Development of an Area Scan Step Length Measuring System Using a Polynomial Estimate of the Heel Cloud Point
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Apparatus
2.3. Lidar Projection Analysis
2.3.1. LiDAR Laser Channel Selection
2.3.2. Cloud Point Data Extraction
2.3.3. Single-Support Leg Identification
2.3.4. Heel Tracking from Laser Scans and Step Length Calculation
2.4. Participants
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marino, F.R.; Lessard, D.M.; Saczynski, J.S.; McManus, D.D.; Silverman-Lloyd, L.G.; Benson, C.M.; Blaha, M.J.; Waring, M.E. Gait Speed and Mood, Cognition, and Quality of Life in Older Adults with Atrial Fibrillation. J. Am. Heart Assoc. 2019, 8, e013212. [Google Scholar] [CrossRef]
- Grady, A.; Klunk, W.J.; Jenson, J. Health Care Spending and the Aging of the Population. Available online: https://ecommons.cornell.edu/handle/1813/76246 (accessed on 5 February 2022).
- Selikson, S.; Damus, K.; Hamerman, D. Risk Factors Associated with Immobility. J. Am. Geriatr. Soc. 1988, 36, 707–712. [Google Scholar] [CrossRef]
- Herssens, N.; Verbecque, E.; Hallemans, A.; Vereeck, L.; Van Rompaey, V.; Saeys, W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018, 64, 181–190. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Solomon, D.H.; Roth, C.P.; Young, R.T.; Shekelle, P.G.; Chang, J.T.; MacLean, C.H.; Kamberg, C.J.; Saliba, D.; Wenger, N.S. Detection and Management of Falls and Instability in Vulnerable Elders by Community Physicians. J. Am. Geriatr. Soc. 2004, 52, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martín, D.; Samà, A.; Pérez-López, C.; Català, A.; Arostegui, J.M.M.; Cabestany, J.; Bayés, À.; Alcaine, S.; Mestre, B.; Prats, A.; et al. Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer. PLoS ONE 2017, 12, e0171764. [Google Scholar] [CrossRef] [PubMed]
- The Usefulness of Maximal Step Length to Predict Annual Fall Risk. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/wpr-167699 (accessed on 10 March 2022).
- Cho, B.-L.; Scarpace, D.; Alexander, N.B. Tests of Stepping as Indicators of Mobility, Balance, and Fall Risk in Balance-Impaired Older Adults. J. Am. Geriatr. Soc. 2004, 52, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Dite, W.; Temple, V.A. A Clinical Test of Stepping and Change of Direction to Identify Multiple Falling Older Adults. Available online: https://www.sciencedirect.com/science/article/pii/S0003999302002538 (accessed on 10 March 2022).
- Chandler, J.M.; Duncan, P.W.; Studenski, S.A. Balance Performance on the Postural Stress Test: Comparison of Young Adults, Healthy Elderly, and Fallers. Available online: https://academic.oup.com/ptj/article-abstract/70/7/410/2728657 (accessed on 10 March 2022).
- Lord, S.R.; Fitzpatrick, R.C. Choice Stepping Reaction Time: A Composite Measure of Falls Risk in Older People. Available online: https://academic.oup.com/biomedgerontology/article-abstract/56/10/M627/584900 (accessed on 10 March 2022).
- Christensen, J.K.B. The Emergence and Unfolding of Telemonitoring Practices in Different Healthcare Organizations. Int. J. Environ. Res. Public Health 2018, 15, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Soh, C.B.; Gunawan, E.; Low, K.-S.; Thomas, R. Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System. Sensors 2014, 14, 15434–15457. [Google Scholar] [CrossRef] [Green Version]
- Latorre, J.; Llorens, R.; Colomer, C.; Alcañiz, M. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. J. Biomech. 2018, 72, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, P.; Tian, S.; Tang, K.; Chen, X. Estimation of Temporal Gait Parameters Using a Human Body Electrostatic Sensing-Based Method. Sensors 2018, 18, 1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Stone, E.E.; Skubic, M.; Keller, J.M.; Abbott, C.; Rantz, M. Toward a Passive Low-Cost In-Home Gait Assessment System for Older Adults. IEEE J. Biomed. Health Inform. 2013, 17, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Bates, B.T. Comparison of F-Scan in-sole and AMTI forceplate system in measuring vertical ground reaction force during gait. Physiother. Theory Pract. 2000, 16, 43–53. [Google Scholar] [CrossRef]
- Patterson, M.R.; Johnston, W.; O’Mahony, N.; O’Mahony, S.; Nolan, E.; Caulfield, B. Validation of temporal gait metrics from three IMU locations to the gold standard force plate. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 667–671. [Google Scholar] [CrossRef] [Green Version]
- Kharazi, M.; Memari, A.; Shahrokhi, A.; Nabavi, H.; Khorami, S.; Rasooli, A.; Barnamei, H.; Jamshidian, A.; Mirbagheri, M. Validity of microsoft kinectTM for measuring gait parameters. In Proceedings of the 22nd Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 25–27 November 2015; pp. 375–379. [Google Scholar] [CrossRef]
- Lamine, H.; Bennour, S.; Laribi, M.; Romdhane, L.; Zaghloul, S. Evaluation of Calibrated Kinect Gait Kinematics Using a Vicon Motion Capture System. Comput. Methods Biomech. Biomed. Eng. 2017, 20, S111–S112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouwanda, D.; Senanayake, S.M.N.A. Emerging Trends of Body-Mounted Sensors in Sports and Human Gait Analysis. IFMBE Proc. 2008, 21, 715–718. [Google Scholar] [CrossRef]
- Ikizoğlu, S.; Şahin, K.; Ataş, A.; Kara, E.; Çakar, T. IMU Acceleration Drift Compensation for Position Tracking in Ambulatory Gait Analysis. In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, Madrid, Spain, 26–28 July 2017; pp. 582–589. [Google Scholar]
- Sposaro, F.; Tyson, G. iFall: An Android Application for Fall Monitoring and Response. Available online: https://ieeexplore.ieee.org/abstract/document/5334912/ (accessed on 10 March 2022).
- Brodie, M.; Walmsley, A.; Page, W. Dynamic accuracy of inertial measurement units during simple pendulum motion. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Steinert, A.; Sattler, I.; Otte, K.; Röhling, H.; Mansow-Model, S.; Müller-Werdan, U. Using New Camera-Based Technologies for Gait Analysis in Older Adults in Comparison to the Established GAITRite System. Sensors 2019, 20, 125. [Google Scholar] [CrossRef] [Green Version]
- Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B.M. Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters. Sensors 2017, 17, 1522. [Google Scholar] [CrossRef]
- Cho, Y.-S.; Jang, S.-H.; Cho, J.-S.; Kim, M.-J.; Lee, H.D.; Lee, S.Y.; Moon, S.-B. Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems. Ann. Rehabil. Med. 2018, 42, 872–883. [Google Scholar] [CrossRef] [Green Version]
- Carse, B.; Meadows, B.; Bowers, R.; Rowe, P. Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy 2013, 99, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical Gait Assessment in the Neurologically Impaired: Reliability and Meaningfulness. Available online: https://academic.oup.com/ptj/article-abstract/64/1/35/2727634 (accessed on 8 February 2022).
- Gabel, M.; Gilad-Bachrach, R.; Renshaw, E.; Schuster, A. Full Body Gait Analysis with Kinect. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Springer, S.; Yogev Seligmann, G. Validity of the Kinect for Gait Assessment: A Focused Review. Sensors 2016, 16, 194. [Google Scholar] [CrossRef]
- Mejia-Trujillo, J.D.; Castano-Pino, Y.J.; Navarro, A.; Arango-Paredes, J.D.; Rincon, D.; Valderrama, J.; Munoz, B.; Orozco, J.L. Kinect™ and Intel RealSense™ D435 comparison: A preliminary study for motion analysis. In Proceedings of the IEEE International Conference on E-health Networking, Application & Services (HealthCom), Bogotá, Colombia, 14–16 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Siena, F.L.; Byrom, B.; Watts, P.; Breedon, P. Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research. J. Med. Syst. 2018, 42, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.A.; Mentiplay, B.F.; Hough, E.; Pua, Y.H. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives. Gait Posture 2019, 68, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Sarbolandi, H.; Lefloch, D.; Kolb, A. Kinect range sensing: Structured-light versus Time-of-Flight Kinect. Comput. Vis. Image Underst. 2015, 139, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose with Multiple Video Cameras. Front. Sports Act. Living 2020, 2, 50. [Google Scholar] [CrossRef] [PubMed]
- Nath, T.; Mathis, A.; Chen, A.C.; Patel, A.; Bethge, M.; Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 2019, 14, 2152–2176. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.; Schneider, S.; Lauer, J.; Mathis, M.W. A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives. Neuron 2020, 108, 44–65. [Google Scholar] [CrossRef] [PubMed]
- Lidar: HDL-64E S3 User’s Manual and Programming Guide. Available online: https://scholar.google.com/scholar_lookup?title=HDL–64E+S3+Users’s+Manual+and+Programming+Guide&publication_year=2013& (accessed on 9 March 2022).
- 2D LiDAR Sensors|TiM7xx|SICK. Available online: https://www.sick.com/au/en/detection-and-ranging-solutions/2d-lidar-sensors/tim7xx/c/g501853 (accessed on 14 March 2022).
- Benedek, C.; Galai, B.; Nagy, B.; Janko, Z. Lidar-Based Gait Analysis and Activity Recognition in a 4D Surveillance System. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Ahn, J.; Mozos, O.M.; Iwashita, Y.; Kurazume, R. Gait-based person identification using 3D LiDAR and long short-term memory deep networks. Adv. Robot. 2020, 34, 1201–1211. [Google Scholar] [CrossRef]
- Iwai, M.; Koyama, S.; Tanabe, S.; Osawa, S.; Takeda, K.; Motoya, I.; Sakurai, H.; Kanada, Y.; Kawamura, N. The validity of spatiotemporal gait analysis using dual laser range sensors: A cross-sectional study. Arch. Physiother. 2019, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- VeloView|ParaView. Available online: https://www.paraview.org/veloview/ (accessed on 10 March 2022).
- Watelain, E.; Froger, J.; Rousseaux, M.; Lense, G.; Barbier, F.; Lepoutre, F.-X.; Thevenon, A. Variability of video-based clinical gait analysis in hemiplegia as performed by practitioners in diverse specialties. J. Rehabil. Med. 2005, 37, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Park, J.; Kwon, O. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin. Biomech. 2004, 19, 145–152. [Google Scholar] [CrossRef]
- Scherer, S.A.; Bainbridge, J.; Hiatt, W.R.; Regensteiner, J.G. Gait characteristics of patients with claudication. Arch. Phys. Med. Rehabil. 1998, 79, 529–531. [Google Scholar] [CrossRef]
- Lassiter, H.A.; Whitley, T.; Wilkinson, B.; Abd-Elrahman, A. Scan Pattern Characterization of Velodyne VLP-16 Lidar Sensor for UAS Laser Scanning. Sensors 2020, 20, 7351. [Google Scholar] [CrossRef] [PubMed]
1 | 1.0174 |
10 | 1.6750 |
17 | 2.3338 |
23 | 2.9590 |
31 | 3.5844 |
37 | 4.1045 |
45 | 4.4287 |
Subjects | Height (cm) | Weight (kg) | Age |
---|---|---|---|
6 males | 172.2 ± 4.3 | 74.3 ± 7.8 | 28.8 ± 6.1 |
4 females | 153.8 ± 4.3 | 51.5 ± 11.4 | 26.8 ± 2.9 |
Average | 164.8 ± 10.0 | 65.2 ± 14.6 | 28 ± 5.2 |
Participants | Visualization Inspection | Polynomial Value | ||||||
---|---|---|---|---|---|---|---|---|
Normal Speed | Fast Speed | Normal Speed | Fast Speed | |||||
Step Length | SD | Step Length | SD | Step Length | SD | Step Length | SD | |
Subject 1 | 0.5604 | ±0.0943 | 0.7495 | ±0.0896 | 0.6008 | ±0.0501 | 0.7830 | ±0.0563 |
Subject 2 | 0.5077 | ±0.0355 | 0.6107 | ±0.0845 | 0.5086 | ±0.0353 | 0.5690 | ±0.0969 |
Subject 3 | 0.5771 | ±0.0234 | 0.6238 | ±0.0701 | 0.5834 | ±0.0637 | 0.6297 | ±0.0930 |
Subject 4 | 0.5888 | ±0.3786 | 0.6447 | ±0.0326 | 0.5838 | ±0.0473 | 0.6644 | ±0.0455 |
Subject 5 | 0.6351 | ±0.0836 | 0.7597 | ±0.0705 | 0.6662 | ±0.0298 | 0.7394 | ±0.1188 |
Subject 6 | 0.6145 | ±0.0597 | 0.7234 | ±0.0768 | 0.6398 | ±0.0618 | 0.7437 | ±0.0615 |
Subject 7 | 0.6121 | ±0.0163 | 0.5991 | ±0.1104 | 0.6116 | ±0.0104 | 0.6109 | ±0.1529 |
Subject 8 | 0.5751 | ±0.4267 | 0.7376 | ±0.0593 | 0.6174 | ±0.0568 | 0.7970 | ±0.0687 |
Subject 9 | 0.6262 | ±0.1082 | 0.7393 | ±0.2300 | 0.6659 | ±0.0427 | 0.8327 | ±0.0664 |
Subject 10 | 0.4758 | ±0.0804 | 0.6956 | ±0.0571 | 0.4707 | ±0.0919 | 0.6826 | ±0.0715 |
Average | ±0.0515 | ±0.0625 | ±0.0633 | ±0.0874 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haji Kadir, N.B.; Muguro, J.K.; Matsushita, K.; Senanayake, S.M.N.A.; Sasaki, M. Development of an Area Scan Step Length Measuring System Using a Polynomial Estimate of the Heel Cloud Point. Signals 2022, 3, 157-173. https://doi.org/10.3390/signals3020011
Haji Kadir NB, Muguro JK, Matsushita K, Senanayake SMNA, Sasaki M. Development of an Area Scan Step Length Measuring System Using a Polynomial Estimate of the Heel Cloud Point. Signals. 2022; 3(2):157-173. https://doi.org/10.3390/signals3020011
Chicago/Turabian StyleHaji Kadir, Nursyuhada Binti, Joseph K. Muguro, Kojiro Matsushita, Senanayake Mudiyanselaga Namal Arosha Senanayake, and Minoru Sasaki. 2022. "Development of an Area Scan Step Length Measuring System Using a Polynomial Estimate of the Heel Cloud Point" Signals 3, no. 2: 157-173. https://doi.org/10.3390/signals3020011
APA StyleHaji Kadir, N. B., Muguro, J. K., Matsushita, K., Senanayake, S. M. N. A., & Sasaki, M. (2022). Development of an Area Scan Step Length Measuring System Using a Polynomial Estimate of the Heel Cloud Point. Signals, 3(2), 157-173. https://doi.org/10.3390/signals3020011