Restoration Techniques Applied in Open Mining Area to Improve Agricultural Soil Fertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
- (i)
- The addition of granulate inorganic fertilizer (NPK 15-15-15) in the amount of 1 kg per plot; this mineral fertilizer is composed as follows: 15% TN (total nitrogen), 15% total phosphorus (P2O5) and 15% water-soluble potassium (K₂O), and it also contains 25% of sulfur (SO₃). This treatment was applied since it is a common agricultural fertilizer that is easy to apply (since it is a solid granule); in addition, it contains the 3 elements most demanded by plants from the soil, and its slow dissolution allows the relatively slow release of nutrients into the soil.
- (ii)
- The addition of pig slurry in the amount of 5.4 kg per plot based on the contribution of nitrogen equivalent to the inorganic fertilizer. The application of pig slurry is of special interest in regions where the management of the pig industry represents a serious environmental problem due to its large volume produced, like the Region of Murcia. One of the main concerns is how to treat them in an environmentally sound way [36]. The pig slurry was obtained from a pig farm in the Murcia region, located in Fuente Álamo, where conventional purification systems are used, in which the solid is separated from the liquid. The slurry obtained on the farm was transported to the treatment plots where it was applied.
- (iii)
- The incorporation of composted urban solid wastes (USWs) from the Cañada Hermosa waste treatment center in the northwest of the Region of Murcia in the amount of 60 kg per plot. The Cañada Hermosa treatment center is a benchmark for innovation, and it changes the vision of waste as garbage to turn it into resources [37], which is in continuous progress to the circular economy.
- (iv)
- The application of woody pruning waste (variable size over 5 to 20 cm long), from olive trees, vines and almond trees of the region, in the amount of 60 kg per plot. The almond tree represents more than 12% of the farmland in the Region of Murcia, and it is intended to take advantage of these crops for restoration and mitigate the problem of abandoning agriculture or carrying out uncontrolled incineration [38]. The vineyard and the olive trees are in regression due to abandonment, especially in marginal areas and terraces. The abandonment of crops and soil conservation measures cause a collapse of the terraces and the appearance of different forms of associated erosion [38,39]. The composition of the pruning remains was equally divided between remains of olive trees, vines and almond trees from the farmland in the Region of Murcia. These remains were crushed with a tractor shredder and transported to the treatment plots on which these residues were spread.
2.3. Methods of Soil Analysis
2.4. Organic Wastes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.H.; Chen, Y.; Feng, C. Green total factor productivity of China’s mining and quarrying industry: A global data envelopment analysis. Res. Policy 2018, 57, 1–9. [Google Scholar] [CrossRef]
- De Silva, M.S.T.L.; Rohitha, L.P.S.; Dharmaratne, P.G.R. Zero Waste Sustainable Mining and Processing Operation of Quartz. In Proceedings of the International Mineral Symposium, Colombo, Sri Lanka, 15 September 2018. [Google Scholar]
- Xiang, H.; Wang, Z.; Mao, D.; Zhang, J.; Zhao, D.; Zeng, Y.; Wu, B. Surface mining caused multiple ecosystem service losses in China. J. Environ. Manag. 2021, 290, 112618. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.K.; Singh, J. Restoration of mine spoil in a dry tropical region: A review. Proc. Indian Natl. Sci. Acad. 2017, 83, 789–844. [Google Scholar] [CrossRef]
- Ting, L.; Minghui, W.; Changqun, D.; Shiyu, L.; Chang’e, L. The effect of different restoration approaches on vegetation development in metal mines. Sci. Total Environ. 2021, 806, 150626. [Google Scholar] [CrossRef]
- Opekunova, M.; Opekunov, A.; Somov, V.; Kukushkin, S.; Papyan, E. Transformation of metals migration and biogeochemical cycling under the influence of copper mining production (the Southern Urals). CATENA 2020, 189, 104512. [Google Scholar] [CrossRef]
- Macci, C.; Peruzzi, E.; Doni, S. Monitoring of a long term phytoremediation process of a soil contaminated by heavy metals and hydrocarbons in Tuscany. Environ. Sci. Pollut. Res. 2020, 27, 424–437. [Google Scholar] [CrossRef]
- Asyakina, L.K.; Dyshlyuk, L.S.; Prosekov, A.Y. Reclamation of Post-Technological Landscapes: International Experience. Food Process. Tech. Technol. 2021, 51, 805–818. [Google Scholar] [CrossRef]
- Daraz, U.; Li, Y.; Ahmad, I.; Iqbal, R.; Ditta, A. Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere 2022, 311, 137089. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Asyakina, L.K.; Serazerdinova, Y.R.; Frolova, A.S.; Velichkovich, N.S.; Prosekov, A.Y. Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals. Microorganisms 2023, 11, 864. [Google Scholar] [CrossRef]
- Bruneel, O.; Mghazli, N.; Sbabou, L.; Héry, M.; Casiot, C.; Filali-Maltouf, A. Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. J. Geochem. Explor. 2019, 205, 106327. [Google Scholar] [CrossRef]
- Carabassa, V.; Domene, X.; Alcañiz, J.M. Soil restoration using compost-like-outputs and digestates from non-source-separated urban waste as organic amendments: Limitations and opportunities. J. Environ. Manag. 2020, 225, 109909. [Google Scholar] [CrossRef]
- Sonter, L.J.; Ali, S.H.; Watson, J.E.M. Mining and biodiversity: Key issues and research needs in conservation science. Proc. R. Soc. B 2018, 285, 20181926. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Lechner, A.M.; Yang, Y.J.; Baumgartl, T.; Wu, J.S. Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services. Sci. Total Environ. 2020, 717, 137214. [Google Scholar] [CrossRef]
- Luo, A.K.; Hou, Y.; Hu, X.Y. Mining influence on underground water resources in arid and semiarid regions. Earth Environ. Sci. 2018, 113, 012131. [Google Scholar] [CrossRef]
- Jing, Z.R.; Wang, J.M.; Zhu, Y.C.; Feng, Y. Effects of land subsidence resulting from coal mining on soil nutrient distributions in a loess area of China. J. Clean. Prod. 2018, 177, 350–361. [Google Scholar] [CrossRef]
- Liu, S.L.; Li, W.P.; Qiao, W.; Wang, Q.Q.; Hu, Y.B.; Wang, Z.K. Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. Ecol. Indicat. 2019, 103, 331–345. [Google Scholar] [CrossRef]
- Peñaranda Barba, M.A.; Alarcón Martínez, V.; Gómez Lucas, J.; Navarro Pedreño, J. Mitigation of environmental impacts in ornamental rock and limestone aggregate quarries in arid and semi-arid areas. Glob. J. Environ. Sci. Manag. 2021, 7, 565–586. [Google Scholar] [CrossRef]
- Peñaranda Barba, M.A.; Alarcón Martínez, V.; Gómez Lucas, J.; Navarro Pedreño, J. Methods of soil recovery in quarries of arid and semiarid areas using different waste types. Span. J. Soil Sci. 2020, 2, 101–122. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M.; Kosson, D.S.; Brown, K.G.; Salisbury, J.A.; Jeitner, C. Risk to ecological resources following remediation can be due mainly to increased resource value of successful restoration: A case study from the Department of Energy’s Hanford Site. Environ. Res. 2020, 186, 109536. [Google Scholar] [CrossRef]
- Rodríguez-Berbel, N.; Soria, R.; Ortega, R.; Miralles, I. Biochemistry and metagenomic techniques in restored soils with organic amendments. Agric. Res. Technol. 2019, 20, 556140. [Google Scholar] [CrossRef]
- Androkhanov, V.A.; Lavrinenko, A.T.; Gossen, I.N.; Kulyapina, E.D. Experience in creating a pilot production site for the reclamation of disturbed lands at the “Zarechny” open-pit mine of “Suek-Kuzbass” JSC. Ugol 2019, 12, 60–65. [Google Scholar] [CrossRef]
- Danilov, A.; Smirnov, Y.; Korelskiy, D. Effective methods for reclamation of area sources of dust emission. J. Ecol. Eng. 2017, 18, 1–7. [Google Scholar] [CrossRef]
- Isakov, A.E.; Barygina, K.V. Liming of acidic soils with belite sludge. J. Ecol. Eng. 2017, 18, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.V.; Smirnov, Y.D.; Petrov, G.I. Investigation of waste properties of subway construction as a potential component of soil layer. J. Ecol. Eng. 2018, 19, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, W.; Lu, X.; Jiskani, I.M.; Cai, Q.; Liu, P.; Li, L. Evaluation Index System of Green Surface Mining in China. Min. Metall. Explor. 2020, 37, 1093–1103. [Google Scholar] [CrossRef]
- Mao, D.H.; He, X.Y.; Wang, Z.M.; Tian, Y.L.; Xiang, H.X.; Yu, H.; Man, W.D.; Jia, M.M.; Ren, C.Y.; Zheng, H.F. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Yang, S.Q.; Zhao, W.W.; Liu, Y.X.; Wang, S.; Wang, J.; Zhai, R.J. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef]
- Changhong, S.; Huifang, L.; Shuai, W. A process-based framework for soil ecosystem services study and management. Sci. Total Environ. 2018, 627, 282–289. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R. The Extent of forest in Dryland Biomes. Science 2017, 356, 635–638. [Google Scholar] [CrossRef]
- Soria, R.; Rodríguez-Berbel, N.; Ortega, R.; Lucas-Borja, M.E.; Miralles, I. Soil amendments from recycled waste differently affect CO2 soil emissions in restored mining soils under semiarid conditions. J. Environ. Manag. 2021, 294, 112894. [Google Scholar] [CrossRef]
- Almendro-Candel, M.B.; Lucas, I.G.; Navarro-Pedreño, J.; Zorpas, A.A. PHysical Properties of Soils Affected by the Use of Agricultural Waste: Agricultural Waste and Residues; Aladjadjiyan, A., Ed.; IntechOpen: London, UK, 2018; pp. 9–28. [Google Scholar]
- Ritzén, S.; Sandström, G.Ö. Barriers to the Circular Economy—Integration of Perspectives and Domains. Procedia CIRP 2017, 64, 7–12. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Zornoza, R.; Faz, A.; Carmona, D.M.; Acosta, J.A.; Martínez-Martínez, S.; de Vreng, A. Carbon mineralization, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste. Chemosphere 2013, 90, 2606–2613. [Google Scholar] [CrossRef]
- Murcia Ciudad Sostenible. Available online: https://www.murciaciudadsostenible.es/canada-hermosa/ (accessed on 20 May 2023).
- Romero Díaz, A.; Martínez Hernández, C.; Belmonte Serrato, F. Land use changes in the Region of Murcia. The almond tree as reference crop and its relation to erosion processes. Nimbus 2012, 29–30, 607–626. [Google Scholar]
- Canteras el Cerro. Available online: https://www.canteraselcerro.com/cal-agricola-carbonato-calcico/ (accessed on 20 May 2023).
- MAPA. Libro Blanco de la Agricultura y el Desarrollo Rural; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2003; pp. 643–689.
- Black, C.A. Methods of Soil Analysis: Part I PHysical and Mineralogical Properties; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar] [CrossRef]
- Aitken, R.L.; Moody, P.W. Interrelations between Soil pH Measurement in Various Electrolytes and Soil Solution ph in Acidic Soils. Aust. J. Soil Res. 1991, 29, 483–491. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Analysis of Calcium Carbonate Equivalent in Soil—Volumetric Calcimeter Method; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Beretta, A.N.; Silbermann, A.V.; Paladino, L.; Torres, D.; Bassahun, D.; Musselli, R.; García-Lamohte, A. Soil texture analyses using a hydrometer: Modification of the Bouyoucos method. Cienc. Investig. Agrar. 2014, 41, 263–271. [Google Scholar] [CrossRef]
- Olsen, R.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Available Phosphorus—Olsen Method; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- González, D.; Almendros, P.; Álvarez, J.M. Methods of analysis of elements in soils: Availability and fractionation. An. Quim. 2009, 105, 205–212. [Google Scholar]
- MAPA. Métodos Oficiales de Análisis; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1986.
- UNE EN 13037:2012; Mejoradores del Suelo y Sustratos de Cultivo. Determinación del ph. AENOR: Madrid, Spain, 2012.
- Anderson, M.J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 2021, 58, 626–639. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Barba-Brioso, C. Metal immobilization in hazardous contaminated mine soils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain). J. Hazard. 2010, 181, 817–826. [Google Scholar] [CrossRef]
- Kabas, S.; Arocena, J.M.; Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Carmona, D.M. Syrian bean-caper (Zygophyllum fabago L.) improves organic matter and other properties of mine wastes deposits. Int. J. Phytoremediation 2013, 16, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Luna, L.; Pastorelli, R.; Bastida, F.; Hernández, T.; García, C.; Miralles, I.; Solé-Benet, A. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Appl. Soil Ecol. 2016, 107, 33–47. [Google Scholar] [CrossRef]
- Zornoza, R.; Faz, Á.; Martínez, S.; Acosta, J.A.; Gómez, M.D.; Muñoz, M.A.; Sánchez, R.; Murcia, F.J.; Fernández, F.; López, E.; et al. Rehabilitación de una presa de residuos mineros mediante la aplicación de lodo de mármol y purín de cerdo para el desarrollo de una fitoestabilización asistida. Bol. Geol. Min. 2017, 128, 421–435. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Improvement of soil quality after “alperujo” compost application to two contaminated soils characterized by differing heavy metal solubility. J. Environ. Manag. 2011, 92, 733–741. [Google Scholar] [CrossRef]
- Fornes, F.; García de la Fuente, R.; Belda, R.M.; Abad, M. “Alperujo” compost amendment of contaminated calcareous and acidic soils: Effects on growth and element uptake by five Brassica species. Bioresour. Technol. 2009, 100, 3982–3990. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Berbel, N.; Ortega, R.; Lucas-Borja, M.; Solé-Benet, A.; Miralles, I. Long-term effects of two organic amendments on bacterial communities of calcareous Mediterranean soils degraded by mining. J. Environ. Manag. 2020, 271, 110920. [Google Scholar] [CrossRef]
- Barker, A.V. Composition and uses of compost. In Agricultural Uses of By-Products and Wastes, 1st ed.; Rechcigl, J.E., MacKinnon, H.C., Eds.; American Chemical Society: Washington, DC, USA, 1997; Volume 668, pp. 140–162. [Google Scholar]
- Zanuzzi, A.; Arocena, J.M.; van Mourik, J.M.; Faz, A. Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma 2009, 154, 69–75. [Google Scholar] [CrossRef]
- Martínez-Fernández, D.; Arco-Lázaro, E.; Bernal, M.P.; Clemente, R. Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytorestoration experiment. Ecol. Eng. 2014, 73, 588–597. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Quílez, D. Cumulative and residual effects of swine slurry and mineral nitrogen in irrigated maize. Agron. J. 2010, 102, 1682–1691. [Google Scholar] [CrossRef]
- Cela, S.; Santiveri, F.; Lloveras, J. Residual effects of pig slurry and mineral nitrogen fertilizer on irrigated wheat. Eur. J. Agron. 2011, 34, 257–262. [Google Scholar] [CrossRef]
- Pardo, T.; Clemente, R.; Bernal, M.P. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere 2011, 84, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Gu, W.; Dai, Q.Y.; Makoto, S.; Liu, Y. Effectiveness of geotextile mulches for slope restoration in semi-arid northern China. CATENA 2014, 116, 1–9. [Google Scholar] [CrossRef]
- Hueso-González, P.; Ruiz-Sinoga, J.D.; Martínez-Murillo, J.F.; Lavee, H. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation. Geomorphology 2015, 228, 796–804. [Google Scholar] [CrossRef]
- Laliberté, E.; Bouchard, A.; Cogliastro, A. Optimizing hardwood reforestation in old fields: The effects of treeshelters and environmental factors on tree seedling growth and physiology. Restor. Ecol. 2008, 16, 270–280. [Google Scholar] [CrossRef]
- Valdecantos, A.; Cortina, J.; Vallejo, V.R. Differential field response of two Mediterranean tree species to inputs of sewage sludge at the seedling stage. Ecol. Eng. 2011, 37, 1350–1359. [Google Scholar] [CrossRef]
- Bautista, S.; Robichaud, P.R.; Bladé, C. Post-fire mulching. In Fire Effects on Soils and Restoration Strategies, 1st ed.; Cerdá, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, New Hamsphire, 2009; Volume 5, pp. 353–372. [Google Scholar]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Bakker, J.D.; Colasurdo, L.B.; Evans, J.R. Enhancing Garry oak seedling performance in a semiarid environment. Northwest Sci. 2012, 86, 300–309. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, C.A.; Leonard, L.P. Postplanting treatments increase growth of Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings. Restor. Ecol. 2007, 15, 212–222. [Google Scholar] [CrossRef]
- Luna, L.; Miralles, I.; Andrenelli, M.C.; Gispert, M.; Pellegrini, S.; Vignozzi, N.; Solé-Benet, A. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. CATENA 2016, 143, 256–264. [Google Scholar] [CrossRef]
- Dearden, F.M.; Dehlin, H.; Wardle, D.A.; Nilsson, M.C. Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence. Oikos 2006, 115, 453–462. [Google Scholar] [CrossRef]
- Boer, W.; De Folman, L.B.; Summerbell, R.C.; Boddy, L. Living in a fungal world: Impact of fungi on soil bacterial niche development. Fems. Microbiol. Rev. 2009, 29, 795–811. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Merhautova, V.; Petrankova, M.; Cajthaml, T.; Snajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 2010, 46, 177–182. [Google Scholar] [CrossRef]
- Crescimanno, G.; Iovino, M.; Provenzano, G. Influence of salinity and sodicity on soil structural and hydraulic characteristics. Soil Sci. Soc. Am. J. 1995, 59, 1701–1708. [Google Scholar] [CrossRef]
- Amezketa, E.; Aragües, R. Flocculation-Dispersion Behavior of Arid-Zone Soil Clays as Affected by Electrolyte Concentration and Composition; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid, Spain, 1995. [Google Scholar]
- Kabas, S.; Faz, A.; Acosta, J.A.; Zornoza, R.; Martínez-Martínez, S.; Carmona, D.M.; Bech, J. Effect of marble waste and pig slurry on the growth of native vegetation and heavy metal mobility in a mine tailing pond. J. Geochem. Explor. 2012, 123, 69–76. [Google Scholar] [CrossRef]
- Zornoza, R.; Faz, A.; Carmona, D.M.; Martínez, S.; Acosta, J.A. Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 2012, 22, 22–32. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Faz, A.; Bååth, E. Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma 2016, 272, 64–72. [Google Scholar] [CrossRef]
T0 | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Control | Inorganic fertilizer NPK | Pig slurry | Urban solid wastes | Woody pruning wastes |
Parameter | Pig Slurry | USW Compost | Woody Pruning Wastes |
---|---|---|---|
pH | 7.63 | 7.01 | 4.71 |
N (g/kg) | 27.7 | 12.95 | 5.1 |
P (g/kg) | 2.36 | 7.00 | 0.63 |
K (g/kg) | 3.84 | 3.81 | 0.63 |
Ca (g/kg) | 4.28 | 33.5 | 1.06 |
Mg (g/kg) | 0.76 | 2.25 | 0.11 |
Na (g/kg) | 0.88 | 1.3 | 0.016 |
Fe (mg/kg) | 252 | 10050 | 33 |
Cu (mg/kg) | 46.8 | 203 | 3.7 |
Zn (mg/kg) | 85.2 | 611 | 9.2 |
Treat. S1 | pH | CaCO3 (%) | Clay (%) | Silt (%) | Sand (%) | |||||
T0 | 8.9 ± 0.1 | a | 89 ± 1 | a | 32 ± 1 | a | 20 ± 1 | a | 48 ± 1 | ab |
T1 | 8.6 ± 0.1 | b | 72 ± 1 | b | 32 ± 1 | a | 21 ± 1 | a | 47 ± 1 | b |
T2 | 8.9 ± 0.1 | a | 85 ± 2 | cd | 32 ± 1 | a | 20 ± 1 | a | 48 ± 1 | ab |
T3 | 8.8 ± 0.1 | a | 85 ± 1 | c | 30 ± 1 | a | 20 ± 1 | a | 50 ± 1 | a |
T4 | 9.0 ± 0.1 | a | 87 ± 1 | d | 31 ± 1 | a | 22 ± 1 | a | 47 ± 1 | b |
ANOVA | *** | *** | ns | ns | ns | |||||
Treat. S2 | pH | CaCO3 (%) | Clay (%) | Silt (%) | Sand (%) | |||||
T0 | 8.8 ± 0.1 | a | 89 ± 1 | a | 31 ± 1 | a | 21 ± 1 | a | 48 ± 1 | a |
T1 | 8.7 ± 0.1 | a | 70 ± 1 | b | 32 ± 1 | a | 21 ± 1 | a | 47 ± 1 | a |
T2 | 8.8 ± 0.1 | a | 81 ± 1 | c | 31 ± 1 | a | 20 ± 1 | a | 49 ± 1 | a |
T3 | 8.9 ± 0.1 | a | 84 ± 1 | c | 30 ± 1 | a | 20 ± 1 | a | 50 ± 1 | a |
T4 | 9.1 ± 0.1 | b | 88 ± 1 | a | 31 ± 1 | a | 19 ± 1 | a | 50 ± 1 | a |
ANOVA | *** | *** | ns | ns | ns | |||||
Treat. S3 | pH | CaCO3 (%) | Clay (%) | Silt (%) | Sand (%) | |||||
T0 | 8.8 ± 0.1 | a | 89 ± 1 | a | 30 ± 1 | a | 20 ± 1 | a | 50 ± 1 | a |
T1 | 8.6 ± 0.1 | b | 76 ± 1 | b | 31 ± 1 | a | 21 ± 1 | a | 48 ± 1 | a |
T2 | 8.7 ± 0.1 | a | 81 ± 1 | cd | 32 ± 1 | a | 20 ± 1 | a | 48 ± 1 | a |
T3 | 8.9 ± 0.1 | a | 84 ± 1 | c | 30 ± 1 | a | 19 ± 1 | a | 51 ± 1 | a |
T4 | 9.2 ± 0.4 | c | 86 ± 1 | a | 30 ± 1 | a | 20 ± 1 | a | 50 ± 1 | a |
ANOVA | *** | *** | ns | ns | ns |
Treat. S1 | N (g/kg) | P (mg/kg) | Ca (g/kg) | Mg (g/kg) | K (g/kg) | Na (g/kg) | ||||||
T0 | 0.11 ± 0.01 | a | 5.9 ± 0.2 | a | 7.84 ± 0.08 | a | 0.63 ± 0.01 | a | 0.13 ± 0.02 | a | 0.80 ± 0.04 | a |
T1 | 0.83 ± 0.02 | b | 10.4 ± 0.1 | b | 7.05 ± 0.05 | b | 0.75 ± 0.02 | b | 0.23 ± 0.01 | b | 1.95 ± 0.01 | b |
T2 | 0.94 ± 0.01 | c | 11.4 ± 0.1 | c | 8.36 ± 0.08 | c | 0.70 ± 0.01 | c | 0.24 ± 0.03 | b | 1.70 ± 0.02 | c |
T3 | 0.66 ± 0.03 | d | 12.1 ± 0.1 | d | 6.70 ± 0.10 | d | 0.62 ± 0.04 | d | 0.23 ± 0.01 | b | 2.17 ± 0.02 | d |
T4 | 0.48 ± 0.02 | e | 9.6 ± 0.4 | e | 6.70 ± 0.23 | d | 0.61 ± 0.01 | d | 0.2 ± 0.01 | c | 2.09 ± 0.01 | e |
ANOVA | *** | *** | *** | ** | *** | *** | ||||||
Treat. S2 | N (g/kg) | P (mg/kg) | Ca (g/kg) | Mg (g/kg) | K (g/kg) | Na (g/kg) | ||||||
T0 | 0.11 ± 0.01 | a | 5.9 ± 0.1 | a | 7.14 ± 0.05 | a | 0.62 ± 0.01 | a | 0.13 ± 0.01 | a | 0.84 ± 0.05 | a |
T1 | 0.84 ± 0.01 | b | 8.0 ± 0.04 | b | 7.62 ± 0.14 | b | 0.73 ± 0.02 | b | 0.24 ± 0.01 | b | 1.94 ± 0.02 | b |
T2 | 0.75 ± 0.01 | c | 12.0 ± 0.1 | c | 7.63 ± 0.08 | b | 0.66 ± 0.01 | c | 0.24 ± 0.01 | b | 1.39 ± 0.01 | c |
T3 | 0.56 ± 0.02 | d | 15.3 ± 0.5 | d | 7.69 ± 0.10 | b | 0.65 ± 0.01 | c | 0.23 ± 0.01 | b | 1.96 ± 0.01 | b |
T4 | 0.41 ± 0.01 | e | 8.8 ± 0.1 | b | 7.00 ± 0.37 | a | 0.58 ± 0.01 | d | 0.17 ± 0.01 | c | 2.02 ± 0.02 | d |
ANOVA | *** | *** | *** | *** | *** | *** | ||||||
Treat. S3 | N (g/kg) | P (mg/kg) | Ca (g/kg) | Mg (g/kg) | K (g/kg) | Na (g/kg) | ||||||
T0 | 0.10 ± 0.02 | a | 3.4 ± 0.1 | a | 6.80 ± 0.08 | a | 0.58 ± 0.06 | ab | 0.13 ± 0.01 | a | 0.81 ± 0.02 | a |
T1 | 0.77 ± 0.02 | b | 6.9 ± 0.1 | b | 7.28 ± 0.10 | b | 0.72 ± 0.08 | b | 0.23 ± 0.02 | b | 1.62 ± 0.02 | b |
T2 | 0.92 ± 0.01 | c | 13.9 ± 0.1 | c | 7.60 ± 0.03 | c | 0.66 ± 0.07 | ab | 0.20 ± 0.01 | b | 1.39 ± 0.01 | c |
T3 | 0.74 ± 0.02 | b | 11.8 ± 0.1 | d | 7.40 ± 0.09 | d | 0.64 ± 0.60 | ab | 0.23 ± 0.02 | b | 1.96 ± 0.01 | d |
T4 | 0.57 ± 0.01 | d | 9.6 ± 0.1 | e | 6.79 ± 0.16 | a | 0.55 ± 0.09 | a | 0.20 ± 0.01 | b | 1.75 ± 0.01 | e |
ANOVA | *** | *** | *** | * | *** | *** |
Treat. S1 | Fe (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | |||
T0 | 26.8 ± 0.1 | a | 6.7 ± 0.1 | a | 2.6 ± 0.1 | a |
T1 | 40.2 ± 0.2 | b | 11.4 ± 0.1 | b | 2.3 ± 0.1 | b |
T2 | 41.3 ± 0.4 | c | 14.6 ± 0.1 | c | 3.6 ± 0.1 | c |
T3 | 37.6 ± 0.2 | d | 11.6 ± 0.1 | b | 4.4 ± 0.1 | d |
T4 | 34.0 ± 0.4 | e | 11.3 ± 0.2 | b | 2.8 ± 0.2 | a |
ANOVA | *** | *** | *** | |||
Treat. S2 | Fe (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | |||
T0 | 23.3 ± 0.1 | a | 6.2 ± 0.4 | a | 2.4 ± 0.1 | a |
T1 | 38.6 ± 0.3 | b | 10.5 ± 0.1 | b | 2.4 ± 0.1 | a |
T2 | 40.0 ± 0.7 | c | 14.5 ± 0.7 | c | 4.2 ± 0.2 | b |
T3 | 38.1 ± 0.1 | b | 11.4 ± 0.3 | d | 3.5 ± 0.2 | c |
T4 | 33.7 ± 0.1 | d | 10.1 ± 0.1 | e | 2.6 ± 0.3 | d |
ANOVA | *** | *** | *** | |||
Treat. S3 | Fe (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | |||
T0 | 24.1 ± 0.6 | a | 6.0 ± 0.2 | a | 2.7 ± 0.3 | a |
T1 | 45.0 ± 0.1 | b | 11.6 ± 0.3 | b | 2.6 ± 0.2 | a |
T2 | 42.6 ± 0.1 | c | 15.3 ± 0.2 | c | 4.7 ± 0.1 | b |
T3 | 38.8 ± 0.1 | d | 10.4 ± 0.1 | d | 3.3 ± 0.1 | c |
T4 | 31.9 ± 0.6 | e | 12.0 ± 0.1 | b | 2.1 ± 0.1 | d |
ANOVA | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñaranda Barba, M.Á.; Alarcón Martínez, V.; Gómez Lucas, I.; Navarro-Pedreño, J. Restoration Techniques Applied in Open Mining Area to Improve Agricultural Soil Fertility. AgriEngineering 2023, 5, 1599-1613. https://doi.org/10.3390/agriengineering5030099
Peñaranda Barba MÁ, Alarcón Martínez V, Gómez Lucas I, Navarro-Pedreño J. Restoration Techniques Applied in Open Mining Area to Improve Agricultural Soil Fertility. AgriEngineering. 2023; 5(3):1599-1613. https://doi.org/10.3390/agriengineering5030099
Chicago/Turabian StylePeñaranda Barba, María Ángeles, Virginia Alarcón Martínez, Ignacio Gómez Lucas, and Jose Navarro-Pedreño. 2023. "Restoration Techniques Applied in Open Mining Area to Improve Agricultural Soil Fertility" AgriEngineering 5, no. 3: 1599-1613. https://doi.org/10.3390/agriengineering5030099
APA StylePeñaranda Barba, M. Á., Alarcón Martínez, V., Gómez Lucas, I., & Navarro-Pedreño, J. (2023). Restoration Techniques Applied in Open Mining Area to Improve Agricultural Soil Fertility. AgriEngineering, 5(3), 1599-1613. https://doi.org/10.3390/agriengineering5030099