A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm. J. Appl. Anim. Res. 2022, 50(1), 635–642. [Google Scholar] [CrossRef]
- Salazar-Cuytun, R.; García-Herrera, R.A.; Muñoz-Benítez, A.L.; Camacho-Pérez, E. Relationship between body volume and body weight in Pelibuey ewes. Trop. Subtrop. Agroecosyst. 2021, 24, 1–7. [Google Scholar] [CrossRef]
- Baumont, R.; Cohen-Salmão, D.; Prache, S.; Sauvant, D. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim. Feed Sci. Technol. 2004, 112, 5–28. [Google Scholar] [CrossRef]
- Luiz, A.; Dos Santos, P.; Rocha Moreira, G.; Gomes-Silva, F.; De Brito, C.R.; Lindomá, M.; Da Costa, L.; Gustavo, L.; Pereira, R.; Rio, R.; et al. Generation of models from existing models composition: An application to agrarian sciences. PLoS ONE 2019, 14, e0214778. [Google Scholar]
- Sbrissia, A.F.; Da Silva, S.C. Comparação de três métodos para estimativa do índice de área foliar em pastos de capim-marandu sob lotação contínua. Rev. Bras. Zootec. 2008, 37, 212–220. [Google Scholar] [CrossRef]
- Homem, B.G.C.; Ferreira, I.M.; Gionbelli, M.P.; Bernardes, T.F.; Casagrande, D.R.; Lara, M.A.S. Estimating leaf area of warm-season perennial legumes. Grass Forage Sci. 2017, 72, 481–488. [Google Scholar] [CrossRef]
- Leite, M.L.M.V.; Lucena, L.R.R.; Cruz, M.G.; Sá Júnior, E.H.D.; Simões, V.J.L.P. Leaf area estimate of Pennisetum glaucum by linear dimensions. Acta Sci., Anim. Sci. 2019, 41, e42808. [Google Scholar] [CrossRef]
- Pedreira, B.C.; Pedreira, C.G.; Boote, K.J.; Lara, M.A.; Alderman, P.D. Adapting the CROPGRO perennial forage model to predict growth of Brachiaria brizantha. Field Crops Res. 2011, 120, 370–379. [Google Scholar] [CrossRef]
- Dos Santos, M.L.; Santos, P.M.; Boote, K.J.; Pequeno, D.N.L.; Barioni, L.G.; Cuadra, S.V.; Hoogenboom, G. Applying the CROPGRO Perennial Forage Model for long-term estimates of Marandu palisadegrass production in livestock management scenarios in Brazil. Field Crops Res. 2022, 286, 108629. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Boote, K.; Pflugfelder, A.; Munz, S.; Graeff-Hönninger, S. Adapting the CROPGRO-faba bean model to simulate the growth and development of Amaranthus species. Agron. J. 2022, 114, 2243–2263. [Google Scholar] [CrossRef]
- Cooke, B.D. Pasture plant biomass increase following introduction of European rabbit fleas, Spilopsyllus cuniculi, into Australia to facilitate myxomatosis transmission. Biol. Control 2020, 155, 104536. [Google Scholar] [CrossRef]
- Benvenutti, M.A.; Pavetti, D.R.; Poppi, D.P.; Gordon, I.J.; Cangiano, C.A. Defoliation Patterns and Their Implications for the Management of Vegetative Tropical Pastures to Control Intake and Diet Quality by Cattle. Grass Forage Sci. 2016, 71, 424–436. [Google Scholar] [CrossRef]
- Diavão, J.; Schmitt, D.; Medeiros-Neto, C.; Martins, C.D.M.; Sbrissia, A.F. Acúmulo de Forragem Durante o Período de Ocupação dos Animais em Pastos sob Lotação Intermitente. Ciênc. Anim. Bras. 2017, 18, e41359. [Google Scholar] [CrossRef]
- Bircham, J.S.; Hodgson, J. The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass Forage Sci. 1983, 38, 323–331. [Google Scholar] [CrossRef]
- Keshet, D.; Brook, A.; Malkinson, D.; Izhaki, I.; Charter, M. The Use of Drones to Determine Rodent Location and Damage in Agricultural Crops. Drones 2022, 6, 396. [Google Scholar] [CrossRef]
- Gokool, S.; Mahomed, M.; Kunz, R.; Clulow, A.; Sibanda, M.; Naiken, V.; Chetty, K.; Mabhaudhi, T. Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis. Sustainability 2023, 15, 3557. [Google Scholar] [CrossRef]
- Li, Y.; Yan, W.; An, S.; Gao, W.; Jia, J.; Tao, S.; Wang, W. A Spatio-Temporal Fusion Framework of UAV and Satellite Imagery for Winter Wheat Growth Monitoring. Drones 2023, 7, 23. [Google Scholar] [CrossRef]
- Guzatti, G.C.; Duchini, P.G.; Sbrissia, A.F.; Ribeiro-Filho, H.M.N. Qualitative aspects and biomass production in oats and ryegrass pastures cultivated pure or intercropping and subjected to lenient grazing. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1399–1407. [Google Scholar] [CrossRef]
- Pariz, C.M.; Costa, N.R.; Costa, C.; Crusciol, C.A.C.; Castilhos, A.M.; Meirelles, P.R.L.; Calonego, J.C.; Andreotti, M.; Souza, D.M.; Cruz, I.V.; et al. An Innovative Corn to Silage-Grass-Legume Intercropping System with Oversown Black Oat and Soybean to Silage in Succession for the Improvement of Nutrient Cycling. Front. Sustain. Food Syst. 2020, 4, 1–20. [Google Scholar] [CrossRef]
- Bretas, I.L.; Dubeux, J.C.B.; Cruz, P.J.R.; Oduor, K.T.; Queiroz, L.D.; Valente, D.S.M.; Chizzotti, F.H.M. Precision livestock farming applied to grazingland monitoring and management—A review. Agron. J. 2023, 1, 1–23. [Google Scholar] [CrossRef]
Technology/Commercial Name | Parameters | Link |
---|---|---|
Manejo Remoto® | (1) Stocking rate; Lot weight control; (2) Purchase and sale of animals control; (3) Repositioning of animals between paddocks; property management history. | https://www.manejoremoto.com.br/ Accessed on 13 June 2023. |
© Atlas das Pastagens | (1) Mapping of pasture areas in Brazil; (2) Mapping of the quality of these areas, estimates of carbon stock in pastures in the Cerrado biome; (3) Information on the Brazilian cattle herd analyzed from municipal livestock research data. | https://atlasdaspastagens.ufg.br/ Accessed on 3 July 2023. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, P.B.; Santos, C.A.d.; Gurgel, A.L.C.; Gonçalves, L.F.; Fonseca, N.N.; Moura, R.B.; Costa, K.A.d.P.; Paim, T.d.P. Non-Destructive Methods Used to Determine Forage Mass and Nutritional Condition in Tropical Pastures. AgriEngineering 2023, 5, 1614-1629. https://doi.org/10.3390/agriengineering5030100
Fernandes PB, Santos CAd, Gurgel ALC, Gonçalves LF, Fonseca NN, Moura RB, Costa KAdP, Paim TdP. Non-Destructive Methods Used to Determine Forage Mass and Nutritional Condition in Tropical Pastures. AgriEngineering. 2023; 5(3):1614-1629. https://doi.org/10.3390/agriengineering5030100
Chicago/Turabian StyleFernandes, Patrick Bezerra, Camila Alves dos Santos, Antonio Leandro Chaves Gurgel, Lucas Ferreira Gonçalves, Natália Nogueira Fonseca, Rafaela Borges Moura, Kátia Aparecida de Pinho Costa, and Tiago do Prado Paim. 2023. "Non-Destructive Methods Used to Determine Forage Mass and Nutritional Condition in Tropical Pastures" AgriEngineering 5, no. 3: 1614-1629. https://doi.org/10.3390/agriengineering5030100
APA StyleFernandes, P. B., Santos, C. A. d., Gurgel, A. L. C., Gonçalves, L. F., Fonseca, N. N., Moura, R. B., Costa, K. A. d. P., & Paim, T. d. P. (2023). Non-Destructive Methods Used to Determine Forage Mass and Nutritional Condition in Tropical Pastures. AgriEngineering, 5(3), 1614-1629. https://doi.org/10.3390/agriengineering5030100