Sensors in Civil Engineering: From Existing Gaps to Quantum Opportunities
Abstract
:1. Introduction
2. Civil Engineering for the Cities of the Future
3. Civil Infrastructures Sensing: Challenges and Opportunities
3.1. Civil Infrastructures—Energy
3.1.1. The Challenges
3.1.2. The Potential of Quantum Sensing
3.2. Civil Infrastructures—Transportation
3.2.1. The Challenges
3.2.2. The Potential of Quantum Sensing
3.3. Civil Infrastructures—Water
3.3.1. The Challenges
3.3.2. The Potential of Quantum Sensing
3.4. Civil Infrastructures—Construction
3.4.1. The Challenges
3.4.2. The Potential of Quantum Sensing
4. Research Findings
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berglund, E.Z.; Monroe, J.G.; Ahmed, I.; Noghabaei, M.; Do, J.; Pesantez, J.E.; Fasaee, M.A.K.; Bardaka, E.; Han, K.; Proestos, G.T.; et al. Smart Infrastructure: A Vision for the Role of the Civil Engineering Profession in Smart Cities. J. Infrastruct. Syst. 2020, 26, 31200011–312000132. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Zhou, L.; Xu, J.; Wang, J.; Sang, Z. Progress of Standardization of Urban Infrastructure in Smart City. Standards 2022, 2, 417–429. [Google Scholar] [CrossRef]
- Gunturi, M. A review on the internet of things in civil engineering: Enabling technologies, applications and challenges. E3S Web Conf. 2021, 309, 01209. [Google Scholar] [CrossRef]
- Kantsepolsky, B.; Aviv, I.; Weitzfeld, R.; Bordo, E. Exploring quantum sensing potential for systems applications. IEEE Access 2023, 11, 31569–31582. [Google Scholar] [CrossRef]
- Kop, M.; Aboy, M.; De Jong, E.; Gasser, U.; Minssen, T.; Cohen, I.G.; Brongersma, M.; Quintel, T.; Floridi, L.; Laflamme, R. 10 Principles for Responsible Quantum Innovation. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4475556 (accessed on 30 December 2023).
- Hussain, H.; Javaid, M.B.; Khan, F.S.; Dalal, A.; Khalique, A. Optimal control of traffic signals using quantum annealing. Quantum Inf. Process. 2020, 19, 1–18. [Google Scholar] [CrossRef]
- Mešter, M. Potential of Quantum Technologies in the Energy Sector. In Proceedings of the 2023 23rd International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, 24–26 May 2023; pp. 1–6. [Google Scholar]
- Purohit, A.; Kaur, M.; Seskir, Z.C.; Posner, M.T.; Venegas-Gomez, A. Building a quantum-ready ecosystem. IET Quantum Commun. 2023, 2, 1–18. [Google Scholar] [CrossRef]
- Sambataro, O.; Costanzi, R.; Alves, J.; Caiti, A.; Paglierani, P.; Petroccia, R.; Munafo, A. Current Trends and Advances in Quantum Navigation for Maritime Applications: A Comprehensive Review. arXiv 2023, arXiv:2310.04729. [Google Scholar]
- Héder, M. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Innov. J. 2017, 22, 1–23. [Google Scholar]
- Cooke, A.K.; Champollion, C.; Le Moigne, N. First evaluation of an absolute quantum gravimeter (AQG# B01) for future field experiments. Geosci. Instrum. Methods Data Syst. 2021, 10, 65–79. [Google Scholar]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef]
- Smith, J.A. Qualitative Psychology: A Practical Guide to Research Methods; SAGE Publications Ltd.: London, UK, 2015; pp. 1–312. [Google Scholar]
- Machi, L.A.; McEvoy, B.T. The Literature Review: Six Steps to Success; Corwin Press: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Farag, S.G. Application of smart structural system for smart sustainable cities. In Proceedings of the 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Bohloul, S.M. Smart cities: A survey on new developments, trends, and opportunities. J. Ind. Integr. Manag. 2020, 5, 311–326. [Google Scholar] [CrossRef]
- Rozario, S.D.; Venkatraman, S.; Marimuthu, M.; Khaksar, S.M.S.; Subramani, G. Creating smart cities: A review for holistic approach. Appl. Syst. Innov. 2021, 4, 70. [Google Scholar] [CrossRef]
- Yusuf, Y.Y.; Suleiman, M.A. Smart Cities: The Cities of the Future. In Proceedings of the 8th International Congress on Humanities and Social Sciences in a Changing World Proceedings Book, İzmir, Turkey, 7–9 January 2023; Bzt Academy Publishing House: Turkey, Germany, 2023; pp. 309–319. [Google Scholar]
- UN-Habitat. Envisaging the Future of Cities the Diversity and Vision for the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- ISO 37152:2016; Smart Community Infrastructures-Common Framework for Development and Operation. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- ITU Standard No. Y.4201:2018; High-Level Requirements and Reference Framework of Smart City Platforms. International Telecommunication Union (ITU): Geneva, Switzerland, 2018.
- Kasznar, A.P.P.; Hammad, A.W.A.; Najjar, M.; Linhares Qualharini, E.; Figueiredo, K.; Soares, C.A.P.; Haddad, A.N. Multiple Dimensions of Smart Cities’ Infrastructure: A Review. Buildings 2021, 11, 73. [Google Scholar] [CrossRef]
- Puliafito, A.; Tricomi, G.; Zafeiropoulos, A.; Papavassiliou, S. Smart cities of the future as cyber physical systems: Challenges and enabling technologies. Sensors 2021, 21, 3349. [Google Scholar] [CrossRef] [PubMed]
- Pundir, A.; Singh, S.; Kumar, M.; Bafila, A.; Saxena, G.J. Cyber-Physical Systems Enabled Transport Networks in Smart Cities: Challenges and Enabling Technologies of the New Mobility Era. IEEE Access 2022, 10, 16350–16364. [Google Scholar] [CrossRef]
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R.; Chakrabartty, S.; Lajnef, N.; Alavi, A.H. A comprehensive review of self-powered sensors in civil infrastructure: State-of-the-art and future research trends. Eng. Struct. 2021, 234, 111963. [Google Scholar] [CrossRef]
- Akram, M.W.; Zublie, M.F.M.; Hasanuzzaman, M.; Rahim, N.A. Global Prospects, Advance Technologies and Policies of Energy-Saving and Sustainable Building Systems: A Review. Sustainability 2022, 14, 1316. [Google Scholar] [CrossRef]
- Khalil, M.; McGough, A.S.; Pourmirza, Z.; Pazhoohesh, M.; Walker, S. Machine Learning, Deep Learning and Statistical Analysis for forecasting building energy consumption—A systematic review. Eng. Appl. Artif. Intell. 2022, 115, 105287. [Google Scholar] [CrossRef]
- Rusek, R.; Melendez Frigola, J.; Colomer Llinas, J. Influence of occupant presence patterns on energy consumption and its relation to comfort: A case study based on sensor and crowd-sensed data. Energy Sustain. Soc. 2022, 12, 13. [Google Scholar] [CrossRef]
- Lee, T.; Yoon, S.; Won, K. Delta-T-based operational signatures for operation pattern and fault diagnosis of building energy systems. Energy Build. 2022, 257, 111769. [Google Scholar] [CrossRef]
- Yoon, S. In situ modeling methodologies in building operation: A review. Build. Environ. 2023, 230, 109982. [Google Scholar] [CrossRef]
- Yu, D.; Li, H.; Zhang, D.; Zhang, Q.; Meijerink, A.; Suta, M. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light Sci. Appl. 2021, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, B.; Komarizadehasl, S.; Castilla Pascual, F.J.; Lozano-Galant, J.A.; Porras Soriano, R. A novel data acquisition system for obtaining thermal parameters of building envelopes. Buildings 2022, 12, 670. [Google Scholar] [CrossRef]
- Emad-ud-Din, M.; Chen, Z.; Wu, L.; Shen, Q.; Wang, Y. Indoor occupancy estimation using particle filter and SLEEPIR sensor system. IEEE Sens. J. 2022, 22, 17173–17183. [Google Scholar] [CrossRef]
- Emad-Ud-Din, M.; Wang, Y. Promoting Occupancy Detection Accuracy Using On-Device Lifelong Learning. IEEE Sensors J. 2023, 23, 9595–9606. [Google Scholar] [CrossRef]
- Sayed, A.N.; Himeur, Y.; Bensaali, F. Deep and transfer learning for building occupancy detection: A review and comparative analysis. Eng. Appl. Artif. Intell. 2022, 115, 105254. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Dotoli, M.; Rocca, R.; Giuliano, M.; Nicol, G.; Parussa, F.; Baricco, M.; Sgroi, M.F. A review of mechanical and chemical sensors for automotive Li-ion battery systems. Sensors 2022, 22, 1763. [Google Scholar] [CrossRef]
- Xiong, H.; Li, J.; Li, W.; Jiang, X.; Xiang, B.; Liu, Z. Overheating fault alarming for compact insulated busways in buildings by gas sensing. Front. Energy Res. 2023, 11, 1091298. [Google Scholar] [CrossRef]
- Malik, P.; Gehlot, A.; Singh, R.; Gupta, L.R.; Thakur, A.K. A review on ANN based model for solar radiation and wind speed prediction with real-time data. Arch. Comput. Methods Eng. 2022, 29, 3183–3201. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, M.; Zhang, D.; Goh, H.H.; Ahmad, T.; Liu, H.; Liu, T.; Wang, S.; Wu, T. IntelliSense technology in the new power systems. Renew. Sustain. Energy Rev. 2023, 177, 113229. [Google Scholar] [CrossRef]
- Obeidat, M.S.; Melhim, B.R.; Qasim, T. The effect of changing the shape factor on the efficiency of the flexible solar modules. Renew. Energy Focus 2022, 41, 118–132. [Google Scholar] [CrossRef]
- Botero-Valencia, J.S.; Valencia-Aguirre, J.; Gonzalez-Montoya, D.; Ramos-Paja, C.A. A low-cost system for real-time measuring of the sunlight incident angle using IoT. HardwareX 2022, 11, e00272. [Google Scholar] [CrossRef] [PubMed]
- Tyutyundzhiev, N.; Angelov, C.; Arsov, T.; Nitchev, H.; Lovchinov, K.; Mutafov, A. Variation of UV-A/UV-B daily profiles depending on locations and altitude. J. Phys. Conf. Ser. 2023, 2436, 012008. [Google Scholar] [CrossRef]
- McConville, A.; Richardson, T.S.; Moradi, P. Comparison of multirotor wind estimation techniques through conventional on-board sensors. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0411. [Google Scholar]
- Shan, Z.; Xie, X.; Liu, X. Wind Speed and Direction Measurement Based on Three Mutually Transmitting Ultrasonic Sensors. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- De Almeida, L.F.F.; Dos Santos, J.R.; Pereira, L.A.M.; Sodre, A.C.; Mendes, L.L.; Rodrigues, J.J.P.C.; Rabelo, R.A.L.; Alberti, A.M. Control Networks and Smart Grid Teleprotection: Key Aspects, Technologies, Protocols, and Case-Studies. IEEE Access 2020, 8, 174049–174079. [Google Scholar] [CrossRef]
- Swain, A.; Abdellatif, E.; Mousa, A.; Pong, P.W.T. Sensor Technologies for Transmission and Distribution Systems: A Review of the Latest Developments. Energies 2022, 15, 7339. [Google Scholar] [CrossRef]
- Han, Z.; Hu, J.; Li, L.; He, J. Micro-cantilever electric field sensor driven by electrostatic force. Engineering 2023, 24, 184–191. [Google Scholar] [CrossRef]
- Kuwałek, P.; Wiczyński, G. Problem of total harmonic distortion measurement performed by smart energy meters. Meas. Sci. Rev. 2022, 22, 1–10. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, L.; Jing, F.; Ma, L.; Wang, W.; Jin, J. A New technology of transformer bushing state detection based on transient dielectric response. J. Phys. Conf. Ser. 2023, 2450, 012030. [Google Scholar] [CrossRef]
- Liu, D.; Dyśko, A.; Hong, Q.; Tzelepis, D.; Booth, C.D. Transient wavelet energy-based protection scheme for inverter-dominated microgrid. IEEE Trans. Smart Grid 2022, 13, 2533–2546. [Google Scholar] [CrossRef]
- Abbasi, A.R. Fault detection and diagnosis in power transformers: A comprehensive review and classification of publications and methods. Electr. Power Syst. Res. 2022, 209, 107990. [Google Scholar] [CrossRef]
- Medina, C.; Ana, C.R.M.; González, G. Transmission grids to foster high penetration of large-scale variable renewable energy sources–A review of challenges, problems, and solutions. Int. J. Renew. Energy Res. 2022, 12, 146–169. [Google Scholar]
- Hassan, F.; Kumar, A.; Pati, A. Recent advances in phase locked loops for grid connected systems: A review. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Peng, Y.; Qin, S.; Zhang, S.; Zhao, Y. Optical fiber quantum temperature sensing based on single photon interferometer. Opt. Lasers Eng. 2023, 167, 107611. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kordrostami, Z.; Shahbaz, M.; Kim, J.Y.; Kim, H.W.; Kim, S.S. Resistive-Based Gas Sensors Using Quantum Dots: A Review. Sensors 2022, 22, 4369. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Shi, J.; Lv, W.; Han, Y.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; Wei, H.; et al. A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets. Nano-Micro Lett. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 2020, 10, 23861–23898. [Google Scholar] [CrossRef]
- Bongs, K.; Bennett, S.; Lohmann, A. Quantum sensors will start a revolution—If we deploy them right. Nature 2023, 617, 672–675. [Google Scholar] [CrossRef]
- Nunez, M.; Cantin, N.; Steinberg, C.; Van Dongen-Vogels, V.; Bainbridge, S. Correcting PAR Data from Photovoltaic Quantum Sensors on Remote Weather Stations on the Great Barrier Reef. J. Atmos. Ocean. Technol. 2022, 39, 425–448. [Google Scholar] [CrossRef]
- Müller, R.; Pfeifroth, U. Remote sensing of solar surface radiation—A reflection of concepts, applications and input data based on experience with the effective cloud albedo. Atmos. Meas. Tech. 2022, 15, 1537–1561. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, Y.; Jing, K.; Yu, Z.; Yu, H.; Zhang, W.; Du, J. Sunlight-driven quantum magnetometry. PRX Energy 2022, 1, 033002. [Google Scholar] [CrossRef]
- Vergara, B.X.; McGrew, C.P.; Dehghanian, P.; Sorger, V.J. Decentralized Power Grid Control Scheme Utilizing Photonic Sensing and Computing. In AI and Optical Data Sciences IV; SPIE: Bellingham, WA, USA, 2023; Volume 12438, pp. 106–114. [Google Scholar]
- Holloway, C.L.; Prajapati, N.; Sherman, J.A.; Rüfenacht, A.; Artusio-Glimpse, A.B.; Simons, M.T.; Norrgard, E.B. Electromagnetically induced transparency based Rydberg-atom sensor for traceable voltage measurements. AVS Quantum Sci. 2022, 4, 034401. [Google Scholar] [CrossRef]
- Atalar, F.; Dokur, E.; Balaban, E.; Missous, M.; Uğur, M. Partial discharge detection in pressboards immersed in mineral insulation oil with quantum well hall effect magnetic field sensors. IEEE Access 2022, 10, 70362–70369. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.X.; Schloss, J.M.; Alsid, S.T.; Braje, D.A.; Cappellaro, P. Sensing of arbitrary-frequency fields using a quantum mixer. Phys. Rev. X 2022, 12, 021061. [Google Scholar] [CrossRef]
- Sikiru, S.; Oladosu, T.L.; Kolawole, S.Y.; Mubarak, L.A.; Soleimani, H.; Afolabi, L.O.; Toyin, A.O.O. Advance and prospect of carbon quantum dots synthesis for energy conversion and storage application: A comprehensive review. J. Energy Storage 2023, 60, 106556. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Koyyada, G.; Ramachandran, T.; Kim, J.H.; Hegazy, H.H.; Singh, S.; Moniruzzaman, M. Recent advancement in quantum dot-based materials for energy storage applications: A review. Dalton Trans. 2023, 52, 8580–8600. [Google Scholar] [CrossRef]
- Crawford, S.E.; Shugayev, R.A.; Paudel, H.P.; Lu, P.; Syamlal, M.; Ohodnicki, P.R.; Chorpening, B.; Gentry, R.; Duan, Y. Quantum Sensing for Energy Applications: Review and Perspective. Adv. Quantum Technol. 2021, 4, 2100049. [Google Scholar] [CrossRef]
- Agarwal, S.; Mustavee, S.; Contreras-Castillo, J.; Guerrero-Ibañez, J. Sensing and Monitoring of Smart Transportation Systems. In The Rise of Smart Cities; Butterworth-Heinemann: London, UK, 2022; pp. 495–522. [Google Scholar]
- Epela, B.; Manirabona, A.; Nahayo, F. iITLMA, an Intelligent Traffic Light Management Algorithm based on Wireless Sensor Networks. Wirel. Pers. Commun. 2023, 131, 1–11. [Google Scholar] [CrossRef]
- Nikolett, F.; Árvai, T.; Hausel, I.; Könözsy, L.; Lakatos, I. Integrated Smart System for the Coordination of Traffic Light Traffic Management and Intelligent Public Lighting in Hungary. Period. Polytech. Transp. Eng. 2023, 51, 49–56. [Google Scholar] [CrossRef]
- Kliestik, T.; Musa, H.; Machova, V.; Rice, L. Remote Sensing Data Fusion Techniques, Autonomous Vehicle Driving Perception Algorithms, and Mobility Simulation Tools in Smart Transportation Systems. Contemp. Read. Law Soc. Justice 2022, 14, 137–152. [Google Scholar]
- Sassella, A.; Abbracciavento, F.; Formentin, S.; Bianchessi, A.G.; Savaresi, S.M. On queue length estimation in urban traffic intersections via inductive loops. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA, USA, 31 May–2 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1135–1140. [Google Scholar]
- Kripak, M.; Lebedeva, O.; Poltavskaya, J. Development of a System for the Integration of Vehicles and Sensor Devices in Intelligent Transport Systems. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; Volume 2503. [Google Scholar]
- Micko, K.; Papcun, P.; Zolotova, I. Review of IoT sensor systems used for monitoring the road infrastructure. Sensors 2023, 23, 4469. [Google Scholar] [CrossRef] [PubMed]
- Simbeye, D.S. Deployment of Inductive Loop Vehicle Traffic Counters Along Trunk Roads in Tanzania. Tanzan. J. Eng. Technol. 2023, 41, 119–132. [Google Scholar] [CrossRef]
- Gagliardi, V.; Tosti, F.; Bianchini Ciampoli, L.; Battagliere, M.L.; D’Amato, L.; Alani, A.M.; Benedetto, A. Satellite remote sensing and non-destructive testing methods for transport infrastructure monitoring: Advances, challenges and perspectives. Remote Sens. 2023, 15, 418. [Google Scholar] [CrossRef]
- Zhou, X.; Ke, R.; Yang, H.; Liu, C. When intelligent transportation systems sensing meets edge computing: Vision and challenges. Appl. Sci. 2021, 11, 9680. [Google Scholar] [CrossRef]
- Kumar, R.; Rammohan, A. Revolutionizing Intelligent Transportation Systems with Cellular Vehicle-to-Everything (C-V2X) technology: Current trends, use cases, emerging technologies, standardization bodies, industry analytics and future directions. Veh. Commun. 2023, 43, 100638. [Google Scholar]
- Chiang, C.Y.; Jaber, M.; Hayward, P. A distributed acoustic sensor system for intelligent transportation using deep learning. arXiv 2022, arXiv:2209.05978. [Google Scholar]
- Ge, Y.; Jin, P.J.; Zhang, T.T.; Chen, A. Roadside LiDAR Sensor Configuration Assessment and Optimization Methods for Vehicle Detection and Tracking in Connected and Automated Vehicle Applications. Transp. Res. Rec. 2023. [Google Scholar] [CrossRef]
- Ding, S.; Han, B.; Dong, S.; Li, H.; Ouyang, J.; Dong, X. Quantum tunneling composites and detectors for intelligent transportation systems. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 310–313. [Google Scholar]
- Hassani, S.; Dackermann, U. A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, X.; Zheng, M. Temporal-spatial quantum graph convolutional neural network based on Schrödinger approach for traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 2022, 24, 8677–8686. [Google Scholar] [CrossRef]
- Bhagat, A.P.; Kendre, S. Quantum Discrete Transform for Real-Time Object Detection in Today’s Smart Era. In Handbook of Research on Quantum Computing for Smart Environments; IGI Global: Hershey, PA, USA, 2023; pp. 178–190. [Google Scholar]
- Yan, C.; Xu, Z.; Yin, Z.; Ji, X.; Xu, W. Rolling colors: Adversarial laser exploits against traffic light recognition. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; pp. 1957–1974. [Google Scholar]
- Oliveira, T.A.; Gabrich, Y.B.; Ramalhinho, H.; Oliver, M.; Cohen, M.W.; Ochi, L.S.; Coelho, V.N. Mobility, citizens, innovation and technology in digital and smart cities. Future Internet 2020, 12, 22. [Google Scholar] [CrossRef]
- Alotaibi, B. Transportation mode detection by embedded sensors based on ensemble learning. IEEE Access 2020, 8, 145552–145563. [Google Scholar] [CrossRef]
- Stahl, B.; Apfelbeck, J.; Lange, R. Classification of Micromobility Vehicles in Thermal-Infrared Images Based on Combined Image and Contour Features Using Neuromorphic Processing. Appl. Sci. 2023, 13, 3795. [Google Scholar] [CrossRef]
- Elliott, A.; Boyd, R. The Transformation of Mobility: AI, Robotics and Automatization. In Handbook of Research Methods and Applications for Mobilities; Edward Elgar: Cheltenham, UK, 2020; pp. 241–250. [Google Scholar]
- Harikrishnakumar, R.; Nannapaneni, S.; Nguyen, N.H.; Steck, J.E.; Behrman, E.C. A quantum annealing approach for dynamic multi-depot capacitated vehicle routing problem. arXiv 2020, arXiv:2005.12478. [Google Scholar]
- Alkinani, M.H.; Almazroi, A.A.; Adhikari, M.; Menon, V.G. Design and analysis of logistic agent-based swarm-neural network for intelligent transportation system. Alex. Eng. J. 2022, 61, 8325–8334. [Google Scholar] [CrossRef]
- Ang, K.L.M.; Seng, J.K.P.; Ngharamike, E.; Ijemaru, G.K. Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches. ISPRS Int. J. Geo-Inf. 2022, 11, 85. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Li, D.; Wang, H.; Huang, X.; Song, L. DSDCLA: Driving style detection via hybrid CNN-LSTM with multi-level attention fusion. Appl. Intell. 2023, 53, 19237–19254. [Google Scholar] [CrossRef]
- Sharifisoraki, Z.; Dey, A.; Selzler, R.; Amini, M.; Green, J.R.; Rajan, S.; Kwamena, F.A. Monitoring Critical Infrastructure Using 3D LiDAR Point Clouds. IEEE Access 2022, 11, 314–336. [Google Scholar] [CrossRef]
- Mihailescu, G.; Campbell, S.; Mitchell, A.K. Thermometry of strongly correlated fermionic quantum systems using impurity probes. Phys. Rev. A 2023, 107, 042614. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Sabir, M.; Zeeshan, N.; Murtaza, G.; Hussain, M.M.; Ghani, M.U. Vehicular Noise Pollution: Its Environmental Implications and Strategic Control. In Autonomous Vehicle and Smart Traffic; IntechOpen: London, UK, 2020. [Google Scholar]
- Ler, L.G.; Gourbesville, P. Framework implementation for smart water management. EPiC Ser. Eng. 2018, 3, 1139–1146. [Google Scholar]
- Owen, D.L. Smart water management. River 2023, 2, 21–29. [Google Scholar] [CrossRef]
- Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The role of deep learning in urban water management: A critical review. Water Res. 2022, 223, 118973. [Google Scholar] [CrossRef] [PubMed]
- Horita, F.; Baptista, J.; de Albuquerque, J.P. Exploring the use of IoT Data for Heightened Situational Awareness in Centralised Monitoring Control Rooms. Inf. Syst. Front. 2023, 25, 275–290. [Google Scholar] [CrossRef]
- Choi, P.M.; O’Brien, J.W.; Tscharke, B.J.; Mueller, J.F.; Thomas, K.V.; Samanipour, S. Population Socioeconomics Predicted Using Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 567–572. [Google Scholar] [CrossRef]
- Mezni, H.; Driss, M.; Boulila, W.; Ben Atitallah, S.; Sellami, M.; Alharbi, N. SmartWater: A Service-Oriented and Sensor Cloud-Based Framework for Smart Monitoring of Water Environments. Remote Sens. 2022, 14, 1–26. [Google Scholar]
- Koo, K.M.; Han, K.H.; Jun, K.S.; Lee, G.; Yum, K.T. Smart water grid research group project: An introduction to the smart water grid living-lab demonstrative operation in Yeongjong Island, Korea. Sustainability 2021, 13, 5325. [Google Scholar] [CrossRef]
- Hubert, J.; Wang, Y.; Alonso, E.G.; Minguez, R. Using Artificial Intelligence for Smart Water Management Systems. ADB Briefs 2020, 4, 1–7. [Google Scholar]
- Hassanzadeh, A.; Rasekh, A.; Galelli, S.; Aghashahi, M.; Taormina, R.; Ostfeld, A.; Banks, M.K. A Review of Cybersecurity Incidents in the Water Sector. J. Environ. Eng. 2020, 146, 03120003. [Google Scholar] [CrossRef]
- Giudicianni, C.; Herrera, M.; Di Nardo, A.; Creaco, E.; Greco, R. Multi-criteria method for the realistic placement of water quality sensors on pipes of water distribution systems. Environ. Model. Softw. 2022, 152, 105405. [Google Scholar] [CrossRef]
- Ghazal, T.M.; Hasan, M.K.; Alzoubi, H.M.; Alshurideh, M.; Ahmad, M.; Akbar, S.S. Internet of Things Connected Wireless Sensor Networks for Smart Cities. In The Effect of Information Technology on Business and Marketing Intelligence Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 1953–1968. [Google Scholar]
- da Rosa, F.M.; da Silva Junior, C.A.; Degaldo, R.C.; Teodoro, P.E.; Teodoro, L.P.R.; da Silva Iocca, F.A.; Facco, C.U. Spectro-temporal analysis of anthropic interference in water production in the Guarani Aquifer. J. S. Am. Earth Sci. 2023, 121, 104139. [Google Scholar] [CrossRef]
- Ma, K.; Li, J.; Ma, H.; Yang, Y.; Yang, H.; Lu, J.; Li, Y.; Dou, J.; Wang, S.; Liu, S. 2D Cd-MOF and its mixed-matrix membranes for luminescence sensing antibiotics in various aqueous systems and visible fingerprint identifying. Chin. Chem. Lett. 2023, 34, 108227. [Google Scholar] [CrossRef]
- Philip, M.S.; Singh, P. An energy efficient algorithm for sustainable monitoring of water quality in smart cities. Sustain. Comput. Inform. Syst. 2022, 35, 100768. [Google Scholar] [CrossRef]
- Oberascher, M.; Rauch, W.; Sitzenfrei, R. Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Sustain. Cities Soc. 2022, 76, 103442. [Google Scholar] [CrossRef]
- Ferrante, M.; Rogers, D.; Mugabi, J.; Casinini, F. Impact of intermittent supply on water meter accuracy. J. Water Supply Res. Technol. 2022, 71, 1241–1250. [Google Scholar] [CrossRef]
- Daniel, I.; Pesantez, J.; Letzgus, S.; Khaksar Fasaee, M.A.; Alghamdi, F.; Berglund, E.; Mahinthakumar, G.; Cominola, A. A Sequential Pressure-Based Algorithm for Data-Driven Leakage Identification and Model-Based Localization in Water Distribution Networks. J. Water Resour. Plan. Manag. 2022, 148, 04022025. [Google Scholar] [CrossRef]
- Qi, L.; Liang, R.; Jiang, T.; Qin, W. Anti-fouling polymeric membrane ion-selective electrodes. TrAC Trends Anal. Chem. 2022, 150, 116572. [Google Scholar] [CrossRef]
- Ba-Alawi, A.H.; Nam, K.; Heo, S.; Woo, T.; Aamer, H.; Yoo, C. Explainable multisensor fusion-based automatic reconciliation and imputation of faulty and missing data in membrane bioreactor plants for fouling alleviation and energy saving. Chem. Eng. J. 2023, 452, 139220. [Google Scholar] [CrossRef]
- Bedell, E.; Harmon, O.; Fankhauser, K.; Shivers, Z.; Thomas, E. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation. Water Res. 2022, 220, 118644. [Google Scholar] [CrossRef]
- Hammond, N.W.; Birgand, F.; Carey, C.C.; Bookout, B.; Breef-Pilz, A.; Schreiber, M.E. High-frequency sensor data capture short-term variability in Fe and Mn concentrations due to hypolimnetic oxygenation and seasonal dynamics in a drinking water reservoir. Water Res. 2023, 240, 120084. [Google Scholar] [CrossRef]
- Wéber, R.; Hős, C. Efficient technique for pipe roughness calibration and sensor placement for water distribution systems. J. Water Resour. Plan. Manag. 2020, 146, 04019070. [Google Scholar] [CrossRef]
- Kim, M.; Choi, H.; Kim, T.; Hong, I.; Roh, Y.; Park, J.; Kang, D. FEP encapsulated crack-based sensor for measurement in moisture-laden environment. Materials 2019, 12, 1516. [Google Scholar] [CrossRef]
- Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431. [Google Scholar] [CrossRef]
- Kowsigan, M. IoT Enabled Water Distribution Systems for Energy Efficiency in WSN. In Proceedings of the 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 15–16 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8. [Google Scholar]
- Singh, T.C.; Rao, K.S.; Rajesh, P.S.; Prasad, G.S. Waste Water-Based Pico-Hydro Power for Automatic Street Light Control through IOT-Based Sensors in Smart Cities: A Pecuniary Assessment. In Artificial Intelligence and Machine Learning in Smart City Planning; Elsevier: Amsterdam, The Netherlands, 2023; pp. 87–99. [Google Scholar]
- Herbschleb, E.D.; Ohki, I.; Morita, K.; Yoshii, Y.; Kato, H.; Makino, T.; Mizuochi, N. Low-frequency quantum sensing. Phys. Rev. Appl. 2022, 18, 034058. [Google Scholar] [CrossRef]
- Alam, M.B.; Hassan, N.; Sahoo, K.; Kumar, M.; Sharma, M.; Lahiri, J.; Parmar, A.S. Deciphering interaction between chlorophyll functionalized carbon quantum dots with arsenic and mercury toxic metals in water as highly sensitive dual-probe sensor. J. Photochem. Photobiol. A Chem. 2022, 431, 114059. [Google Scholar]
- Khan, M.E.; Mohammad, A.; Yoon, T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere 2022, 302, 134815. [Google Scholar] [CrossRef] [PubMed]
- Zahmatkesh, S.; Ni, B.J.; Klemeš, J.J.; Bokhari, A.; Hajiaghaei-Keshteli, M. Carbon quantum dots-Ag nanoparticle membrane for preventing emerging contaminants in oil produced water. J. Water Process Eng. 2022, 50, 103309. [Google Scholar] [CrossRef]
- Pilat, F.; Schwarz, B.; Baumgartner, B.; Ristanić, D.; Detz, H.; Andrews, A.M.; Lendl, B.; Strasser, G.; Hinkov, B. Beyond Karl Fischer titration: A monolithic quantum cascade sensor for monitoring residual water concentration in solvents. Lab Chip 2023, 23, 1816–1824. [Google Scholar] [CrossRef]
- Jain, R.; Thakur, A.; Kaur, P.; Kim, K.H.; Devi, P. Advances in imaging-assisted sensing techniques for heavy metals in water: Trends, challenges, and opportunities. TrAC Trends Anal. Chem. 2020, 123, 115758. [Google Scholar] [CrossRef]
- Fedele, M.; Formisano, V.; Bonab, A.B.; Rudko, I. Quantum technologies for smart cities: A comprehensive review and analysis. Lead. Digit. Transform. 2022, 1–38. [Google Scholar] [CrossRef]
- Grimaldi, M.; Sebillo, M.; Vitiello, G.; Pellecchia, V. An Ontology-Based Approach for Data Model Construction Supporting the Management and Planning of the Integrated Water Service. In Computational Science and Its Applications–ICCSA 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 19, pp. 243–252. [Google Scholar]
- Tanoli, W.A.; Sharafat, A.; Park, J.; Seo, J.W. Damage Prevention for underground utilities using machine guidance. Autom. Constr. 2019, 107, 102893. [Google Scholar] [CrossRef]
- Vilventhan, A.; Razin, S.; Rajadurai, R. 4D BIM models for smart utility relocation management in urban infrastructure projects. Facilities 2021, 39, 50–63. [Google Scholar] [CrossRef]
- Yadav, B.P.; Siddiqui, N.A.; Jain, S.; Nayar, D.V. Utility Damage Prevention Measures During Excavation: A Review. Adv. Constr. Saf. Proc. HSFEA 2020, 2022, 41–53. [Google Scholar]
- Cevikbas, M.; Okudan, O.; Işık, Z. Identification and assessment of disruption claim management risks in construction projects: A life cycle-based approach. Eng. Constr. Archit. Manag. 2022, 31, 1–27. [Google Scholar] [CrossRef]
- Rao, A.S.; Radanovic, M.; Liu, Y.; Hu, S.; Fang, Y.; Khoshelham, K.; Ngo, T. Real-time monitoring of construction sites: Sensors, methods, and applications. Autom. Constr. 2022, 136, 104099. [Google Scholar] [CrossRef]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Bi, K.; Chen, W.; Pham, T.M.; Li, J. Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Eng. Struct. 2023, 277, 115477. [Google Scholar] [CrossRef]
- Singh, M.J.; Choudhary, S.; Chen, W.B.; Wu, P.C.; Goyal, M.K.; Rajput, A.; Borana, L. Applications of Fibre Bragg Grating Sensors for monitoring geotechnical structures: A Comprehensive Review. Measurement 2023, 218, 113171. [Google Scholar] [CrossRef]
- Bado, M.F.; Casas, J.R. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef]
- Sujatha, C. Strain Gauge-Based Equipment. In Vibration, Acoustics and Strain Measurement: Theory and Experiments; Springer International Publishing: Cham, Switzerland, 2023; pp. 305–349. [Google Scholar]
- Mair, D.; Fischer, M.; Konzilia, J.; Renzler, M.; Ussmueller, T. Evolutionary optimization of antennas for structural health monitoring. IEEE Access 2023, 11, 4905–4913. [Google Scholar] [CrossRef]
- Xu, X.B.; Hu, Q.; Huang, T.M.; Chen, Y.; Shen, W.M.; Hu, M.Y. Seepage failure of a foundation pit with confined aquifer layers and its reconstruction. Eng. Fail. Anal. 2022, 138, 106366. [Google Scholar] [CrossRef]
- Huang, M.Q.; Ninić, J.; Zhang, Q.B. BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunn. Undergr. Space Technol. 2021, 108, 103677. [Google Scholar] [CrossRef]
- Hartshorn, C.A.; Isaacson, S.D.; Barrowes, B.E.; Perren, L.J.; Lozano, D.; Shubitidze, F. Analysis of the Feasibility of UAS-Based EMI Sensing for Underground Utilities Detection and Mapping. Remote Sens. 2022, 14, 3973. [Google Scholar] [CrossRef]
- Mangel, A.R.; Linneman, D.; Sprinkle, P.; Jaysaval, P.; Thomle, J.; Strickland, C. Multifrequency electromagnetic geophysical tools for evaluating the hydrologic conditions and performance of evapotranspiration barriers. J. Environ. Manag. 2022, 303, 114123. [Google Scholar] [CrossRef]
- Koganti, T.; Van De Vijver, E.; Allred, B.J.; Greve, M.H.; Ringgaard, J.; Iversen, B.V. Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument. Sensors 2020, 20, 3922. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Lu, G. A novel multifrequency GPR data fusion algorithm based on time-varying weighting strategy. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–4. [Google Scholar] [CrossRef]
- Branda, E.; Wurzbacher, T. Motion Sensors in Automatic Steering of Hearing Aids. In Seminars in Hearing; Thieme Medical Publishers, Inc.: New York, NY, USA, 2021; Volume 42, pp. 237–247. [Google Scholar]
- Becher, C.; Gao, W.; Kar, S.; Marciniak, C.D.; Monz, T.; Bartholomew, J.G.; Zwiller, V. 2023 roadmap for materials for quantum technologies. Mater. Quantum Technol. 2023, 3, 012501. [Google Scholar] [CrossRef]
- Smith, J.F., III. Enhancing Quantum Sensing and Interferometry through Entanglement. In Quantum Information Science, Sensing, and Computation XV; SPIE: Bellingham, WA, USA, 2023; Volume 12517, pp. 92–108. [Google Scholar]
- Bauer, C.W.; Davoudi, Z.; Klco, N.; Savage, M.J. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 2023, 5, 420–432. [Google Scholar] [CrossRef]
- Abend, S.; Allard, B.; Arnold, A.S.; Ban, T.; Barry, L.; Battelier, B.; Bawamia, A.; Beaufils, Q.; Bernon, S.; Bertoldi, A. Technology roadmap for cold-atoms based quantum inertial sensor in space. AVS Quantum Sci. 2023, 5, 019201. [Google Scholar] [CrossRef]
- Zubarev, V.; Smekalov, S.; Yartsev, S. Materials for the ancient landscape reconstruction in the Adzhiel landscape compartment in the Eastern Crimea (the first stage research results). J. Archaeol. Sci. Rep. 2019, 23, 993–1013. [Google Scholar] [CrossRef]
- Zhong, S.; Nsengiyumva, W. Other NDT Methods for Fiber-Reinforced Composite Structures. In Nondestructive Testing and Evaluation of Fiber-Reinforced Composite Structures; Springer Nature: Singapore, 2022; pp. 355–405. [Google Scholar]
- Zhang, Y.; Wang, L.; Tang, Z.; Zhang, K.; Wang, T. Spatial effects of urban expansion on air pollution and eco-efficiency: Evidence from multisource remote sensing and statistical data in China. J. Clean. Prod. 2022, 367, 132973. [Google Scholar] [CrossRef]
- Li, Z.; Ai, W.; Zhang, Y.; Zhang, J.; Liu, W.; Zhong, D.; Yang, L. Dual step-scheme heterojunction with full-visible-light-harvesting towards synergistic persulfate activation for enhanced photodegradation. J. Colloid Interface Sci. 2023, 640, 456–471. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, T.; Braitenberg, C.; Pastorutti, A. Sensitivity to Mass Changes of Lakes, Subsurface Hydrology and Glaciers of the Quantum Technology Gravity Gradients and Time Observations of Satellite MOCAST+. Remote Sens. 2022, 14, 4278. [Google Scholar] [CrossRef]
- Lock, E.H.; Lee, J.; Choi, D.S.; Bedford, R.G.; Karna, S.P.; Roy, A.K. Materials Innovations for Quantum Technology Acceleration: A Perspective. Adv. Mater. 2023, 35, 2201064. [Google Scholar] [CrossRef]
- Lin, S.; Tang, F.; Dang, J.; Li, X. Automatic detection of steel rebar corrosion based on machine learning and light spectrum of fiber optic corrosion sensors. Opt. Fiber Technol. 2023, 79, 103379. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Ham, B.S. A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves. Sensors 2022, 22, 8687. [Google Scholar] [CrossRef] [PubMed]
- Bidel, Y.; Zahzam, N.; Bresson, A.; Blanchard, C.; Bonnin, A.; Bernard, J.; Bonvalot, S. Airborne absolute gravimetry with a quantum sensor, comparison with classical technologies. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025921. [Google Scholar] [CrossRef]
- Choi, C.Q.; Fairley, P.; Perry, T.S.; Patel, P. Sensors: A Guide to the Quantum-Sensor Boom: Atomic scale bolsters sensing revolutions in medicine, tech, and engineering. IEEE Spectrum 2022, 59, 5–13. [Google Scholar] [CrossRef]
- Bonab, A.B.; Fedele, M.; Formisano, V.; Rudko, I. Urban quantum leap: A comprehensive review and analysis of quantum technologies for smart cities. Cities 2023, 140, 104459. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, A.; Hu, S.; Ni, W.; Wang, X.; Hossain, E.; Hanzo, L. Towards Quantum-Native Communication Systems: New Developments, Trends, and Challenges. arXiv 2023, arXiv:2311.05239. [Google Scholar]
- Schiffmann, O.; Hicks, B.; Nassehi, A.; Gopsill, J.; Valero, M. A Cost–Benefit Analysis Simulation for the Digitalisation of Cold Supply Chains. Sensors 2023, 23, 4147. [Google Scholar] [CrossRef] [PubMed]
Author | Title | Energy | Transportation | Water | Construction |
---|---|---|---|---|---|
Berglund et al., (2020) [1] | Smart infrastructure: A vision for the role of the civil engineering profession in smart cities. | ✓ * | ✓ | ✓ | ✓ |
Bohloul (2020) [16] | Smart cities: A survey on new developments, trends, and opportunities. | ✓ | ✓ | ✓ | |
Kasznar et al., (2021) [22] | Multiple dimensions of smart cities’ infrastructure: A review. | ✓ | ✓ | ✓ | ✓ |
Rozario et al., (2021) [17] | Creating smart cities: A review for holistic approach. | ✓ | ✓ | ✓ | |
Puliafito et al., (2021) [23] | Smart cities of the future as cyber physical systems: Challenges and enabling technologies. | ✓ | ✓ | ✓ | ✓ |
J. Wang et al., (2022) [2] | Progress of standardization of urban infrastructure in smart cities. | ✓ | ✓ | ✓ | ✓ |
Yusuf & Suleiman (2023) [18] | Smart cities: The cities of the future. | ✓ | ✓ | ✓ | |
ISO/TR 37152 (2016) [20] | Smart community infrastructures—common framework for development and operation. | ✓ | ✓ | ✓ | |
ITU-T Y.4201 (2018) [21] | High-level requirements and reference framework of smart city platforms. | ✓ | ✓ | ✓ | ✓ |
Quantum Sensors | Energy | Transportation | Water | Construction |
---|---|---|---|---|
Temperature Gas Humidity | energy efficiency indoor air quality buildings’ retrofitting | air quality emissions control passenger comfort | - | detecting dangerous gases monitoring curing temperature |
Accelerometers strain gauges | - | road surface conditions monitoring | - | - |
Accelerometers Gyroscopes | - | micro-mobility services rider safety fleet management freight logistics cargo conditions | - | stability of heavy equipment angular position of constructions structural integrity of buildings vibration |
Magnetometers Gyroscopes | - | smart mobility solutions navigation and orientation assistance | - | - |
Magnetometers Gravimeters | - | traffic density, congestion dynamic traffic control, traffic management, and predictions | - | detecting underground utilities, voids, or geological features detecting buried metallic objects monitoring the magnetic emissions of electrical equipment |
Magnetometers Cameras | - | dynamic traffic signal timings and lane configurations traffic management strategies and optimization | - | - |
Magnetometers Spectrometers | - | - | flow rate, pressure water quality detection of contaminants | - |
Cameras LiDARs | occupancy lighting optimization energy efficiency | intersection management road safety parking space management | - | - |
Radars LiDARs | - | freight safety vehicle platooning | - | - |
Voltage Frequency | power quality and grid resilience | - | - | - |
Sensing Technology | Conventional Performance | Quantum Performance | Current QTRL | QTRL 9 Expectation |
---|---|---|---|---|
Magnetometers | T Noise ≈ pT/√Hz | T Very low noise < fT/√Hz | QTRL8 | <5 years |
Gravimeters | , /h | High Sensitivity; low drift /h | QTRL8 | 5–10 years |
Accelerometers | Precision: 10 nm/s2, Noise: 100 nm/s2 | High Precision, low noise Precision: 1 nm/s2, Noise: 10 nm/s2 | QTRL8 | 5–10 years |
Gyroscopes | Accuracy: up to 0.01°/h Drift: up to 0.001°/h | High stability, low drift °/h, °/h | QTRL7 | 5–10 years |
Acoustics | Resolution: 10 cm | High resolution, low noise Resolution: 1 mm | QTRL4 | 5–10 years |
Imaging | Resolution: ≈1 cm@10 m | Sub-wavelength resolution Resolution: <1 mm@10 m | QTRL4 | 5–15 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantsepolsky, B.; Aviv, I. Sensors in Civil Engineering: From Existing Gaps to Quantum Opportunities. Smart Cities 2024, 7, 277-301. https://doi.org/10.3390/smartcities7010012
Kantsepolsky B, Aviv I. Sensors in Civil Engineering: From Existing Gaps to Quantum Opportunities. Smart Cities. 2024; 7(1):277-301. https://doi.org/10.3390/smartcities7010012
Chicago/Turabian StyleKantsepolsky, Boris, and Itzhak Aviv. 2024. "Sensors in Civil Engineering: From Existing Gaps to Quantum Opportunities" Smart Cities 7, no. 1: 277-301. https://doi.org/10.3390/smartcities7010012
APA StyleKantsepolsky, B., & Aviv, I. (2024). Sensors in Civil Engineering: From Existing Gaps to Quantum Opportunities. Smart Cities, 7(1), 277-301. https://doi.org/10.3390/smartcities7010012