Triangular Greenness Index to Evaluate the Effects of Dicamba in Soybean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Soybean Cultivar
2.2. Planting Media and Fertilization
2.3. Herbicide Treatments
2.4. Evaluations
- 0%—no effect, normal plant;
- 10%—slight crinkle of leaflets of the terminal leaf;
- 20%—cupping of terminal leaflets, slight crinkle of leaflets of the second leaf, growth rate normal;
- 30%—leaflets of two terminal leaves cupped, expansion of terminal leaf suppressed slightly;
- 40%—malformation and growth suppression of two terminal leaves, terminal leaf size less than one-half of control plants. New axillary leaves developing at a substantially reduced rate;
- 50%—no expansion of terminal leaf, second leaf size one-half of control plants. Axillary leaf buds unable to open and develop;
- 60%—slight terminal growth, necrosis of terminal leaf, and axillary bud apparent, chlorosis, and necrosis in axillary leaf clusters;
- 70%—terminal bud dead, substantial, strongly malformed axillary shoot growth;
- 80%—limited axillary shoot growth, leaves present at the time of treatment chlorotic with slight necrosis;
- 90%—plant dying, leaves mostly necrotic;
- 100%—dead plant.
2.5. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Triangular Greenness Index
3.3. Injury Scale
3.4. Shoot Mass
3.5. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Green, J.M.; Owen, M.D. Herbicide-resistant crops: Utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 2011, 59, 5819–5829. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M. The rise and future of glyphosate and glyphosate-resistant crops: Glyphosate and glyphosate-resistant crops. Pest Manag. Sci. 2018, 74, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Clay, S.A. Near-term challenges for global agriculture: Herbicide-resistant weeds. Agron. J. 2021, 113, 4463–4472. [Google Scholar] [CrossRef]
- Service, R.F. What happens when weed killers stop killing? Science 2013, 341, 1329. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Herbicide-Resistant Weed Database. 2022. Available online: http://www.weedscience.com (accessed on 10 January 2022).
- Egan, J.F.; Mortensen, D.A. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxicol. Chem. 2012, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Byker, H.P.; Soltani, N.; Robinson, D.E.; Tardif, F.J.; Lawton, M.B.; Sikkema, P.H. Control of glyphosate-resistant horseweed (Conyza canadensis) with dicamba applied preplant and postemergence in dicamba-resistant soybean. Weed Technol. 2013, 27, 492–496. [Google Scholar] [CrossRef]
- Hamurcu, M.; Arslan, D.; Hakki, E.E.; Ozcan, M.M.; Pandey, A.; Khan, M.K.; Gezgin, S. Boron application affecting the yield and fatty acid composition of soybean genotypes. Plant Soil Environ. 2019, 65, 238–243. [Google Scholar] [CrossRef]
- Companhia Nacional de Abastecimento (Conab). Acompanhamento da Safra Brasileira de Grãos. 6 Levantamento, Março 2022. 2022. Available online: https://www.conab.gov.br/info-agro/safras/graos (accessed on 6 April 2022).
- Lemes, E.; Castro, L.; Assis, R. Doenças da Soja: Melhoramento Genético e Técnicas de Manejo; Editora Milenium: Campinas, Brazil, 2015. [Google Scholar]
- Ogle, H.J. Abiotic diseases of plants. In Plant Pathogens and Plant Diseases; Brown, J.F., Ogle, H.J., Eds.; University of New England Printery: Armidale, NSW, Australia, 1997; pp. 156–171. [Google Scholar]
- USDA. The Use of Genetically Engineered Dicamba-Tolerant Soybean Seeds has Increased Quickly, Benefiting Adopters but Damaging Crops in Some Fields. 2019. Available online: https://www.ers.usda.gov/amber-waves/2019/october/the-use-of-genetically-engineered-dicamba-tolerant-soybean-seeds-has-increased-quickly-benefiting-adopters-but-damaging-crops-in-some-fields/ (accessed on 1 August 2022).
- Kniss, A.R. Soybean response to dicamba: A meta-analysis. Weed Technol. 2018, 32, 507–512. [Google Scholar] [CrossRef]
- Egan, J.F.; Barlow, K.M.; Mortesen, D.A. A meta-analysis on the effects of 2,4-d and dicamba drift on soybean and cotton. Weed Sci. 2014, 62, 193–206. [Google Scholar] [CrossRef]
- Foster, M.R.; Griffin, J.L. Changes in soybean yield components in response to dicamba. Agrosyst. Geosci. Environ. Agrosyst. 2019, 2, 190026. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1978, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.G.; Cunha, J.P.A.R.; Lemes, E.M. Dicamba injury on soybean assessed visually and with spectral vegetation index. AgriEngineering 2021, 3, 240–250. [Google Scholar] [CrossRef]
- Polivova, M.; Brook, A. Detailed investigation of spectral vegetation indices for fine field-scale phenotyping. In Vegetation Index and Dynamics; Carmona, E.C., Ortiz, A.C., Canas, R.Q., Musarella, C.M., Eds.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/76442 (accessed on 12 May 2022).
- Bhagat, V.S.; Kadam, A.; Kumar, S. Analysis of remote sensing based vegetation indices (VIs) for unmanned aerial system (UAS): A review. Remote Sens. Land. 2019, 3, 58–73. [Google Scholar] [CrossRef]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography. Front. Plant Sci. 2021, 11, 1975. [Google Scholar] [CrossRef] [PubMed]
- Broge, N.H.; Leblanc, E. Comparing predictive power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Christoffoleti, P.J.; Figueiredo, M.R.A.; Peres, L.E.P.; Nissen, S.; Gaines, T. Auxinic herbicides mechanisms of action and weed resistance: A look into recent plant science advances. Sci. Agric. 2015, 72, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes, G.; Leonardo, J.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Tuite, J. Plant Pathological Methods: Fungi and Bacteria; Burgess Publishing: Minneapolis, MN, USA, 1969. [Google Scholar]
- Vale, F.X.R.; Filho, E.F.; Liberato, J.R. Quant—Quantificação de Doenças; Editora UFV: Viçosa, Brazil, 2001. [Google Scholar]
- Del Ponte, E.M.; Pethybridge, S.J.; Bock, C.H.; Michereff, S.J.; Machado, F.J.; Spolti, P. Standard area diagrams for aiding severity estimation: Scientometrics, pathosystems and methodological trends in the last 25 years. Phytopathology 2017, 107, 1161–1174. [Google Scholar] [CrossRef] [Green Version]
- Behrens, R.; Lueschen, W.E. Dicamba volatility. Weed Sci. 1979, 27, 486–493. [Google Scholar] [CrossRef]
- Pearson, K. The grammar of science. Nature 1982, 46, 199–200. [Google Scholar] [CrossRef]
- Chambers, J.M.; Cleveland, W.S.; Kleiner, B.; Tukey, P.A. Graphical Methods for Data Analysis; Wadsworth and Brooks/Cole: Belmont, CA, USA, 1983. [Google Scholar]
- Pimentel-Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos e Florestais: Exposição Com Exemplos e Orientações Para Uso de Aplicativos; FEALQ Editora: Piracicaba, Brazil, 2002. [Google Scholar]
- Filho, D.B.F.; Silva, J.A., Jr. Desvendando os mistérios do coeficiente de correlação de Pearson (r). R. Política Hoje 2009, 18, 1–33. [Google Scholar]
- Callegari-Jacques, S.M. Bioestatística: Princípios e Aplicações; Artmed Editora: Porto Alegre, Brazil, 2009. [Google Scholar]
- Andersen, S.M.; Clay, S.A.; Wrage, L.J.; Matthees, D. Soybean foliage residues of dicamba and 24-D and correlation to application rates and yield. Agron. J. 2004, 96, 750–760. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Scott, J.E.; Knezevic, S.Z. Glyphosate-resistant soybean response to micro-rates of three dicamba-based herbicides. Agrosyst. Geosci. Environ. 2019, 2, 180052. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K. Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yuan, L.; Reddy, K.N.; Zhang, J. In-situ plant hyperspectral sensing for early detection of soybean injury from dicamba. Biosyst. Eng. 2016, 149, 51–59. [Google Scholar] [CrossRef]
- Al-Khatib, K.; Peterson, D. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 1999, 13, 264–270. [Google Scholar] [CrossRef]
- Silva, D.R.O.; Silva, E.D.N.; Aguiar, A.C.M.; Novello, B.D.; Silva, A.A.; Basso, C.J. Drift of 2,4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Cienc. Rural. 2018, 48, e20180179. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Triplett, G.B.; Sobotka, F.E. Dicamba injury to soybean. Agron. J. 1989, 81, 637–643. [Google Scholar] [CrossRef]
- Robinson, A.P.; Simpson, D.M.; Johnson, W.G. Response of glyphosate-tolerant soybean yield components to dicamba exposure. Weed Sci. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Weber, J.; Kunz, C.; Peteinatos, G.; Santel, H.J.; Gerhards, R. Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. Weed Technol. 2017, 31, 523–535. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Weber, J.F.; Gerhards, R. Early identification of herbicide stress in soybean (Glycine max (L.) Merr.) using chlorophyll fluorescence imaging technology. Sensors 2017, 18, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gage, K.L.; Krausz, R.F.; Walters, S.A. Emerging challenges for weed management in herbicide-resistant crops. Agriculture 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
Analysis | df | Injury Scale | TGI | Shoot Dry Mass |
---|---|---|---|---|
SW | 0.522 | 0.965 + | 0.982 + | |
----------------------------- F test ----------------------------- | ||||
Dicamba doses | 6 | 5890 ** | 9.6 ** | 489 ** |
Error | 77 | |||
CV (%) | 4.36 | 24.53 | 12.18 | |
Regression order | First (R2) | 63.3% ** | 55.0% ** | 54.9% ** |
Second (R2) | 98.6% ** | 85.0% ** | 94.8% ** |
Injury Scale | TGI | Shoot Dry Mass | |
---|---|---|---|
Injury scale | 1 | −0.609 ** | −0.953 ** |
TGI | 1 | 0.625 ** | |
Shoot dry mass | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemes, E.M.; Coelho, L.; Andrade, S.L.d.; Oliveira, A.d.S.; Marques, M.G.; Nascimento, F.M.A.d.; Cunha, J.P.A.R.d. Triangular Greenness Index to Evaluate the Effects of Dicamba in Soybean. AgriEngineering 2022, 4, 758-769. https://doi.org/10.3390/agriengineering4030049
Lemes EM, Coelho L, Andrade SLd, Oliveira AdS, Marques MG, Nascimento FMAd, Cunha JPARd. Triangular Greenness Index to Evaluate the Effects of Dicamba in Soybean. AgriEngineering. 2022; 4(3):758-769. https://doi.org/10.3390/agriengineering4030049
Chicago/Turabian StyleLemes, Ernane Miranda, Lísias Coelho, Samuel Lacerda de Andrade, Aline dos Santos Oliveira, Matheus Gregorio Marques, Felipe Mauro Assis do Nascimento, and João Paulo Arantes Rodrigues da Cunha. 2022. "Triangular Greenness Index to Evaluate the Effects of Dicamba in Soybean" AgriEngineering 4, no. 3: 758-769. https://doi.org/10.3390/agriengineering4030049
APA StyleLemes, E. M., Coelho, L., Andrade, S. L. d., Oliveira, A. d. S., Marques, M. G., Nascimento, F. M. A. d., & Cunha, J. P. A. R. d. (2022). Triangular Greenness Index to Evaluate the Effects of Dicamba in Soybean. AgriEngineering, 4(3), 758-769. https://doi.org/10.3390/agriengineering4030049