Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy)
Abstract
:1. Introduction
- the merits and limitations of the achieved solutions applied to autonomous and long-lasting operation;
- the capability of each approach to acquire microclimate parameters at a spatial resolution suitable for analysis of their correlation with urban morphology and surface materials;
- the solutions’ suitability for UHI estimation and mapping.
2. Bolzano (Italy): Study Area for Deploying and Validating the Monitoring Approaches
3. Fixed Monitoring Approach
3.1. Low-Cost WSN Architecture
3.2. Deployment of the WSN
4. Mobile Monitoring Approach
4.1. Hardware Prototypes
- RCmall SIM800 GSM GPRS expansion shield V2.3;
- Adafruit PiTFT 3.5” touch screen interface;
- u-blox C099-F9P board with an ANN-MB00 multi-band GNSS antenna + ground plate;
- Anker USB power bank 5V–15,000 mAh;
- Galltec PM15PS humidity/temperature sensor with RS232 signal level converter
- Apogee SP420 silicon-cell USB pyranometer;
- Meter Environment solar radiation shield;
- BOPLA Bocube IP-68 170 × 271 × 90 mm.
- RH accuracy ± 1.5% RH;
- Tair accuracy ± 0.15 °C;
- positioning accuracy of 0.3 m northing/easting in rover configuration (0.01 m northing/easting positional accuracy in rover configuration when RTK is implemented).
4.2. Workflow and Data Fusion
4.3. Exploratory Field Campaigns
5. Preliminary Results and Open Issues
5.1. Fixed Monitoring Approach
5.1.1. WSN Reliability
5.1.2. Field Campaign in Summer Conditions
5.1.3. Evaluation of UHI Intensity
5.1.4. Limits of the Fixed Monitoring Approach
5.2. Mobile Monitoring Approach
5.2.1. Exploratory Field Campaign
- the data correctly represent the increase in air temperature during daytime;
- the temperature is higher in dense urban areas close to major roads, both in the industrial area (Points 1 and 2) and in the city center (Point 3); it decreases in the open green areas close to the Talvera river (Points 4 and 5); and it drops in the northern area of the city, where the building density is lower (Point 6);
- the measurements also confirmed the presence of a UHI in Bolzano South. Indeed, Tair at points located in the industrial area is up to 1.5 °C higher than that in the other districts of the city. This trend is more evident at noon and during the afternoon, when higher temperatures are reached.
5.2.2. Limits of the Mobile Monitoring Approach
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoornweg, D.; Sugar, L.; Gómez, C.L.T. Cities and greenhouse gas emissions: Moving forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Baklanov, A.; Grimmond, S.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Revi, A.; Satterthwaite, D.; Aragón-Durand, F.; Corfee-Morlot, J.; Pelling, M.; Roberts, D.C.; Solecki, W.; Kiunsi, R.B.R. Urban Areas in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 535–612. [Google Scholar]
- Garcia, D.J.; You, F. The water-energy-food nexus and process systems engineering: A new focus. Comput. Chem. Eng. 2016, 91, 49–67. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Lemonsu, A.; Viguié, V.; Daniel, M.; Masson, V. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 2015, 14, 586–605. [Google Scholar] [CrossRef]
- Bozonnet, E.; Musy, M.; Calmet, I.; Rodriguez, F. Modeling methods to assess urban fluxes and heat island mitigation measures from street to city scale. Int. J. Low-Carbon Technol. 2013, 10, 62–77. [Google Scholar] [CrossRef] [Green Version]
- Erell, E. The Application of Urban Climate Research in the Design of Cities. Adv. Build. Energy Res. 2008, 2, 95–121. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2020, 751, 141727. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; Vollaro, E.D.L.; Coppi, M.; Vollaro, A.D.L. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Heaviside, C.; Vardoulakis, S.; Cai, X.-M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Paravantis, J.; Santamouris, M.; Cartalis, C.; Efthymiou, C.; Kontoulis, N. Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability 2017, 9, 606. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.N.; Van, D.Q.; Kusaka, H.; Seposo, X.T.; Honda, Y. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City. Am. J. Public Health 2018, 108, S137–S143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronaki, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Roxon, J.; Ulm, F.-J.; Pellenq, R.-M. Urban heat island impact on state residential energy cost and CO2 emissions in the United States. Urban Clim. 2019, 31, 100546. [Google Scholar] [CrossRef]
- Sanchez-Guevara, C.; Peiró, M.N.; Taylor, J.; Mavrogianni, A.; González, J.N. Assessing population vulnerability towards summer energy poverty: Case studies of Madrid and London. Energy Build. 2019, 190, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Tsilini, V.; Papantoniou, S.; Kolokotsa, D.; Maria, E.-A. Urban gardens as a solution to energy poverty and urban heat island. Sustain. Cities Soc. 2015, 14, 323–333. [Google Scholar] [CrossRef]
- Pisello, A.L.; Saliari, M.; Vasilakopoulou, K.; Haddad, S.; Santamouris, M. Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies. Wiley Interdiscip. Rev. Energy Environ. 2018, 7. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Rajagopalan, P.; Sagoo, A. A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustain. Cities Soc. 2018, 41, 647–665. [Google Scholar] [CrossRef]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Masson, V.; Heldens, W.; Bocher, E.; Bonhomme, M.; Bucher, B.; Burmeister, C.; de Munck, C.; Esch, T.; Hidalgo, J.; Kanani-Sühring, F.; et al. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Clim. 2019, 31, 100536. [Google Scholar] [CrossRef]
- Shaker, R.R.; Altman, Y.; Deng, C.; Vaz, E.; Forsythe, K. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 2019, 233, 972–992. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T.; Bikas, D. Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies 2020, 13, 1414. [Google Scholar] [CrossRef] [Green Version]
- Amirtham, L.R. Urbanization and its impact on Urban Heat Island Intensity in Chennai Metropolitan Area, India. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- de Jesus, M.P.; Lourenco, J.M.; Arce, R.M.; Macias, M. Green façades and in situ measurements of outdoor building thermal behaviour. Build. Environ. 2017, 119, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Liao, Y.-J.; Yao, C.-K.; Honjo, T.; Wang, C.-K.; Lin, T.-P. The application of a high-density street-level air temperature observation network (HiSAN): The relationship between air temperature, urban development, and geographic features. Sci. Total Environ. 2019, 685, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Chokhachian, A.; Lau, K.K.-L.; Perini, K.; Auer, T. Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. J. Build. Eng. 2018, 20, 94–104. [Google Scholar] [CrossRef]
- Busato, F.; Lazzarin, R.; Noro, M. Three years of study of the Urban Heat Island in Padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Georgakis, C.; Santamouris, M. Determination of the Surface and Canopy Urban Heat Island in Athens Central Zone Using Advanced Monitoring. Climate 2017, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- MIT Senseable City Lab. City Scanner 2021. Available online: http://senseable.mit.edu/cityscanner/app/#15/42.3643/-71.1008 (accessed on 1 December 2021).
- Yang, J.; Bou-Zeid, E. Designing sensor networks to resolve spatio-temporal urban temperature variations: Fixed, mobile or hybrid? Environ. Res. Lett. 2019, 14, 074022. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Ulbrich, T.; Keiler, M.; Pedoth, L.; Totschnig, R.; Glade, T.; Schneiderbauer, S.; Eidswig, U. Vulnerability to Heat Waves, Floods, and Landslides in Mountainous Terrain. In Assessment of Vulnerability to Natural Hazards. A European Perspective; Elsevier: Amsterdam, The Netherlands, 2014; pp. 179–201. [Google Scholar] [CrossRef]
- Weather South Tyrol. Weather Station Branzoll 2020. Available online: http://weather.provinz.bz.it/weather-stations-valley.asp?stat_stid=1220 (accessed on 1 December 2021).
- LoRaWAN@NOI Web Portal 2020. Available online: https://lorawan.beacon.bz.it/ (accessed on 1 December 2021).
- LoraWAN Gateway Setup n.d. Available online: https://gitlab.inf.unibz.it/CSS-DEV/projects/lorawan-gateway-setup (accessed on 1 December 2021).
- Tondini, S.; Tritini, S.; Amatori, M.; Croce, S.; Seppi, S.; Monsorno, R. LoRa-based Wireless Sensor Networks for Urban Scenarios Using an Open-source Approach. Sens. Trasducers 2019, 238, 64–71. [Google Scholar]
- Croce, S.; Tondini, S. Urban Microclimate Monitoring and Modeling through an Open-Source Distributed Network of Wireless Low-Cost Sensors and Numerical Simulations. In Proceedings of the 7th International Electronic Conference on Sensors and Applications, Basel, Switzerland, 15–30 November 2020; Volume 2, p. 18. [Google Scholar] [CrossRef]
- Acero, J.A.; Herranz-Pascual, K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Matzarakis, A. Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Build. Environ. 2015, 94, 734–750. [Google Scholar] [CrossRef]
- Dimoudi, A.; Kantzioura, A.; Zoras, S.; Pallas, C.; Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Tong, S.; Wong, N.H.; Jusuf, S.K.; Tan, C.L.; Wong, H.F.; Ignatius, M.; Tan, E. Study on correlation between air temperature and urban morphology parameters in built environment in northern China. Build. Environ. 2018, 127, 239–249. [Google Scholar] [CrossRef]
- Teunissen, P.; Khodabandeh, A. Review and principles of PPP-RTK methods. J. Geodesy 2015, 89, 217–240. [Google Scholar] [CrossRef]
- Tondini, S.; Hasanabadi, F.; Monsorno, R.; Novelli, A. Toward near real-time kinematics differential correction: In view of geo-metrically augmented sensor data for mobile microclimate monitoring. Eng. Proc. 2020, 2, 61. [Google Scholar] [CrossRef]
- Allied Market Research. Microcontroller Market by Product Type and Application: Global Opportunity Analysis and Indus-Try Forecast, 2020–2027; Allied Market Research: Portland, OR, USA, 2020. [Google Scholar]
- RTKLIB: An Open Source Program Package for GNSS Positioning n.d. Available online: http://www.rtklib.com/ (accessed on 1 December 2021).
- Meter Environment. ATMOS 41 All-in-One Weather Station 2018. Available online: https://www.metergroup.com/environment/products/atmos-41-weather-station/ (accessed on 1 December 2021).
- Grykałowska, A.; Kowal, A.; Szmyrka-Grzebyk, A. The basics of calibration procedure and estimation of uncertainty budget for meteorological temperature sensors. Meteorol. Appl. 2015, 22, 867–872. [Google Scholar] [CrossRef]
- Chapman, L.; Muller, C.L.; Young, D.T.; Warren, E.; Grimmond, S.; Cai, X.-M.; Ferranti, E. The Birmingham Urban Climate Laboratory: An Open Meteorological Test Bed and Challenges of the Smart City. Bull. Am. Meteorol. Soc. 2015, 96, 1545–1560. [Google Scholar] [CrossRef]
Sensor | Urban Morphology | Tair [°C] * | RH [%] * | |||||
---|---|---|---|---|---|---|---|---|
Ground Cover | Vegetation | SVF | H/W | 06:00 | 15:00 | 06:00 | 15:00 | |
D0 | Wooden planks | - | 0.688 | 0.54 | 17.34 | 29.54 | 84.21 | 44.37 |
D1 | Grass/asphalt | - | 0.631 | 1.19 | 17.76 | 30.27 | 81.00 | 41.91 |
D2 | Concrete | - | 0.950 | - | 18.68 | 32.57 | 83.03 | 39.32 |
D3 | Granite | - | 0.000 | - | 19.97 | 26.16 | 73.65 | 52.40 |
D4 | Grass | Small single tree | 0.567 | 0.73 | 17.82 | 27.42 | 87.73 | 53.19 |
D5 | Porphyry/glass | - | 0.254 | - | 20.55 | 29.92 | 67.87 | 39.19 |
D6 | Grass/stone | - | 0.680 | 0.21 | 17.72 | 30.62 | 89.17 | 44.97 |
D7 | Grass/asphalt | Small single tree | 0.626 | 0.73 | 17.79 | 30.14 | 88.13 | 47.10 |
D8 | Grass | Trees and bushes | 0.585 | 0.23 | 18.38 | 29.85 | 86.06 | 48.33 |
E0 | Granite | - | 0.535 | 0.54 | 18.41 | 30.58 | 88.40 | 47.57 |
E1 | Grass | Small trees | 0.170 | 1.45 | 18.94 | 27.90 | 76.35 | 44.19 |
E2 | Porphyry | Small single tree | 0.533 | 0.73 | 18.14 | 31.15 | 86.59 | 44.06 |
E3 | Asphalt | - | 0.303 | 0.95 | 18.41 | 28.94 | 80.29 | 43.80 |
E5 | Grass/gravel | Small trees | 0.604 | 0.57 | 17.76 | 29.05 | 83.66 | 45.42 |
E6 | Granite | - | 0.569 | 0.30 | 18.34 | 29.85 | 93.48 | 49.52 |
E7 | Grass/gravel | Trees | 0.550 | 0.57 | 17.45 | 29.29 | 94.60 | 49.61 |
E8 | Red gravel | - | 0.760 | - | 18.15 | 30.13 | 88.07 | 43.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croce, S.; Tondini, S. Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy). Smart Cities 2022, 5, 54-70. https://doi.org/10.3390/smartcities5010004
Croce S, Tondini S. Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy). Smart Cities. 2022; 5(1):54-70. https://doi.org/10.3390/smartcities5010004
Chicago/Turabian StyleCroce, Silvia, and Stefano Tondini. 2022. "Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy)" Smart Cities 5, no. 1: 54-70. https://doi.org/10.3390/smartcities5010004
APA StyleCroce, S., & Tondini, S. (2022). Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy). Smart Cities, 5(1), 54-70. https://doi.org/10.3390/smartcities5010004