Comparing Reference Evapotranspiration Calculated in ETo Calculator (Ukraine) Mobile App with the Estimated by Standard FAO-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed]
- Lykhovyd, P. Irrigation needs in Ukraine according to current aridity level. J. Ecol. Eng. 2021, 22, 11–18. [Google Scholar] [CrossRef]
- Vozhehova, R.A.; Kokovikhin, S.V.; Lykhovyd, P.V.; Vozhehov, S.H.; Drobitko, A.V. Artificial croplands and natural biosystems in the conditions of climatic changes: Possible problems and ways of their solving in the South Steppe zone of Ukraine. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 331–340. [Google Scholar]
- WEAP21. Available online: https://www.weap21.org/WebHelp/index.html#Mabia_Alg_ETRef.htm (accessed on 21 June 2022).
- Peng, Y.; Xiao, Y.; Fu, Z.; Dong, Y.; Zheng, Y.; Yan, H.; Li, X. Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization. J. Clean. Prod. 2019, 230, 365–377. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric. Water Manag. 2001, 50, 9–25. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Beven, K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J. Hydrol. 1979, 44, 169–190. [Google Scholar] [CrossRef]
- Howell, T.A.; Evett, S.R. The Penman-Monteith method. Evapotranspiration: Determination of Consumptive Use. In Water Rights Proceedings, Continuing Legal Education in Colorado; USDA Agricultural Research Service, Inc.: Washington, DC, USA, 2004. [Google Scholar]
- Gocic, M.; Trajkovic, S. Software for estimating reference evapotranspiration using limited weather data. Comput. Electron. Agric. 2010, 71, 158–162. [Google Scholar] [CrossRef]
- Akumaga, U.; Alderman, P.D. Comparison of Penman–Monteith and Priestley-Taylor Evapotranspiration Methods for Crop Modeling in Oklahoma. Agron. J. 2019, 111, 1171–1180. [Google Scholar] [CrossRef]
- Shengfeng, W.; Ai-Wang, D.; Zhanyu, Z. Comparison and analysis of Hargreaves equation and Penman-Monteith equation during the different hydrological years in the semi-arid region. Trans. Chin. Soc. Agric. Eng. 2008, 135007713. [Google Scholar]
- Maldonado Jr., W.; Borges Valeriano, T.T.; de Souza Rolim, G. EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Comput. Electron. Agric. 2019, 156, 187–192. [Google Scholar] [CrossRef]
- Lykhovyd, P.V.; Piliarska, O.O.; Biliaieva, I.M. The possibilities of using mobile application EVAPO for operational assessment of evapotranspiration in the field conditions. Tavr. Sci. Herald. 2020, 116, 10–14. [Google Scholar] [CrossRef]
- Vozhehova, R.A.; Lykhovyd, P.V. Evaluation of the accuracy of evapotranspiration computation in the EVAPO mobile application. Technol. Technol. Asp. Dev. Test. New Mach. Technol. Agric. Ukr. 2021, 43, 120–125. [Google Scholar]
- Lykhovyd, P. Reference evapotranspiration calculation in the zone of Ukrainian Polisia using air temperature. Biosci. Biotechnol. Res. Commun. 2020, 13, 1834–1836. [Google Scholar] [CrossRef]
- Lykhovyd, P.V. Assessment of reference evapotranspiration in the South of Ukraine by air temperature. Int. J. Emerg. Technol. 2020, 11, 278–282. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Lipinsky, V.M.; Diachuk, V.A.; Babichenko, V.M. Climate of Ukraine; Rayevsky Publishing House: Kyiv, Ukraine, 2003. [Google Scholar]
- Galik, O.I.; Basiuk, T.O. Guidelines “Reference Book on Ukrainian Climate” for Conduction of Practical, Computation, Diploma and Master’s Degree Work for the Students of Full and Correspondent Education Forms of Life Sciences Specialties of the NUWEEM; NUWEEM Publishing House: Rivne, Ukraine, 2014. [Google Scholar]
- Polupan, M.I.; Solovei, V.B.; Velychko, V.A. Classification of the Soils of Ukraine; Agrarna Nauka: Kyiv, Ukraine, 2005. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Correlation: A measure of relationship. Appl. Stat. Behav. Sci. 1998, 4, 105–131. [Google Scholar]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Linear Statistical Models; Irwin: Chicago, IL, USA, 1996. [Google Scholar]
- Pontius, R.G.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2008, 15, 111–142. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int. J. Geogr. Inf. Sci. 2006, 20, 89–102. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Statistics by Jim. Available online: https://statisticsbyjim.com/regression/interpret-r-squared-regression/ (accessed on 21 June 2022).
- Blasco, B.C.; Moreno, J.J.M.; Pol, A.P.; Abad, A.S. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 2013, 25, 500–506. [Google Scholar]
- Xu, C.Y.; Chen, D. Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol. Processes 2005, 19, 3717–3734. [Google Scholar] [CrossRef]
- Malone, R.W.; Bonta, J.V.; Stewardson, D.J.; Nelsen, T. Error analysis and quality improvement of the Coshocton weighing lysimeters. Trans. ASAE 2000, 43, 271–280. [Google Scholar] [CrossRef]
- Cruz-Blanco, M.; Galivan, P.; Santos, C.; Lorite, I.J. Assessment of reference evapotranspiration using remote sensing and forecasting tools under semi-arid conditions. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 280–289. [Google Scholar] [CrossRef]
- Berengena, J.; Gavilán, P. Reference evapotranspiration estimation in a highly advective semiarid environment. J. Irrig. Drain. Eng. ASCE 2005, 131, 147–163. [Google Scholar] [CrossRef]
- López-Urrea, R.; Martín De Santa Olalla, F.; Fabeiro, C.; Moratalla, A. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric. Water Manag. 2006, 85, 15–26. [Google Scholar] [CrossRef]
- Pereira, A.R.; Pruitt, W.O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric. Water Manag. 2004, 66, 251–257. [Google Scholar] [CrossRef]
- Gavilán, P.; Berengena, J.; Allen, R.G. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions. Agric. Water Manag. 2006, 89, 275–286. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Trigo, I.F.; Jitan, M.A.; Temesgen, E.N.; van der Tol, C.; Gieske, A.S.M. Reference crop evapotranspiration derived from geo-stationary satellite imagery—A case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan. Hydrol. Earth Syst. Sci. Discuss. 2010, 14, 2219–2228. [Google Scholar] [CrossRef]
- Voogt, M.P. Meteolook, A Physically Based Regional Distribution Model for Measured Meteorological Variables. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2006. [Google Scholar]
- Vozhehova, R.A.; Lavrynenko, Y.O.; Kokovikhin, S.V.; Lykhovyd, P.V.; Biliaieva, I.M.; Drobitko, A.V.; Nesterchuk, V.V. Assessment of the CROPWAT 8.0 software reliability for evapotranspiration and crop water requirements calculations. J. Water Land Dev. 2018, 39, 147–152. [Google Scholar] [CrossRef]
- Lavrenko, S.; Lykhovyd, P.; Lavrenko, N.; Ushkarenko, V.; Maksymov, M. Beans (Phaseolus vulgaris L.) yields forecast using normalized difference vegetation index. Int. J. Agric. Technol. 2022, 18, 1033–1044. [Google Scholar]
- Hess, T.M. Potential Evapotranspiration [DAILYNET]; Silsoe College: Silsoe, UK, 1996. [Google Scholar]
- Ballesteros, R.; Ortega, J.F.; Moreno, M.A. FORETo: New software for reference evapotranspiration forecasting. J. Arid. Environ. 2016, 124, 128–141. [Google Scholar] [CrossRef]
Statistical Index | Region of Ukraine | |||||
---|---|---|---|---|---|---|
Kherson | Mykolaiv | Dnipropetrovsk | Cherkasy | Chernihiv | Uzhhorod (Zakarpattia) | |
n | 322 | 321 | 300 | 303 | 299 | 325 |
R | 0.93 | 0.93 | 0.92 | 0.91 | 0.92 | 0.91 |
R2 | 0.86 | 0.87 | 0.84 | 0.83 | 0.86 | 0.82 |
RMSE (mm/day) | 0.75 | 0.74 | 0.81 | 0.80 | 0.74 | 0.77 |
MAE (mm/day) | 0.61 | 0.60 | 0.70 | 0.64 | 0.62 | 0.63 |
MAPE (%) | 18.58 | 18.07 | 20.69 | 20.86 | 22.22 | 25.50 |
Statistical Index | Region of Ukraine | |||||
---|---|---|---|---|---|---|
Kherson | Mykolaiv | Dnipropetrovsk | Cherkasy | Chernihiv | Uzhhorod (Zakarpattia) | |
n | 10 | 9 | 9 | 9 | 9 | 11 |
R | 0.96 | 0.98 | 0.97 | 0.97 | 0.97 | 0.94 |
R2 | 0.93 | 0.95 | 0.95 | 0.94 | 0.94 | 0.88 |
RMSE (mm/day) | 0.61 | 0.50 | 0.57 | 0.57 | 0.56 | 0.72 |
MAE (mm/day) | 0.51 | 0.33 | 0.47 | 0.46 | 0.50 | 0.59 |
MAPE (%) | 15.04 | 8.96 | 12.90 | 13.45 | 16.81 | 24.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lykhovyd, P. Comparing Reference Evapotranspiration Calculated in ETo Calculator (Ukraine) Mobile App with the Estimated by Standard FAO-Based Approach. AgriEngineering 2022, 4, 747-757. https://doi.org/10.3390/agriengineering4030048
Lykhovyd P. Comparing Reference Evapotranspiration Calculated in ETo Calculator (Ukraine) Mobile App with the Estimated by Standard FAO-Based Approach. AgriEngineering. 2022; 4(3):747-757. https://doi.org/10.3390/agriengineering4030048
Chicago/Turabian StyleLykhovyd, Pavlo. 2022. "Comparing Reference Evapotranspiration Calculated in ETo Calculator (Ukraine) Mobile App with the Estimated by Standard FAO-Based Approach" AgriEngineering 4, no. 3: 747-757. https://doi.org/10.3390/agriengineering4030048
APA StyleLykhovyd, P. (2022). Comparing Reference Evapotranspiration Calculated in ETo Calculator (Ukraine) Mobile App with the Estimated by Standard FAO-Based Approach. AgriEngineering, 4(3), 747-757. https://doi.org/10.3390/agriengineering4030048