A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems
Abstract
:1. Introduction
2. System Models for RIS-Assisted Systems
2.1. MISO Systems
2.1.1. System Model
2.1.2. Problem Formulation
2.2. MIMO Systems
2.2.1. Cell-Free Communication System
- Scenario Caption and Signal Model
- Channel Model of Cell-Free Communication System
2.2.2. Cell Communication System
- Channel Model
- Channel Aging
3. Channel Estimation in the RIS-Assisted Communication Systems
3.1. S-CSI and I-CSI
3.2. MISO Systems
3.2.1. Alternating Optimization with the Semidefinite Relaxation (SDR) Technique
3.2.2. PPO Algorithm
3.2.3. Pseudocode of Asynchronous One-Step Q-Learning
3.3. MIMO Systems
3.3.1. Three-Dimensional Multiple Measurement Vector (3D-MMV) and the Look Ahead Orthogonal Match Pursuit (3D-MLAOMP) Algorithm
3.3.2. Two-Stage Based Cascaded Channel Estimation for a Multi-User System
3.3.3. Algorithm for an RIS-Assisted AB-HBF System
3.3.4. Channel Estimation Algorithms for the Cases with Long-Term Imperfection (LTI) and Short-Term Imperfection (STI)
4. Results of the Proposed Algorithms
4.1. MISO Systems
4.2. MIMO Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgment
Conflicts of Interest
Abbreviations
1D | 1 dimension |
3D | 3 dimensions |
3D-MLAOMP | 3D-MMV look ahead orthogonal match pursuit |
3D-MMV | Three-dimensional multiple measurement vector |
6G | Sixth-generation |
A2C | Asynchronous Advantage Actor–critic |
AB-HBF | Angular-based Hybrid Beamforming |
ADMM | Alternating Direction Method Of Multipliers |
ALS | Alternating Least Squares |
AO | Alternating Optimization |
AoA | Angle of Arrival |
AoD | Angle of Departure |
BB | Baseband |
BS | Base Station |
CPI | Conservative Policy Iteration |
CPU | Central Processing Unit |
CS | Compression Sensing |
CSI | Channel State Information |
DE | Deterministic Equivalent |
DFT | Discrete Fourier Transform |
DQN | Deep Q-networks |
EM | Expectation Maximization |
FDD | Frequency Division Duplex |
GAE | Generalized Advantage Estimator |
HBF | Hybrid Beamforming |
HOSVD | Higher-order Singular Value Decomposition |
HRIS | Hybrid RIS |
I-CSI | Instantaneous CSI |
IoVs | Internet of Vehicles |
JCEDD | Joint Channel Estimation and Data Detection |
KL | Kullback–Leibler |
LMMSE | Linear MMSE |
LoS | Line of Sight |
LS | Least Squares |
LTI | Long-term Imperfection |
MDP | Markov Decision Process |
MIMO | Multiple Input-Multiple Output |
MISO | Multiple Input-Single Output |
mMIMO | massive Multiple Input-Multiple Output |
MMSE | Minimum MSE |
MMV | Multiple Measurement Vector |
MP | Message Passing |
MSE | Mean-Squared-Error |
MU-MISO | multi-user MISO |
NLoS | Non-line-of-sight |
OMP | Orthogonal Matching Pursuit |
OTFS | Orthogonal Time Frequency Space |
PARAFAC | Parallel Factor |
PDD | Penalty Double Decomposition |
PDS | Primal Double Degradation |
PPO | Proximal Policy Optimization |
QoS | Quality of Service |
RBM | Reflecting Beamforming Matrix |
RF | Radio Frequency |
RIS | Reconfigurable Intelligent Surface |
RL | Reinforcement Learning |
RZF | Regularized ZF |
S-CSI | Statistical CSI |
SE | Spectral Efficiency |
SINR | Signal-to-Interference-Plus-Noise Ratio |
STI | Short-term Imperfection |
SVD | Singular Value Decomposition |
TALS | Trilinear ALS |
TDD | Time Division Duplex |
TORCS | The Open Racing Car Simulator |
TRPO | Trust Region Policy Optimization |
UE | User Equipment |
ULA | Uniform Linear Array |
UPA | Uniform Planar Arrays |
ZF | Zero Forcing |
SDR | Semidefinite Relaxation |
SCA | Successive Convex Approximation |
DS-OMP | Double-Structured-OMP |
References
- Gomes, P.R.B.; Araujo, G.T.D.; Sokal, B.; Almeida, A.L.F.D.; Makki, B.; Fodor, G. Channel Estimation in RIS-Assisted MIMO Systems Operating under Imperfections. arXiv 2022, arXiv:2207.02700. [Google Scholar]
- Li, M.; Zhang, S.; Ge, Y.; Gao, F.; Fan, P. Joint Channel Estimation and Data Detection for Hybrid RIS aided Millimeter Wave OTFS Systems. IEEE Trans. Commun. 2022, 70, 6832–6848. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Krikidis, I.; Kourtessis, P. Impact of Channel Aging on Reconfigurable Intelligent Surface Aided Massive MIMO Systems with Statistical CSI. IEEE Trans. Veh. Technol. 2023, 72, 689–703. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Ren, H.; Wang, K.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Trans. Wirel. Commun. 2020, 19, 5218–5233. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Pan, C.; Kourtessis, P.; Chatzinotas, S.; Senior, J.M. Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation, beamforming design. IEEE Trans. Wirel. Commun. 2021, 21, 2077–2092. [Google Scholar] [CrossRef]
- Nadeem, Q.-U.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.-S. Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Trans. Wirel. Commun. 2020, 19, 7748–7764. [Google Scholar] [CrossRef] [Green Version]
- Papazafeiropoulos, A.; Pan, C.; Elbir, A.M.; Nguyen, V.-D.; Kourtessis, P.; Chatzinotas, S. Asymptotic analysis of Max-Min weighted SINR for IRS-assisted MISO systems with hardware impairments. IEEE Wirel. Commun. Lett. 2021, 12, 192–196. [Google Scholar] [CrossRef]
- Yang, P.; Yang, L.; Wang, S.J. Performance analysis for RIS-Aided Wireless Systems with Imperfect CSI. IEEE Wirel. Commun. Lett. 2021, 11, 588–592. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Miridakis, N.I.; Michalas, A.; Skondras, E.; Vergados, D.J. Energy Optimization in Dual-RIS UAV-Aided MEC-Enabled Internet of Vehicles. Sensors 2021, 21, 4392. [Google Scholar] [CrossRef] [PubMed]
- Tsiftsis, T.A.; Valagiannopoulos, C.; Liu, H.; Boulogeorgos, A.-A.A.; Miridakis, N.I. Metasurface-Coated Devices: A New Paradigm for Energy-Efficient and Secure 6G Communications. IEEE Veh. Technol. Mag. 2021, 17, 27–36. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Shlezinger, N.; Alamzadeh, I.; Imani, M.F.; Zhang, H.; Eldar, Y.C. Hybrid Reconfigurable Intelligent Metasurfaces: Enabling Simultaneous Tunable Reflections and Sensing for 6G Wireless Communications. arXiv 2021, arXiv:2104.04690. [Google Scholar]
- Albanese, A.; Devoti, F.; Sciancalepore, V.; Renzo, M.D.; Perez, X. MARISA: A Self-Configuring Metasurfaces Absorption and Reflection. arXiv 2021, arXiv:2104.04690. [Google Scholar]
- Hu, X.; Zhang, R.; Zhong, C. Semi-passive elements assisted channel estimation for intelligent reflecting surface-aided communications. IEEE Trans. Wirel. Commun. 2022, 21, 1132–1142. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Wu, Q.; Jin, Y.; Chen, Y.; Ai, B. RIS-Aided Next-Generation High-Speed Train Communications: Challenges, Solutions, and Future Directions. arXiv 2021, arXiv:2103.09484. [Google Scholar]
- Zhang, S.; Gao, F.; Ma, J.; Dobre, O.A. Deep learning optimized sparse antenna activation for reconfigurable intelligent surface assisted communication. IEEE Trans. Commun. 2021, 69, 6691–6705. [Google Scholar] [CrossRef]
- Yildirim, I.; Koc, A.; Basar, E.; Le-Ngoc, T. RIS-Aided Angular-Based Hybrid Beamforming Design in mmWave Massive MIMO Systems. 2022. Available online: https://arxiv.org/abs/2208.06622v1 (accessed on 1 January 2023).
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef] [Green Version]
- Koc, A.; Masmoudi, A.; Le-Ngoc, T. 3D angular-based hybrid precoding and user grouping for uniform rectangular arrays in massive MU-MIMO systems. IEEE Access 2020, 8, 84689–84712. [Google Scholar] [CrossRef]
- Koc, A.; Le-Ngoc, T. Hybrid millimeter-wave massive MIMO systems with low CSI overhead and few-bit DACs/ADCs. In Proceedings of the IEEE Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–5. [Google Scholar]
- Koc, A.; Le-Ngoc, T. Swarm Intelligence based Power Allocation in Hybrid Millimeter-Wave Massive MIMO Systems. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China; 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, P.; Fang, J.; Dai, L.; Li, H. Joint transceiver and large intelligent surface design for massive MIMO mmWave systems. IEEE Trans. Wirel. Commun. 2021, 20, 1052–1064. [Google Scholar] [CrossRef]
- Hong, S.H.; Park, J.; Kim, S.-J.; Choi, J. Hybrid beamforming for intelligent reflecting surface aided millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2022, 21, 7343–7357. [Google Scholar] [CrossRef]
- Ying, K.; Gao, Z.; Lyu, S.; Wu, Y.; Wang, H.; Alouini, M.-S. GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access 2020, 8, 19530–19539. [Google Scholar] [CrossRef]
- Peng, Z.; Pan, C.; Zhou, G.; Ren, H. Error Propagation and Overhead Reduced Channel Estimation for RIS-Aided Multi-User mmWave Systems. 2022. Available online: https://arxiv.org/abs/2208.10732v1 (accessed on 1 January 2023).
- Peng, Z.; Zhou, G.; Pan, C.; Ren, H.; Swindlehurst, A.L.; Popovski, P.; Wu, G. Channel Estimation for RIS-Aided Multi-User mmWave Systems with Uniform Planar Arrays. 2022. Available online: https://arxiv.org/abs/2208.07069v1 (accessed on 1 January 2023).
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Zheng, B.; You, C.; Mei, W.; Zhang, R. A Survey on Channel Estimation and Practical Passive Beamforming Design for Intelligent Reflecting Surface Aided Wireless Communications. Available online: https://arxiv.org/abs/1911.00091 (accessed on 1 February 2022).
- Mishra, D.; Johansson, H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4659–4663. [Google Scholar]
- Jensen, T.L.; Carvalho, E.D. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 5000–5004. [Google Scholar]
- Wang, P.; Fang, J.; Duan, H.; Li, H. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems. IEEE Signal Process. Lett. 2020, 27, 905–909. [Google Scholar] [CrossRef]
- Gao, S.; Dong, P.; Pan, Z.; Li, G.Y. Deep multi-stage CSI acquisition for reconfigurable intelligent surface aided MIMO systems. IEEE Commun. Lett. 2021, 25, 2024–2028. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, S.; Zhong, C.; Ma, J.; Dobre, O.A. Ordinary differential equation-based CNN for channel extrapolation over RIS-assisted. IEEE Commun. Lett. 2021, 25, 1921–1925. [Google Scholar] [CrossRef]
- Kundu, N.K.; McKay, M.R. A Deep Learning-Based Channel Estimation Approach for MISO Communications with Large Intelligent Surfaces. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PRMIC), London, UK, 31 August–3 September 2020; pp. 1–6. [Google Scholar]
- Li, Z.; Chen, Z.; Ma, X.; Chen, W. Channel estimation for intelligent reflecting surface enabled terahertz MIMO systems: A deep learning perspective. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC Workshop), Chongqing, China, 9–11 August 2020; pp. 75–79. [Google Scholar]
- Mao, Z.; Peng, M.; Liu, X. Channel estimation for reconfigurable intelligent surface assisted wireless communication systems in mobility scenarios. China Commun. 2021, 18, 29–38. [Google Scholar] [CrossRef]
- Cai, P.; Zong, J.; Luo, X.; Zhou, Y.; Chen, S.; Qian, H. Downlink channel tracking for intelligent reflecting surface-aided FDD MIMO systems. IEEE Trans. Veh. Technol. 2021, 70, 3341–3353. [Google Scholar] [CrossRef]
- Ardah, K.; Gherekhloo, S.; Almeida, A.L.; Haardt, M. TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems. IEEE Signal Process. Lett. 2021, 28, 513–517. [Google Scholar] [CrossRef]
- Jia, C.; Cheng, J.; Gao, H.; Xu, W. High-resolution channel estimation for intelligent reflecting surface-assisted mmWave communications. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PRMIC), London, UK, 31 August–3 September 2020; pp. 1–6. [Google Scholar]
- He, J.; Wymeersch, H.; Juntti, M. Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization. IEEE Trans. Wirel. Commun. 2021, 20, 5786–5797. [Google Scholar] [CrossRef]
- He, J.; Leinonen, M.; Wymeersch, H.; Juntti, M. Channel estimation for RIS-aided mmWave MIMO systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Ma, X.; Chen, Z.; Chen, W.; Li, Z.; Chi, Y.; Han, C.; Li, S. Joint channel estimation and data rate maximization for intelligent reflecting surface assisted terahertz MIMO communication systems. IEEE Access 2020, 8, 99565–99581. [Google Scholar] [CrossRef]
- He, Z.-Q.; Yuan, X. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 2019, 9, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Araujo, G.T.; Almeida, A.L.; Boyer, R. Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach. IEEE J. Sel. Topics Signal Process. 2021, 15, 789–802. [Google Scholar] [CrossRef]
- Zegrar, S.E.; Afeef, L.; Arslan, H. Reconfigurable intelligent surfaces (RIS): Channel model and estimation. arXiv 2020, arXiv:2010.05623. [Google Scholar]
- Sun, S.; Yan, H. Channel estimation for reconfigurable intelligent surface-assisted wireless communications considering doppler effect. IEEE Wirel. Commun. Lett. 2021, 10, 790–794. [Google Scholar] [CrossRef]
- Zegrar, S.; Afeef, L.; Arslan, H. A general framework for RIS-aided mmWave communication networks: Channel estimation and mobile user tracking. arXiv 2020, arXiv:2009.01180. [Google Scholar]
- Nadeem, Q.-U.; Alwazani, H.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.-S. Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design. IEEE Open J. Commun. Soc. 2020, 1, 661–680. [Google Scholar] [CrossRef]
- Mishra, D.; Larsson, E.G. Passive intelligent surface assisted MIMO powered sustainable IoT. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8961–8965. [Google Scholar]
- Buzzi, S.; D’Andrea, C.; Zappone, A.; Fresia, M.; Zhang, Y.-P.; Feng, S. RIS configuration, beamformer design, and power control in single-cell and multi-cell wireless networks. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 398–411. [Google Scholar] [CrossRef]
- Wei, X.; Shen, D.; Dai, L. Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on double-structured sparsity. IEEE Commun. Lett. 2021, 25, 1403–1407. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Cui, S. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Trans. Wirel. Commun. 2020, 19, 6607–6620. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.-C.; Cheng, H.V.; Yu, W. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems. arXiv 2019, arXiv:1912.03619. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L.; Han, S.; Wang, X. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans. Commun. 2021, 69, 7736–7747. [Google Scholar] [CrossRef]
- Guan, X.; Wu, Q.; Zhang, R. Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication. IEEE Trans. Wirel. Commun. 2021, 21, 3764–3778. [Google Scholar] [CrossRef]
- Kang, J.-M. Intelligent reflecting surface: Joint optimal training sequence and refection pattern. IEEE Commun. Lett. 2020, 24, 1784–1788. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yuen, C.; Zhang, Z.; Debbah, M. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans. Commun. 2021, 69, 4144–4157. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, X.; Zhang, Y.-J.A. Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO. IEEE J. Sel. Areas Commun. 2020, 38, 2621–2636. [Google Scholar] [CrossRef]
- He, Z.-Q.; Liu, H.; Yuan, X.; Zhang, Y.-J.A.; Liang, Y.-C. Semi-blind cascaded channel estimation for reconfigurable intelligent surface aided massive MIMO. arXiv 2021, arXiv:2101.07315. [Google Scholar]
- Elbir, A.M.; Papazafeiropoulos, A.; Kourtessis, P.; Chatzinotas, S. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 9, 1447–1451. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Ng, D.; Yuan, J. Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications. IEEE Trans. Wirel. Commun. 2021, 21, 898–912. [Google Scholar] [CrossRef]
- Jian, M.; Zhao, Y. A modified off-grid SBL channel estimation and transmission strategy for RIS-assisted wireless communication systems. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1848–1853. [Google Scholar]
- Liu, S.; Lei, M.; Zhao, M.-J. Deep learning based channel estimation for intelligent reflecting surface aided MISO-OFDM systems. In Proceedings of the IEEE Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–5. [Google Scholar]
- Liu, S.; Gao, Z.; Zhang, J.; Di Renzo, M.; Alouini, M.-S. Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces. IEEE Trans. Veh. Technol. 2020, 69, 9223–9228. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Z.; Alouini, M.-S. Broadband channel estimation for intelligent reflecting surface aided mmWave massive MIMO systems. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 July 2020. [Google Scholar]
- Lin, Y.; Jin, S.; Matthaiou, M.; You, X. Tensor-based algebraic channel estimation for hybrid IRS-assisted MIMO-OFDM. IEEE Trans. Wirel. Commun. 2021, 20, 3770–3784. [Google Scholar] [CrossRef]
- Elbir, A.; Coleri, S. Federated learning for channel estimation in conventional and IRS-assisted massive MIMO. arXiv 2020, arXiv:2008.10846. [Google Scholar]
- Wan, Z.; Gao, Z.; Gao, F.; Renzo, M.; Alouini, M.-S. Terahertz massive MIMO with holographic reconfigurable intelligent surfaces. IEEE Trans. Commun. 2021, 69, 4732–4750. [Google Scholar] [CrossRef]
- Miridakis, N.I.; Tsiftsis, T.A.; Yao, R. Zero Forcing Uplink Detection through Large-Scale RIS: System Performance and Phase Shift Design. Available online: https://arxiv.org/abs/2211.12794v1 (accessed on 23 November 2022).
- Miridakis, N.I.; Tsiftsis, T.A.; Yang, G.; Karkazis, P.A.; Leligou, H.C. Semi-Blind Multiuser Detection Under the Presence of Reconfigurable Intelligent Surfaces. Available online: https://arxiv.org/abs/2110.04736v1 (accessed on 10 October 2021).
- Han, Y.; Tang, W.; Jin, S.; Wen, C.-K.; Ma, X. Large intelligent surface-assisted wireless communication exploiting statistical csi. IEEE Trans. Veh. Technol. 2019, 68, 8238–8242. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wang, J.; Zhong, C. Statistical csi based design for intelligent reflecting surface assisted miso systems. Sci. China Inf. Sci. 2020, 63, 1–10. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yuen, C. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication. In Proceedings of the IEEE Sensor Array AND Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020. [Google Scholar]
- Eskandari, M.; Zhu, H.; Shojaeifard, A.; Wang, A.J. Statistical CSI-based Beamforming for RIS-Aided Multiuser MISO Systems using Deep Reinforcement Learning. 2022. Available online: https://arxiv.org/abs/2209.09856v1 (accessed on 1 January 2023).
- Gan, X.; Zhong, C.; Huang, C.; Zhang, Z. Ris-assisted multi-user miso communications exploiting statistical csi. IEEE Trans. Commun. 2021, 69, 6781–6792. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Han, Y.; Jin, S.; Li, X. Joint transmit beamforming and phase shift design for reconfigurable intelligent surface assisted mimo systems. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 354–368. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Capacity characterization for intelligent reflecting surface aided mimo communication. IEEE J. Sel. Areas Commun. 2020, 38, 1823–1838. [Google Scholar] [CrossRef]
- Liu, P.; Luo, K.; Chen, D.; Jiang, T.; Matthaiou, M. Spectral efficiency analysis of multi-cell massive mimo systems with ricean fading. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–7. [Google Scholar]
- Gan, X.; Zhong, C.; Huang, C.; Yang, Z.; Zhang, Z. Multiple RISs Assisted Cell-Free Networks with Two-timescale CSI: Performance Analysis and System Design. 2022. Available online: https://arxiv.org/abs/2208.06072v1 (accessed on 1 January 2023).
- Yang, S.; Xie, C.; Wang, M.; Zhang, Z. Channel Estimation for Reconfigurable Intelligent Surface-Assisted Cell-Free Communications. 2022. Available online: https://arxiv.org/abs/2207.14182v1 (accessed on 1 January 2023).
- Araujo, G.; Almeida, A. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system. In Proceedings of the IEEE Sensor Array AND Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020. [Google Scholar]
- Araújo, G.; Pessoa, L.; Almeida, A. Channel estimation for MIMO system assisted by intelligent reflective surface. In Proceedings of the Stereotactic Body Radiation Therapy (SBrT), Santa Catarina, Brazil, 22–25 November 2020. [Google Scholar]
- Bjornson, E.; Sanguinetti, L. Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces. IEEE Wirel. Commun. Lett. 2021, 10, 830–834. [Google Scholar] [CrossRef]
- Truong, K.T.; Heath, R.W. Effects of channel aging in massive MIMO systems. IEEE/KICS J. Commun. Net. 2013, 15, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Papazafeiropoulos, A.K.; Ratnarajah, T. Deterministic equivalent performance analysis of time-varying massive MIMO systems. IEEE Trans. Wirel. Commun. 2015, 14, 5795–5809. [Google Scholar] [CrossRef] [Green Version]
- Papazafeiropoulos, A.K. Impact of general channel aging conditions on the downlink performance of massive MIMO. IEEE Trans. Veh. Technol. 2017, 66, 1428–1442. [Google Scholar] [CrossRef] [Green Version]
- Chopra, R.; Murthy, C.R.; Suraweera, H.A.; Larsson, E.G. Performance analysis of FDD massive MIMO systems under channel aging. IEEE Trans. Wirel. Commun. 2017, 17, 1094–1108. [Google Scholar] [CrossRef]
- Adhikary, A.; Nam, J.; Ahn, J.-Y.; Caire, G. Joint spatial division and multiplexing—The large-scale array regime. IEEE Trans. Inf. Theory 2013, 59, 6441–6463. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- You, C.; Zheng, B.; Zhang, R. Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement. IEEE J. Sel. Areas Commun. 2020, 38, 2604–2620. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Tufvesson, F. Scaling up mimo: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 2012, 30, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Badia, A.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. In Proceedings of the International Conference on Machine Learning (PMLR), New York, NY, USA, 19–24 June 2016; pp. 1928–1937. [Google Scholar]
- Guo, H.; Liang, Y.-C.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Wu, Q.; Zhao, M.; Zhang, R. Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization. IEEE Trans. Wirel. Commun. 2021, 20, 2–17. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Wang, K. Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI. IEEE Trans. Commun. 2022, 70, 3558–3574. [Google Scholar] [CrossRef]
System Setup | Antenna Setup | Main Results |
---|---|---|
Single-user, narrowband | MISO | |
MIMO |
| |
Multi-user, narrowband | MISO | |
Single-user, broadband | MISO |
|
MIMO |
| |
Multi-user, broadband | MISO | |
MIMO |
Antenna Setup | Contributions | Pilot Overhead/Complexity | Method’s Name | Future Research/Results | Source |
---|---|---|---|---|---|
MISO |
|
|
| [74] | |
MISO |
|
|
|
| [4] |
MISO |
|
|
| [92] | |
MIMO |
|
|
|
| [1] |
MIMO |
|
|
|
| [80] |
MIMO |
|
|
|
| [79] |
MIMO |
|
|
| [17] | |
MIMO |
|
|
|
| [2] |
MIMO |
|
|
|
| [26] |
| |||||
MIMO |
|
|
| [25] | |
MIMO |
|
|
|
| [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drampalou, S.F.; Miridakis, N.I.; Leligou, H.C.; Karkazis, P.A. A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems. Signals 2023, 4, 208-234. https://doi.org/10.3390/signals4010012
Drampalou SF, Miridakis NI, Leligou HC, Karkazis PA. A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems. Signals. 2023; 4(1):208-234. https://doi.org/10.3390/signals4010012
Chicago/Turabian StyleDrampalou, Stamatia F., Nikolaos I. Miridakis, Helen C. Leligou, and Panagiotis A. Karkazis. 2023. "A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems" Signals 4, no. 1: 208-234. https://doi.org/10.3390/signals4010012
APA StyleDrampalou, S. F., Miridakis, N. I., Leligou, H. C., & Karkazis, P. A. (2023). A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems. Signals, 4(1), 208-234. https://doi.org/10.3390/signals4010012