Engaging Young People in the Development of Innovative Nature-Inspired Technologies for Carbon Sequestration in Cities: Case Studies from Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sustainable Living Innovators—Motivation
2.2. The Role of Nature in Carbon Neutrality in Cities
2.2.1. In Situ Measurements
2.2.2. In-Process Measurements
Porto City | Loulé Municipality | |
---|---|---|
Area (ha) | 4035.39 | 76,367 |
Population (inhabitants) | 231,800 | 72,332 |
Density (people/km2) | 575 | 10 |
Köppen–Geiger climate classification | Mediterranean Csb | Mediterranean Csa |
Main economic activities | From the tertiary sector: health, tourism, commerce, and business services linked to ICT. | From the primary sector: agriculture, fisheries, and salt production. From the tertiary sector: tourism. |
Carbon emissions per capita (t/year) | 2.04 | 1.59 |
Green area per capita (m2) | 14.2 | 9675 |
Main environmental constraints | Air pollution due to road traffic, heat waves, urban flooding due to extreme precipitation events, an increase in Douro River flow, and strong sea waves; a rise in mean sea level, storms or tornadoes, landslide [42] | Decrease in mean annual precipitation and water scarcity, extreme precipitation events with urban flooding, heat waves; wildfires, rise in mean sea level and coastal erosion, and biodiversity loss [43] |
2.3. Sustainable Living Innovators—Empowerment
3. Results and Discussion
3.1. Ecosystem Service Quantification
3.1.1. Parque da Cidade, Porto
3.1.2. Jardim das Comunidades—Almancil, Loulé
3.1.3. Comparison of the Role of P. pinea in Porto versus Loulé
3.1.4. Hydrological Effects of Urban Trees
3.2. Carbon Sequestration by Nature in the Two Urban Contexts
3.3. Technology and Nature towards Carbon Neutrality
- They should be modular and reconfigurable, responding to the atmospheric pollutants in different parts of the city.
- They should have a cute and innovative design integrated into the city’s landscape and optimize the functioning of selected native plants using technology.
- They should be built with low-carbon materials and function with eco-efficiency, including energy autonomy and water reuse for irrigation.
4. Final Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Database.earth. 2024. Available online: https://database.earth/population (accessed on 5 January 2024).
- UN-DESA, United Nations Department of Economic and Social Affairs. World Population Prospects 2022. Population Division. Summary of Results. 2022. Available online: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022. (accessed on 4 September 2023).
- Brauer, M.; Casadei, B.; Harrington, R.A.; Kovacs, R.; Sliwa, K.; WHF Air Pollution Expert Group. Taking a Stand Against Air Pollution. The Impact on Cardiovascular Disease. J. Am. Coll. Cardiol. 2021, 77, 1684–1688. [Google Scholar] [CrossRef]
- WHO, World Health Organization. Urban Health Initiative. Improving Air Quality and Health in Cities. Health Impacts. 2021. Available online: https://www.who.int/initiatives/urban-health-initiative/health-impacts (accessed on 6 September 2023).
- Guzmán, O.; Tarím-Carrasco, P.; Suárez-Varela, M.M.; Jiménez-Guerrero, P. Effects of air pollution on dementia over Europe for present and future climate change scenarios. Environ. Res. 2022, 204, 112012. [Google Scholar] [CrossRef]
- Vermeulen, A.; Kutsch, W.L.; Parampil, S.R. Carbon emissions and sinks vary between the years. Fluxes 2023, 2, 13–17. [Google Scholar]
- Intergovernmental Panel on Climate Change—IPCC. Climate Change 2023. Synthesis Report. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (accessed on 4 December 2023).
- Kutsch, W.L. Nature-based carbon sinks. Fluxes 2023, 2, 5–11. [Google Scholar]
- Luhtaniemi, M. Forest carbon sinks under pressure. Fluxes 2023, 2, 19–25. [Google Scholar]
- Ritchie, H.; Roser, M. Urbanization. OurWorld in Data.org. 2018. Available online: https://ourworldindata.org/urbanization (accessed on 4 September 2023).
- United Nations Environment Program. Annual Report 2022. Available online: https://www.unep.org/resources/annual-report-2022 (accessed on 4 September 2023).
- Sesini, G.; Castiglioni, C.; Lozza, E. New Trendsa an Patterns in Sustainable Consumption: A Systematic Review and Research Agenda. Sustainability 2020, 12, 5935. [Google Scholar] [CrossRef]
- Balogun, A.L.; Tella, A.; Baloo, L.; Adebisi, N. A review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information science. Urban Clim. 2021, 40, 100989. [Google Scholar] [CrossRef]
- Coelho, S.; Rafael, S.; Lopes, D.; Miranda, A.I.; Ferreira, J. How changing climate may influence air poillution control strategies for 2030? Sci. Total Environ. 2021, 758, 143911. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.; Alves, P.; Gonçalves, J.; Nowak, D.J.; Hoehn, R.; Farinha-Marques, P.; Cunha, M. Assessing how green space types affect ecosystem services in Porto, Portugal. Landsc. Urban Plan. 2018, 170, 195–208. [Google Scholar] [CrossRef]
- Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef]
- EEA, European Environment Agency. Air Quality in Europe 2022. Web Report. 2022. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2022. (accessed on 6 September 2023).
- WHO, World Health Organization. New WHO Global Air Quality Guidelines. 2021. Available online: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution (accessed on 7 September 2023).
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef]
- Li, L.; Bergen, J.M. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- UNEP. Climate Action. Press Release. 2021. Available online: https://www.unep.org/news-and-stories/press-release/covid-19-caused-only-temporary-reduction-carbon-emissions-un-report (accessed on 4 September 2023).
- Ahlgren, K.; Kutsch, W.L.; Parampil, S.R. Nature-based carbon sinks have a dual role in climate action. Fluxes 2023, 2, 7–12. [Google Scholar]
- Spotswood, E.N.; Beller, E.E.; Grossinger, R.; Grenier, J.L.; Heller, N.E.; Aronson, M.F.J. The Biological Deserts Fallacy: Cities in Their Landscapes Contribute More than We Think to Regional Biodiversity. BioScience 2021, 71, 148–160. [Google Scholar] [CrossRef]
- Othman, R.; Kasim, S.Z.A. Assessment of Plant Materials Carbon Sequestration Rate for Horizontal and Vertical Landscape Design. Int. J. Environ. Sci. Dev. 2016, 7, 410–414. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.; Fang, H.; Zhou, G.; Xu, X.; Zhou, Y.; Tao, J.; Ji, B.; Xu, J.; Li, C.; et al. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci. Total Environ. 2018, 631–632, 619–626. [Google Scholar] [CrossRef]
- European Commission, EC. European Week of Regions and Cities. Implementing Inclusive and Just Nature-Based Solutions: An Interactive Workshop. 2022. Available online: https://europa.eu/regions-and-cities/programme/2022/sessions/2353 (accessed on 4 September 2023).
- Li, X.; Hu, Z.; Cao, J.; Xu, X. The impact of environmental accountability on air pollution: A public attention perspective. Energy Policy 2022, 161, 112733. [Google Scholar] [CrossRef]
- Kim, S.E.; Maamoun, N.; Gopinathan, N.; Urpelainen, J. The Sorry State of Research on Public Opinion about Air Pollution: A Systematic Review. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Hao, Y.; Zhang, Y. Does public opinion affect air quality? Evidence based on the monthly data of 109 prefecture-level cities in China. Energy Policy 2018, 116, 299–311. [Google Scholar] [CrossRef]
- Thomaes, S.; Grapsas, S.; Wetering, J.; Spitzer, J.; Poorthuis, A. Green teens: Understanding and promoting adolescents’ sustainable engagement. One Earth 2023, 6, 352–361. [Google Scholar] [CrossRef]
- Dabija, D.; Bejan, B.M.; Puscas, C. A qualitative Approach to the Sustainable Orientation of Generation Z in Retail: The Case of Romania. J. Risk Financ. Manag. 2020, 13, 152. [Google Scholar] [CrossRef]
- IUCN. Nature-Based Solutions. 2023. Available online: https://www.iucn.org/our-work/nature-based-solutions (accessed on 8 June 2023).
- Jordan, C.; Chawla, L. A coordinated research agenda for nature-based learning. In High-Quality Outdoor Learning: Evidence-Based Education Outside the Classroom for Children, Teachers and Society; Springer: Cham, Switzerland, 2022; pp. 29–46. [Google Scholar]
- Utkarsh, S. Integrating Nature in Education: Unlocking the Potential of Transformative Learning for Sustainability. Available online: https://networknature.eu/product/29478 (accessed on 18 September 2023).
- UNESCO. Youth Demands for Quality Climate Change Education. 2022. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000383615 (accessed on 18 September 2023).
- Kuo, M.; Barnes, M.; Jordan, C. Do experiences with nature promote learning? Converging evidence of a cause-and-effect relationship. In High-Quality Outdoor Learning; Springer: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar] [CrossRef]
- Kleespies, M.W.; Dierkes, P.W. Connection to nature of university students in the environmental field—An empirical study in 41 countries. Biol. Conserv. 2023, 283, 110093. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Y.; Huang, X. A new framework for analysis of the spatial patterns of 15-minute neighbourhood green space to enhance carbon sequestration performance: A case study in Nanjing, China. Ecol. Indic. 2023, 156, 111196. [Google Scholar] [CrossRef]
- IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0; IBM Corp.: Armonk, NY, USA, 2020. [Google Scholar]
- PORDATA. Statistics about Portugal and Europe. 2021. Available online: https://www.pordata.pt/en/home (accessed on 8 June 2023).
- Portuguese Environment Agency, APA. Distribuição Espacial de Emissões Nacionais. 2020. Available online: https://apambiente.pt/clima/distribuicao-espacial-de-emissoes-nacionais-2015-2017-e-2019 (accessed on 4 September 2023).
- Porto Municipality, EMAAC. Estratégia Municipal de Adaptação às alterações Climáticas. 2016. Available online: https://ambiente.cm-porto.pt/files/uploads/cms/1613123260-yGpy4093dh.pdf (accessed on 4 September 2023).
- Loulé Municipality, PMAC. Plano Municipal de Ação Climática. 2021. Available online: https://www.cm-loule.pt/pt/24253/pmac-de-loule.aspx (accessed on 4 September 2023).
- Weyens, N.; Thijs, S.; Popek, R.; Witters, N.; Przybysz, A.; Espenshade, J.; Gawronska, H.; Vangronsveld, J.; Gawronski, S. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int. J. Mol. Sci. 2015, 16, 25576–25604. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, Q.; Li, X. Promoting sustainable carbon sequestration of plants in urban greenspace by planting design: A case study in parks of Beijing. Urban For. Urban Green. 2022, 64, 127291. [Google Scholar] [CrossRef]
- Snehlata; Rajlaxmi, A.; Kumar, M. Urban tree carbon density and CO2 equivalent of National Zoological Park, Delhi. Environ. Monit Assess 2021, 193, 841. [Google Scholar] [CrossRef] [PubMed]
- Yousofpour, Y.; Abolhassani, L.; Hirabayashi, S.; Burgess, D.; Sabouni, M.S.; Daneshvarkakhki, M. Ecosystem services and economic values provided by urban park trees in the air polluted city of Mashhad. Sustain. Cities Soc. 2024, 101, 105110. [Google Scholar] [CrossRef]
- Vigevani, I.; Corsini, D.; Mori, J.; Pasquinelli, A.; Gibin, M.; Comin, S.; Szwałko, P.; Cagnolati, E.; Ferrini, F.; Fini, A. Particulate pollution capture by seventeen woody species growing in parks or along roads in two European cities. Sustainability 2022, 14, 1113. [Google Scholar] [CrossRef]
- Correia, P.J.; Guerreiro, J.F.; Pestana, M.; Martins-Loução, M.A. Management of carob tree orchards in Mediterranean ecosystems: Strategies for a carbon economy implementation. Agrofor. Syst. 2017, 91, 295–306. [Google Scholar] [CrossRef]
- Lopez-Bellido, P.J.; Lopez-Bellido, L.; Fernandez-Garcia, P.; Muñoz-Romero, V.; Lopez-Bellido, F.J. Assessment of carbon sequestration and the carbon footprint in olive groves in Southern Spain. Carbon Manag. 2016, 7, 161–170. [Google Scholar] [CrossRef]
- Proietti, S.; Sdringola, P.; Desideri, U.; Zepperelli, F.; Brunori, A.; Ilarioni, L.; Nasini, L.; Regni, L.; Proietti, P. Carbon footprint of an olive tree grove. Appl. Energy 2014, 127, 115–124. [Google Scholar] [CrossRef]
- Vourdoubas, J. Estimation of carbon sequestration from olive tree groves in the island of Crete, Greece. Int. J. Agric. Environ. Res. 2020, 6, 553–565. [Google Scholar] [CrossRef]
- Correia, A.; Tomé, M.; Pacheco, C.A.; Faias, S.P.; Dias, C.; Freire, J.; Carvalho, P.; Pereira, J.S. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. For. Syst. 2010, 19, 418–433. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- UN-Habitat. National Urban Policy. 2018. Available online: https://unhabitat.org/Programme/National-urban-policy (accessed on 9 January 2024).
- Lifang, C.; Lunche, W.; Sai, Q.; Lihuan, D.; Zhaoduo, W. Impactts of Temperature, Precipitation, and Human Activities on Vegetation and NDVI in Yangtze River Basin. Earth Sci. 2020, 45, 1905–1917. [Google Scholar] [CrossRef]
- Tehrani, N.A.; Farhanj, F.; Janalipour, N. Monitoring the Impacts of Human Activities on Urban Ecosystems Based on the Enhanced UCCLN (EUCCLN) Model. ISPRS Int. J. Geo-Inf. 2023, 12, 170. [Google Scholar] [CrossRef]
- Smith, I.A.; Templer, P.H.; Hutyra, L.R. Water sources for street trees in mesic urban environments. Sci. Total Environ. 2024, 908, 168411. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change, IPCC. AR6 Synthesis Report: Climate Change. 2023. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 6 September 2023).
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Portuguese Institute for Sea and Atmosphere. Climate Monitoring. 2022. Available online: https://www.ipma.pt/en/oclima/monitorizacao/index.jsp?selTipo=m&selVar=tx&selAna=an&selAno=2020 (accessed on 6 September 2023).
- Jia, X.; Han, H.; Feng, Y.; Song, P.; He, R.; Liu, Y.; Wang, P.; Zhang, K.; Du, C.; Ge, S.; et al. Scale-dependent and driving relationships between spatial features and carbon storage and sequestration in an urban park of Zhengzhou, China. Sci. Total Environ. 2023, 894, 164916. [Google Scholar] [CrossRef]
- Carbognani, M.; Tomaselli, M.; Petraglia, A. Interactions and Covariation of Ecological Drivers Control CO2 Fluxes in an Alpine Peatland. Wetlands 2023, 43, 44. [Google Scholar] [CrossRef]
- Wagner, O.; Tholen, L.; Nawothnig, L.; Albert-Seifried, S. Making school-based GHG-emissions tangible by student-led carbon footprint assessment program. Energies 2021, 14, 8558. [Google Scholar] [CrossRef]
Parque da Cidade, Porto | Cupressus lusitanica | Platanus hispanica | Metrosideros excelsa | Pinus pinea | ||
---|---|---|---|---|---|---|
Leaf area per tree (m2), min–max | 68.5–867 | 438–1240 | 164–946 | 310–449 | ||
C storage per tree (kg), mean ± SD | 2656 ± 2143 | 2461 ± 2808 | 4563 ± 3163 | 605 ± 286 | ||
Min-Max | 213–6045 | 673–7412 | 436–7500 | 247–950 | ||
CO2 sequest. per tree (kg/year), min–max | 22.7–206 | 4.4–280.3 | 78.0–726 | 33.3–88.3 | ||
Mean ± SD per leaf area (g/m2 year) | 246 ± 164 ab | 325 ± 214 ab | 540 ± 438 b | 154 ± 46 aA | ||
O2 production per tree (kg), min–max | 16.6–150 ab | 3.2–204 ab | 56.7–529 b | 24.3–64.3 aA | ||
Mean ± SD per leaf area (g/m2 year) | 179 ± 119 ab | 237 ± 156 ab | 393 ± 319 b | 112 ± 33 aA | ||
Air pollutant removal 1 Mean ± SD per leaf area (mg/m2 year) | Min–max per tree (g/year) | |||||
24.3 ± 0.1 CO | 1.7–21 a | 10.6–30.1 b | 4.00–23.0 a | 7.50–10.9 aA | ||
773 ± 1 O3 | 52.9–670 a | 339–959 b | 127–731 a | 240–347 aB | ||
509 ± 1 NO2 | 34.9–442 a | 223–631 b | 83.4–482 a | 158–229 aB | ||
144 ± 1 SO2 | 9.8–125 a | 62.9–178 b | 23.5–136 ab | 44.5–64.4 abB | ||
426 ± 1 PM10 | 29.2–369.5 a | 187–528 b | 69.8–403 a | 132–191 aB | ||
42.7 ± 0.1 PM2.5 | 2.9–37.1 a | 19.0–53.0 b | 7.00–40.4 a | 13.3–19.2 bB | ||
Jardim das Comunidades, Loulé | Ceratonia siliqua | Olea europaea | Pinus pinea | |||
Leaf area per tree (m2), min–max | 130–507 | 36.8–408 | 186–530 | |||
C storage per tree (kg), mean ± SD | 2339 ± 1163 | 2041 ± 1799 | 448 ± 275 | |||
Min–max | 768–4093 | 216–5095 | 187–939 | |||
CO2 sequest. per tree (kg/year), min–max | 7.3–36.8 | 34.7–1659 | 229–280 | |||
Mean ± SD per leaf area (g/m2 year) | 17.8 ± 13.7 a | 703 ± 759 b | 255 ± 18.7 abB | |||
O2 production per tree (kg), min–max | 2.1–3.8 a | 5.0–101 b | 37.8–95.3 abB | |||
Mean ± SD per leaf area (g/m2 year) | 13.3 ± 10.3 a | 512 ± 553 b | 185 ± 14 abB | |||
Air pollutant removal 1 Mean ± SD per leaf area (mg/m2 year) | Min–max per tree (g/year) | |||||
57.1 ± 0.1 CO | 7.4–28.9 a | 2.1–23.3 a | 10.6–30.2 aB | |||
1724 ± 1 O3 | 226–884 a | 64.0–711 a | 324–923 aA | |||
140 ± 1 NO2 | 18.2–71.1 a | 5.2–57.2 a | 26.1–74.2 aA | |||
105 ± 1 SO2 | 13.6–53.1 a | 3.8–42.7 a | 19.5–55.5 aA | |||
374 ± 1 PM10 | 48.5–190 a | 13.8–153 a | 69.6–198 aA | |||
28.3 ± 0.6 PM2.5 | 3.7–14.4 a | 1.0–11.6 a | 5.3–15.0 aA |
Parque da Cidade, Porto | Cupressus lusitanica | Platanus hispanica | Metrosideros excelsa | Pinus pinea | ||
---|---|---|---|---|---|---|
DBH, cm | Min–max 25.5–137 | Min–max 62.0–197 | Min–max 25.5–119 | Min–max 40.7–65.3 | ||
Height, m | 11.3–18.8 | 11.9–20.4 | 8.5–13.8 | 9.2–15.4 | ||
Crown height, m | 6.8–14.2 | 6.9–15.0 | 6.4–11.4 | 2.9–9.1 | ||
Potential evapotranspiration, m3/year | 4.3–54.1 | 27.3–77.3 | 10.2–59.0 | 19.3–28.0 | ||
Evaporation, m3/year | 0.7–9.1 | 4.6–13 | 1.7–9.9 | 3.3–4.7 | ||
Transpiration, m3/year | 1.3–16.1 | 8.1–23 | 3.0–17.6 | 5.8–8.3 | ||
Water intercepted, m3/year | 0.7–9.1 | 4.6–13.1 | 1.7–10.0 | 3.3–4.7 | ||
Runoff avoided, m3/year | 0.1–1.8 | 0.9–2.6 | 0.3–2.0 | 0.7–1.0 | ||
Jardim das Comunidades, Loulé | Ceratonia siliqua | Olea europaea | Pinus pinea | |||
DBH, cm | Min–max 56.0–127 | Min–max 27.7–109 | Min–max 33.0–67.0 | |||
Height, m | 6.8– 11.2 | 4.2–8.9 | 8.9–9.9 | |||
Crown height, m | 5.1–9.8 | 2.7–6.8 | 5.1–7.0 | |||
Crown width, m | 7.5–15.9 | 4.8–11.5 | 7.9–12.1 | |||
Potential evapotranspiration, m3/year | 16.6–64.8 | 4.7–52.1 | 23.7–67.7 | |||
Evaporation, m3/year | 0.6–2.3 | 0.2–1.8 | 0.8–2.4 | |||
Transpiration, m3/year | 8.8–34.5 | 2.5–27.8 | 12.7–36.1 | |||
Water intercepted, m3/year | 0.6–2.3 | 0.2–1.9 | 0.9–2.4 | |||
Runoff avoided, m3/year | 0.1–0.5 | 0.1–0.4 | 0.2–0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira da Silva, M.; Ferreira, L.; Sarmento, T.; Selada, C. Engaging Young People in the Development of Innovative Nature-Inspired Technologies for Carbon Sequestration in Cities: Case Studies from Portugal. Smart Cities 2024, 7, 445-459. https://doi.org/10.3390/smartcities7010017
Moreira da Silva M, Ferreira L, Sarmento T, Selada C. Engaging Young People in the Development of Innovative Nature-Inspired Technologies for Carbon Sequestration in Cities: Case Studies from Portugal. Smart Cities. 2024; 7(1):445-459. https://doi.org/10.3390/smartcities7010017
Chicago/Turabian StyleMoreira da Silva, Manuela, Lurdes Ferreira, Teresa Sarmento, and Catarina Selada. 2024. "Engaging Young People in the Development of Innovative Nature-Inspired Technologies for Carbon Sequestration in Cities: Case Studies from Portugal" Smart Cities 7, no. 1: 445-459. https://doi.org/10.3390/smartcities7010017
APA StyleMoreira da Silva, M., Ferreira, L., Sarmento, T., & Selada, C. (2024). Engaging Young People in the Development of Innovative Nature-Inspired Technologies for Carbon Sequestration in Cities: Case Studies from Portugal. Smart Cities, 7(1), 445-459. https://doi.org/10.3390/smartcities7010017