Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services
Abstract
:1. Introduction
2. The Living Lab of Bauhaus.MobilityLab
2.1. Living Lab
2.2. District Brühl
2.3. Stakeholders
3. Bauhaus.MobilityLab Platform
3.1. IT Support for the Living Lab
- (1)
- Support for lab customers to design, create, implement, host and evaluate innovative smart city services.
- (2)
- Provide access to data sources that are relevant for the region of the living lab, especially covering the three domains of the project (energy, mobility, logistics). Since it is not possible to store all data sets inside the platform (e.g. due to legal reasons), data access to external platforms should be supported, too.
- (3)
- Protected data sources. Not all data sets can be distributed freely inside the platform. Usage policies must be defined and enforced. Only with this capability, infrastructure operators like the municipal utilities can be gained to participate in Bauhaus.MobilityLab.
- (4)
- Integration of external systems. As it will be shown in the example of the optimization of energy usage, smart city services consist of the interaction between various systems. Therefore, the platform should support the integration of external systems.
- (5)
- Integration of AI algorithms. Innovative, data-driven applications benefit from advances in the field of artificial intelligence. To support this, the platform should allow the easy integration of AI algorithms into the services.
- (6)
- Isolation of different lab customers, infrastructure providers and other users of the platform, by default. Data exchange (for example lab customers accessing data sources provided by an infrastructure provider) is only possible through defined gateways. Those handover points are responsible to apply the stated usage policies.
3.2. Bauhaus.MobilityLab Platform
3.3. Provision of Data
4. Optimizing Energy Usage in an AI-Assisted Smart City
4.1. Experiment in the Living Lab: Optimization of Energy Usage
4.2. Required Data Sources for the Optimization
- Power mix in 15 min resolution (default resolution in the German energy market for pricing and energy accounting) for the next 24 h.
- Electricity price in 15 min resolution for the next 24 h (day-ahead-market time frame).
- Power consumption of the individual lab users, collected by their smart meters.
- The energy consumption of all the considered devices.
- Switching time specifications (at which time the device must/must not be switched on), e.g., charging time for electric vehicles (full-charge upon departure), finished laundry upon arrival.
- Preferences regarding the electricity mix.
- Parameters for the optimization model (weighting between energy price and energy mix).
4.3. AI-Assisted Data Transformation
4.4. Further Developments
5. Energy Optimization with the Bauhaus.MobilityLab Platform
5.1. Energy Management System
5.2. Energy Management Services as Microservices
5.3. AI
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BML | Bauhaus.MobilityLab |
EEX | European Energy Exchange |
AR | Autoregressive |
MA | Moving Average |
OUP | Open Urban Platform |
IoT | Internet of Things |
IDS | International Data Space |
AI | Artificial Intelligence |
References
- Groß, M.; Hoffmann-Riem, H.; Krohn, W. Realexperimente; Transcript Verlag: Bielefeld, Germany, 2005. [Google Scholar] [CrossRef]
- Schneidewind, U. Urbane Reallabore: Ein Blick in die aktuelle Forschungswerkstatt; Wuppertal Institut für Klima, Umwelt, Energie: Wuppertal, Germany, 2014. [Google Scholar]
- Liedtke, C.; Jolanta Welfens, M.; Rohn, H.; Nordmann, J. LIVING LAB: User–driven innovation for sustainability. Int. J. Sustain. High. Educ. 2012, 13, 106–118. [Google Scholar] [CrossRef]
- de Flander, K.; Hahne, U.; Kegler, H.; Lang, D.; Lucas, R.; Schneidewind, U.; Simon, K.H.; Singer-Brodowski, M.; Wanner, M.; Wiek, A. Resilience and Real-life Laboratories as Key Concepts for Urban Transition Research Resilienz und Reallabore als Schlüsselkonzepte urbaner Transformationsforschung. Zwölf Thesen. GAIA-Ecol. Perspect. Sci. Soc. 2014, 23, 284–286. [Google Scholar] [CrossRef]
- BBSR. Raumbeobachtung—Laufende Stadtbeobachtung—Raumabgrenzungen. 29 June 2020. Available online: https://www.bbsr.bund.de/BBSR/DE/forschung/raumbeobachtung/Raumabgrenzungen/deutschland/gemeinden/StadtGemeindetyp/StadtGemeindetyp.html (accessed on 26 October 2021).
- Thüringen, L.E. Erfurt-Brühl—Erfurts neue Mitte, 2021. Available online: https://www.leg-thueringen.de/immobilien/erfurt-bruehl/ (accessed on 26 October 2021).
- DIN SPEC. Referenzarchitekturmodell Offene Urbane Plattform (OUP), German Pre-Norm; Beuth: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- GitHub-International-Data-Spaces-Association/DataspaceConnector. Available online: https://github.com/International-Data-Spaces-Association/DataspaceConnector (accessed on 26 October 2021).
- Otto, B.; ten Hompel, M.; Wrobel, S. International data spaces. In Digital Transformation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 109–128. [Google Scholar]
- Open Geospatial Consortium. OpenGIS Web Map Service (WMS) Implementation Specification. 2006. Available online: https://www.ogc.org/standards/wms (accessed on 8 November 2021).
- Open Geospatial Consortium. Web Feature Service, 2010. Available online: https://www.ogc.org/standards/wfs (accessed on 28 November 2021).
- Liang, S.; Khalafbeigi, T.; van der Schaaf, H. OGC SensorThings API Part 1: Sensing Version 1.1. 4 August 2021. Available online: https://docs.ogc.org/is/18-088/18-088.html (accessed on 8 November 2021).
- Hertweck, P.; Hellmund, T.; van der Schaaf, H.; Moßgraber, J.; Blume, J.W. Management of Sensor Data with Open Standards. In Proceedings of the 6th ISCRAM Conference, València, Spain, 19–22 May 2019. [Google Scholar]
- dena-Verteilnetzstudie. Ausbau-und Innovationsbedarf der Strom-Verteilnetze in Deutschland Bis 2030; Deutsche Energie-Agentur GmbH (Dena): Berlin, Germany, 2012. [Google Scholar]
- Wirtschaft und Energie, Bundesministerium für. Smart Meter: Intelligente Messsysteme für die Energiewende. Available online: https://www.bmwi.de/Redaktion/DE/Textsammlungen/Energie/smart-meter.html (accessed on 8 November 2021).
- Santiago, P. Variable Stromtarife dank Smart Metern—Discovergy GmbH. Available online: https://discovergy.com/blog/boersenstrompreise-ansicht (accessed on 8 November 2021).
- EEX. EEX Transparency Platform. Available online: https://www.eex-transparency.com/renewables (accessed on 8 November 2021).
- Brandt, M. So Smart Sind Deutschlands Haushalte. 6 July 2021. Available online: https://de.statista.com/infografik/3105/anzahl-der-smart-home-haushalte-in-deutschland/ (accessed on 8 November 2021).
- Fenzl, C. Anbinden der aWATTar hourly API. LoxWiki. Available online: https://www.loxwiki.eu/display/LOX/Anbinden+der+aWATTar+hourly+API (accessed on 8 November 2021).
- Behara, S. Monolith to Microservices Using the Strangler Pattern. 13 September 2018. Available online: https://dzone.com/articles/monolith-to-microservices-using-the-strangler-patt (accessed on 8 November 2021).
- Yanaga, E. Migrating to Microservice Databases: From Relational Monolith to Distributed Data, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Vernon, V. Domain-Driven Design Kompakt, 1st ed.; dpunkt: Heidelberg, Germany, 2017. [Google Scholar]
- Hodge, V.J.; Austin, J. A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2004, 22, 85. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhou, K.; Yang, S.; Wu, C. Data quality of electricity consumption data in a smart grid environment. Ren. Sust. Energy Rev. 2017, 75, 98. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, K.; Zhang, X.; Yang, S. Outlier Data Treatment Methods Toward Smart Grid Applications. IEEE Access 2018, 6, 39849. [Google Scholar] [CrossRef]
- Hawkins, D.M. Identification of Outliers; Springer-Science+Business Media B.V.: Berlin, Germany, 1980. [Google Scholar] [CrossRef]
- Pratama, I.; Permanasari, A.E.; Ardiyanto, I.; Indrayani, R. A review of missing values handling methods on time-series data. In Proceedings of the 2016 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 24–27 October 2016; p. 1. [Google Scholar] [CrossRef]
- Grigoras, G.; Cartina, G.; Bobric, E.C.; Barbulescu, C. Missing data treatment of the load profiles in distribution networks. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Tang, L.; Wang, C.; Wang, S. Energy Time Series Data Analysis based on a Novel Integrated Data Characteristic Testing Approach. Procedia Comput. Sci. 2013, 17, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Niu, L. A Survey on Feature Selection. Procedia Comput. Sci. 2016, 91, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200209. [Google Scholar] [CrossRef] [PubMed]
- Jumani, T.; Mustafa, M.; Alghamdi, A.; Rasid, M.M.; Alamgir, A.; Awan, A. Swarm Intelligence-Based Optimization Techniques for Dynamic Response and Power Quality Enhancement of AC Microgrids: A Comprehensive Review. IEEE Access 2020, 8, 75986–76001. [Google Scholar] [CrossRef]
- Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving Communication Efficiency. arXiv 2017, arXiv:1610.05492. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, C.; Hertweck, P.; Richter, L.; Warweg, O. Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services. Smart Cities 2022, 5, 133-145. https://doi.org/10.3390/smartcities5010009
Frey C, Hertweck P, Richter L, Warweg O. Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services. Smart Cities. 2022; 5(1):133-145. https://doi.org/10.3390/smartcities5010009
Chicago/Turabian StyleFrey, Carsten, Philipp Hertweck, Lucas Richter, and Oliver Warweg. 2022. "Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services" Smart Cities 5, no. 1: 133-145. https://doi.org/10.3390/smartcities5010009
APA StyleFrey, C., Hertweck, P., Richter, L., & Warweg, O. (2022). Bauhaus.MobilityLab: A Living Lab for the Development and Evaluation of AI-Assisted Services. Smart Cities, 5(1), 133-145. https://doi.org/10.3390/smartcities5010009