Smart Clothing Framework for Health Monitoring Applications
Abstract
:1. Introduction
- (a)
- Identify potential textile and sensors materials for smart clothes design requirements;
- (b)
- Identify suitable sensing mechanisms;
- (c)
- Investigate state-of-the-art sensor integration techniques;
- (d)
- Suggest appropriate techniques for data collection and analysing with a smartphone and IoT-based cloud system;
- (e)
- Suggest advanced data analytics with AI techniques to make decisions for healthcare.
2. Wearable Technology and Smart Clothing
2.1. Wearable Technology
2.2. Smart Clothing
2.3. Advancement in Smart Clothing
2.4. Antenna Design for Smart Cloth
2.5. Wireless Communication
2.6. Computational Approach on Wearable Technologies
2.6.1. Sensor-Based Technology
2.6.2. Edge Computing for Health Monitoring
2.6.3. Machine Learning for Healthcare
2.6.4. Deep Learning for Healthcare
3. Proposed Framework for Smart Clothing (Leggings)
3.1. Application Scenario
3.2. Design Requirements
3.2.1. Market Forecasting
3.2.2. Demand Analysis
3.2.3. Technical, Aesthetic and Targeted User’s Requirements
3.2.4. Conceptual Specification of Smart Leggings
3.3. Development of Textile Materials
3.3.1. Conductive Fibres and Fabrics
3.3.2. Self-Cleaning Textile Materials
3.3.3. Self-Healing Textile Materials
3.3.4. Energy-Harvesting Textile Materials
3.4. Sensor and Sensing Mechanism in Smart Clothing
3.5. Development in Smart Clothes Sensor Materials
3.5.1. Carbon-Based Sensor Materials
Graphite
Graphene
Carbone Nanotube (CNT)
3.5.2. Metal-Based Sensor Material
Nanowires (NWs) and Nanoparticles (NPs)
Liquid Metal
3.5.3. Polymers
Poly (3,4-ethylenedioxythiophene): Poly (styrene sulfonate) PEDOT: PSS
Polyvinylidene Difluoride (PVDF)
Ionic Liquid (IL) Salt
Conducting Polymers
3.6. Integration between Sensor and Textile
3.6.1. Integration at the Material Level
3.6.2. Integration at the Fibre Level
3.6.3. Integration at the Yarn/Fabric Level
3.6.4. Integration at the Garment Level
3.7. Data Collection, Data Analytics and Decision Support
3.8. Pros and Cons of the Proposed Framework
4. Challenges and Future Development
4.1. Technical
4.1.1. Noisy and Discontinuous Signals from Sensors
4.1.2. Lack of Flexibility, Foldability and Comfortability
4.1.3. Shorter Battery Life and Lack of Self-Powering
4.1.4. Complicated Interfacing and Operating System
4.1.5. Privacy and Security
4.2. Durability, Service Life and Maintenance
4.2.1. High Failure Rate
4.2.2. Shorter Lifetime
4.2.3. Difficult to Maintain
4.2.4. Poor Washability
4.3. Social Acceptability
4.3.1. Lack of Awareness of Technological Development
4.3.2. Personal Choice or Unwillingness
4.3.3. Unavailability of the Internet
4.3.4. Cost of Smart Fabric
4.4. Design and Integration
4.4.1. User Comfort and Aesthetics
4.4.2. Sensor Integration
4.4.3. Design for Targeted Users
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Smart Wearables Reflection and Orientation Paper; Technical Report; European Commission: Brussels, Belgium, 2016; Available online: Ec.europa.eu/newsroom/document.cfm?doc_id=40542 (accessed on 31 November 2020).
- Gonçalves, C.; Silva, A.; Gomes, J.; Simoes, R. Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions 2018, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Smart Textiles Market to 2024. Available online: https://www.ameriresearch.com/product/smart-textiles-market/ (accessed on 28 February 2021).
- IEC TC 124 Strategic Business Plan. Available online: https://www.iec.ch/public/miscfiles/sbp/124.pdf (accessed on 31 January 2021).
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ma, Y.; Song, J.; Lai, C.F.; Hu, B. Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. Mob. Netw. Appl. 2016, 21, 825–845. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. Towards the Internet of Smart Clothing: A Review on IoT Wearables and Garments for Creating Intelligent Connected E-Textiles. Electronics 2018, 7, 405. [Google Scholar] [CrossRef] [Green Version]
- Muhammad Sayem, A.S.; Hon Teay, S.; Shahariar, H.; Luise Fink, P.; Albarbar, A. Review on Smart Electro-Clothing Systems (SeCSs). Sensors 2020, 20, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Ma, Y.; Li, Y.; Wu, D.; Zhang, Y.; Youn, C. Wearable 2.0: Enabling Human-Cloud Integration in Next Generation Healthcare Systems. IEEE Commun. Mag. 2017, 55, 54–61. [Google Scholar] [CrossRef]
- Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 2010, 10, 1391–1398. [Google Scholar]
- Liang, Z.; Nishimura, T. Are wearable EEG devices more accurate than fitness wristbands for home sleep Tracking? Comparison of consumer sleep trackers with clinical devices. In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–5. [Google Scholar]
- Joshi, J.; Kurian, D.; Bhasin, S.; Mukherjee, S.; Awasthi, P.; Sharma, S.; Mittal, S. Health Monitoring Using Wearable Sensor and Cloud Computing. In Proceedings of the International Conference on Cybernetics, Robotics and Control, Hong Kong, China, 19–21 August 2016; pp. 104–108. [Google Scholar]
- Abtahi, F.; Ji, G.; Lu, K.; Rödby, K.; Seoane, F. A knitted garment using intarsia technique for Heart Rate Variability biofeedback: Evaluation of initial prototype. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015. [Google Scholar]
- Brady, S.; Dunne, L.E.; Tynan, R.; Diamond, D.; Smyth, B.; O’Hare, G.M.P. Garment-based monitoring of respiration rate using a foam pressure sensor. In Proceedings of the Ninth IEEE International Symposium on Wearable Computers (ISWC’05), Osaka, Japan, 18–21 October 2005; pp. 214–215. [Google Scholar]
- Spulber, I.; Chen, Y.-M.; Papi, E.; Anastasova-Ivanova, S.; Bergmann, J.; McGregor, A.H.; Georgiou, P. Live demonstration: Wearable electronics for a smart garment aiding rehabilitation. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; p. 1912. [Google Scholar]
- Wang, Q.; De Baets, L.; Timmermans, A.; Chen, W.; Giacolini, L.; Matheve, T.; Markopoulos, P. Motor Control Training for the Shoulder with Smart Garments. Sensors 2017, 17, 1687. [Google Scholar] [CrossRef]
- Glucotrack Official Webpage. Available online: http://www.glucotrack.com.au/ (accessed on 31 March 2021).
- Lowdownfocus Official Webpage. Available online: https://www.smithoptics.com/us/lowdownfocus (accessed on 30 April 2021).
- Perego, P.; Andreoni, G.; Zanini, R.; Bellù, R. Wearable biosignal monitoring system for newborns. In Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 271–274. [Google Scholar]
- Linti, C.; Horter, H.; Osterreicher, P.; Planck, H. Sensory baby vest for the monitoring of infants. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006. [Google Scholar]
- Morales, I.J.C.; Pupiales, S.K.N.; Criollo, A.C.U.; Montalvo, P.D.R. Wearable Textil for Accident Prevention for Babies in Crawl Phase. In Proceedings of the International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 23–25 November 2017; pp. 66–72. [Google Scholar]
- Ferreira, A.G.; Fernandes, D.; Branco, S.; Monteiro, J.L.; Cabral, J.; Catarino, A.P.; Rocha, A.M. A smart wearable system for sudden infant death syndrome monitoring. In Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 1920–1925. [Google Scholar]
- Frydrysiak, M.; Tesiorowski, L. Health monitoring system for protecting elderly people. In Proceedings of the International Multidisciplinary Conference on Computer and Energy Science, Split, Croatia, 13–15 July 2016; pp. 1–6. [Google Scholar]
- Burns, W.P. Evaluation of a technology enabled garment for older walkers. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 2100–2103. [Google Scholar]
- Harms, H.; Amft, O.; Tröster, G. Estimating Posture-Recognition Performance in Sensing Garments Using Geometric Wrinkle Modeling. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1436–1445. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-Y.; Chou, W.-C.; Tsai, T.-H.; Lin, C.-C.; Lee, M.-Y. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model. Sensors 2016, 16, 2172. [Google Scholar] [CrossRef] [Green Version]
- Zaffalon Júnior, J.R.; Viana, A.O.; de Melo, G.E.L.; De Angelis, K. The impact of sedentarism on heart rate variability (HRV) at rest and in response to mental stress in young women. Physiol. Rep. 2018, 6, e13873. [Google Scholar] [CrossRef] [PubMed]
- Kańtoch, E. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk. Sensors 2018, 18, 3219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.; Sazonov, E. A Novel Wearable Device for Food Intake and Physical Activity Recognition. Sensors 2016, 16, 1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcìa, L.; Parra, L.; Jimenez, J.M.; Lloret, J. Physical Wellbeing Monitoring Employing Non-Invasive Low-Cost and Low-Energy Sensor Socks. Sensors 2018, 18, 2822. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Isaia, B.; Brown, L.J.E.; Beeby, S. E-Textiles for Healthy Ageing. Sensors 2019, 19, 4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Lu, K.; Diaz-Olivares, J.A.; Seoane, F.; Lindecrantz, K.; Forsman, M.; Abtahi, F.; Eklund, J.A.E. Towards SmartWork Clothing for Automatic Risk Assessment of Physical Workload. IEEE Access 2018, 6, 40059–40072. [Google Scholar] [CrossRef]
- Scataglini, S.; Andreoni, G.; Gallant, J. A Review of Smart Clothing in Military. In Proceedings of the Workshop on Wearable Systems and Applications, Florence, Italy, 19–22 May 2015. [Google Scholar]
- Friedl, K.E. Military applications of soldier physiological monitoring. J. Sci. Med. Sport 2018, 21, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Tartare, G.; Zeng, X.; Koehl, L. Development of a wearable system for monitoring the firefighter’s physiological state. In Proceedings of the IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, Russia, 15–18 May 2018; pp. 561–566. [Google Scholar]
- Bu, Y.; Wu, W.; Zeng, X.; Koehl, L.; Tartare, G. A wearable intelligent system for real time monitoring firefighter’s physiological state and predicting dangers. In Proceedings of the IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 18–20 October 2015; pp. 429–432. [Google Scholar]
- Curone, D.; Secco, D.L.; Tognetti, A.; Loriga, G.; Dudnik, G.; Risatti, M.; Whyte, R.; Bonfiglio, A.; Magenes, G. Smart Garments for Emergency Operators: The ProeTEX Project. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 694–701. [Google Scholar] [CrossRef]
- Mohammed, A.; Seeam, A.; Bellekens, X.; Nieradzinska, K.; Ramsurrun, V. Gesture based IoT light control for smart clothing. In Proceedings of the IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), Balaclava, Mauritius, 3–6 August 2016; pp. 139–142. [Google Scholar]
- Kishore, K.R.N.G.; Rajeshwari, K. Interactive clothes based on IoT using NFC and Mobile Application. In Proceedings of the IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–4. [Google Scholar]
- Pacaux-Lemoine, M.; Habib, L.; Tartare, G.; Koehl, L.; Zeng, X. Human-robots cooperation through intelligent garment. In Proceedings of the IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1996–2001. [Google Scholar]
- AL-Haddad, M.A.S.M.; Jamel, N.; Nordin, A.N. Flexible Antenna: A Review of Design, Materials, Fabrication, and Applications. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1878, p. 012068. [Google Scholar]
- Ali Khan, M.U.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Liu, S.; Foroughi, J. Bending Analysis of Polymer-Based Flexible Antennas for Wearable, General IoT Applications: A Review. Polymers 2021, 13, 357. [Google Scholar] [CrossRef]
- Chin, K.S.; Wu, C.S.; Shen, C.L.; Tsai, K.C. Designs of textile antenna arrays for smart clothing applications. Autex Res. J. 2018, 18, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Almohammed, B.; Ismail, A.; Sali, A. Electro-textile wearable antennas in wireless body area networks: Materials, antenna design, manufacturing techniques, and human body consideration—A review. Text. Res. J. 2021, 91, 646–663. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lama, P. A Review on the Use of Blockchain for the Internet-of-Things. IEEE Access 2018, 6, 32979–33001. [Google Scholar] [CrossRef]
- Ahsan, M.; Hon, S.T.; Albarbar, A. Development of Novel Big Data Analytics Framework for Smart Clothing. IEEE Access 2020, 8, 146376–146394. [Google Scholar] [CrossRef]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. [Google Scholar] [CrossRef] [PubMed]
- Talkhooncheh, A.H.; Yu, Y.; Agarwal, A.; Kuo, W.W.T.; Chen, K.C.; Wang, M.; Emami, A. A Biofuel-Cell-Based Energy Harvester With 86% Peak Efficiency and 0.25-V Minimum Input Voltage Using Source-Adaptive MPPT. IEEE J. Solid State Circuits 2020, 56, 715–728. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Yang, Y.; Gao, W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter 2020, 2, 1414–1445. [Google Scholar] [CrossRef]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Javey, A. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhang, Z.; Hu, R.Q.; Qian, Y. Wearable communications in 5G: Challenges and enabling technologies. IEEE Veh. Technol. Mag. 2018, 13, 100–109. [Google Scholar] [CrossRef]
- Alhussein, M.; Muhammad, G. Voice pathology detection using deep learning on mobile healthcare framework. IEEE Access 2018, 6, 41034–41041. [Google Scholar] [CrossRef]
- Yuan, X.; Tian, H.; Wang, H.; Su, H.; Liu, J.; Taherkordi, A. Edge-enabled wbans for efficient qos provisioning healthcare monitoring: A two-stage potential game-based computation offloading strategy. IEEE Access 2020, 8, 92718–92730. [Google Scholar] [CrossRef]
- Pace, P.; Aloi, G.; Gravina, R.; Caliciuri, G.; Fortino, G.; Liotta, A. An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Trans. Ind. Inform. 2018, 15, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Cao, X.; Bassey, J.; Li, X.; Qian, L. Computation offloading in multi-access edge computing: A multi-task learning approach. IEEE Trans. Mob. Comput. 2020, 20, 2745–2762. [Google Scholar] [CrossRef]
- Yang, B.; Cao, X.; Li, X.; Zhang, Q.; Qian, L. Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT. IEEE Internet Things J. 2019, 7, 2169–2180. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Chang, V. A novel intelligent medical decision support model based on soft computing and IoT. IEEE Internet Things J. 2019, 7, 4160–4170. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Guan, X.; Hassan, M.M.; Almogren, A.; Alsanad, A. AI-enabled emotion-aware robot: The fusion of smart clothing, edge clouds and robotics. Future Gener. Comput. Syst. 2020, 102, 701–709. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Hao, Y.; Qian, Y.; Humar, I. Edge cognitive computing based smart healthcare system. Future Gener. Comput. Syst. 2018, 86, 403–411. [Google Scholar] [CrossRef]
- Resistat Fiber Collection. Available online: http://www.resistat.com/ (accessed on 12 April 2021).
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.; Stoyanov, S.; Bailey, C.; Albarbar, A. Developing computational intelligence for smart qualification testing of electronic products. IEEE Access 2020, 8, 16922–16933. [Google Scholar] [CrossRef]
- Satinet, C.; Fouss, F. A Supervised Machine Learning Classification Framework for Assessing the Sustainability of Clothing Products. Sustainability 2022, 14, 1334. [Google Scholar] [CrossRef]
- Zakynthinaki, M.S.; Kapetanakis, T.N.; Lampou, A.; Ioannidou, M.P.; Vardiambasis, I.O. A Neural Network Model for Estimating the Heart Rate Response to Constant Intensity Exercises. Signals 2021, 2, 852–862. [Google Scholar] [CrossRef]
- Foysal, K.H.; Chang, H.J.; Bruess, F.; Chong, J.W. SmartFit: Smartphone application for garment fit detection. Electronics 2021, 10, 97. [Google Scholar] [CrossRef]
- Yu, Y.; Li, M.; Liu, L.; Li, Y.; Wang, J. Clinical big data and deep learning: Applications, challenges, and future outlooks. In Big Data Mining and Analytics; Auerbach Publications: Boca Raton, FL, USA, 2019; Volume 2, pp. 288–305. [Google Scholar]
- Ravì, D.; Wong, C.; Lo, B.; Yang, G. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices. IEEE J. Biomed. Health Inform. 2017, 21, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, W.; Xiong, Z.; Zheng, N.; Weng, Y. A Medical-History-Based Potential Disease Prediction Algorithm. IEEE Access 2019, 7, 131094–131101. [Google Scholar] [CrossRef]
- Turner, A.; Hayes, S. The Classification of Minor Gait Alterations Using Wearable Sensors and Deep Learning. IEEE Trans. Biomed. Eng. 2019, 66, 3136–3145. [Google Scholar] [CrossRef]
- Jin, H.; Jin, Q.; Jian, J. Smart Materials for Wearable Healthcare Devices. In Wearable Technologies; InTech: Rijeka, Italy, 2018. [Google Scholar]
- Jang, Y.; Kim, S.M.; Spinks, G.M.; Kim, S.J. Carbon Nanotube Yarn for Fiber Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. Adv. Mater. 2019, 32, 1902670. [Google Scholar] [CrossRef]
- Servati, A.; Zou, L.; Wang, Z.J.; Ko, F.; Servati, P. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring. Sensors 2017, 17, 1622. [Google Scholar] [CrossRef] [Green Version]
- Mora, H.M.; Gil, D.; Terol, R.M.; López, J.A.; Szymanski, J. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments. Sensors 2017, 17, 2302. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Yang, J.; Chen, M.; Qian, Y.; Rodrigues, J.J.P.C. SCAI-SVSC: Smart clothing for effective interaction with a sustainable vital sign collection. Future Gener. Comput. Syst. 2017, 86, 329–338. [Google Scholar] [CrossRef]
- Miao, Y.; Wu, G.; Liu, C.; Hossain, M.S.; Muhammad, G. Green Cognitive Body Sensor Network: Architecture, Energy Harvesting, and Smart Clothing-Based Applications. IEEE Sens. J. 2019, 19, 8371–8378. [Google Scholar] [CrossRef]
- Smart Fabrics. 2020. Available online: https://www.thehindubusinessline.com/specials/technophile/smart-fabrics-are-poised-to-change-the-clothing-industry/article26934897.ece (accessed on 27 October 2020).
- Andreoni, G.; Standoli, C.E.; Perego, P. Defining Requirements and Related Methods for Designing Sensorized Garment. Sensors 2016, 16, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.A.; Bergquist, F.; Hagström, B.; Hernández, N.; Johansson, D.; Ohlsson, F.; Sandsjö, L.; Wipenmyr, J.; Malmgren, K. An upper body garment with integrated sensors for people with neurological disorders—Early development and evaluation. BMC Biomed. Eng. 2019, 1, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart Tops and Leggings. Available online: https://www.exisom.com/fabrics/ (accessed on 15 April 2021).
- SMART Knee Sleeve. Available online: https://gadgetsandwearables.com/2016/11/04/smart-knee-sleeve-recommends-rest/ (accessed on 31 May 2021).
- Elektrisola Feindraht AG. Available online: www.textile-wire.com (accessed on 16 February 2021).
- Products Emglare. Available online: https://emglare.com/products (accessed on 16 February 2021).
- Redström, M.; Redström, J.; Mazé, R. IT + Textiles, 1st ed.; The Interactive Institute: Boràs, Sweden, 2005; pp. 59–93. [Google Scholar]
- Sophitex Ltd. Available online: http://www.sophitex.com (accessed on 16 June 2021).
- LessEMF. Available online: http://www.lessemf.com/fabric.html (accessed on 15 January 2021).
- McFarland, E.G.; Carr, W.W.; Sarma, D.S.; Dorrity, J.L. Effects of Moisture and Fiber Type on Infrared Absorption of Fabrics. Text. Res. J. 1999, 69, 607–615. [Google Scholar] [CrossRef]
- Spoerry & Co AG, Swiss Shield®. Available online: www.swiss-shield.ch (accessed on 13 May 2021).
- Moradi, B.; Fernández-García, R.; Gil, I. E-Textile embroidered metamaterial transmission line for signal propagation control. Materials 2018, 11, 955. [Google Scholar] [CrossRef] [Green Version]
- Scheibner, W.; Feustel, M.; Moehring, U.; Hofmann, J.; Linz, T. Textile electrical connecting cables. Band Und Flechtind. 2003, 40, 76–78. [Google Scholar]
- Locher, I. Technologies for System-on-Textile Integration. Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2006. [Google Scholar]
- Thermshield. Available online: http://www.thermshield.com/ThermshieldPages/MetallizedFabric.html (accessed on 12 April 2021).
- Ohmatex, Smart Textile Technology. Available online: http://www.ohmatex.dk (accessed on 3 May 2021).
- Self-Cleaning Clothing. Available online: https://www.digitaltrends.com/cool-tech/self-cleaning-clothes-rmit-nano-enhanced-textile/ (accessed on 12 February 2021).
- Malik, T.; Nogja, S.; Goyal, P. Self-Cleaning Textile—An Overview. Available online: https://www.technicaltextile.net/articles/self-cleaning-textile-an-overview-2646 (accessed on 10 March 2021).
- Liao, X.; Zhang, Z.; Liao, Q.; Liang, Q.; Ou, Y.; Xu, M.; Li, M.; Zhang, G.; Zhang, Y. Flexible and printable paper-based strain sensors for wearable and large-area green electronics. Nanoscale 2016, 8, 13025–13032. [Google Scholar] [CrossRef] [Green Version]
- White, S.R.; Sottos, N.; Geubelle, P.; Moore, J.; Kessler MRSriram, S.; Brown, E.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Dohler, D.; Michael, P.; Binder, W.H. CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res. 2017, 50, 2610–2620. [Google Scholar] [CrossRef]
- Du, B.; Yang, D.; She, X.; Yuan, Y.; Mao, D.; Jiang, Y.; Lu, F. MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sens. Actuators B Chem. 2017, 251, 180–184. [Google Scholar] [CrossRef]
- Seo, M.-H.; Yang, H.-H.; Choi, K.-W.; Lee, J.-S.; Yoon, J.-B. A simple breathing rate-sensing method exploiting a temporarily condensed water layer formed on an oxidized surface. Appl. Phys. Lett. 2015, 106, 053701. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, Y.; Li, X.; Chen, Y.; Jiang, Y.; Zhang, C.; Lu, B.; Wang, J.; Ma, Y.; Chen, Y. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv. Healthc. Mater. 2017, 6, 1601013. [Google Scholar] [CrossRef] [PubMed]
- Sciacqua, A.; Valentini, M.; Gualtieri, A.; Perticone, F.; Faini, A.; Zacharioudakis, G.; Karatzanis, I.; Chiarugi, F.; Assimakopoulou, C.; Meriggi, P. Validation of a flexible and innovative platform for the home monitoring of heart failure patients: Preliminary results. In Proceedings of the 36th Annual Computers in Cardiology Conference, Park City, UT, USA, 13–16 September 2009; pp. 97–100. [Google Scholar]
- Chiarugi, F.; Karatzanis, I.; Zacharioudakis, G.; Meriggi, P.; Rizzo, F.; Stratakis, M.; Louloudakis, S.; Biniaris, C.; Valentini, M.; Rienzo, M.D. Measurement of heart rate and respiratory rate using a textile-based wearable device in heart failure patients. In Proceedings of the Computers in Cardiology, Bologna, Italy, 14–17 September 2008; pp. 901–904. [Google Scholar]
- RMIT University. Laser Printing Tech Produces Waterproof e-Textiles in Minutes: A Rapid, Cost-Efficient and Scaleable Method for Fabricating Textiles Embedded with Energy Storage Devices. ScienceDaily. Available online: www.sciencedaily.com/releases/2019/08/190827101603.htm (accessed on 27 April 2021).
- Thekkekara, L.V.; Gu, M. Large-scale waterproof and stretchable textile-integrated laser- printed graphene energy storages. Sci. Rep. 2019, 9, 11822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, B.; Howard, M. Activity recognition with wearable sensors on loose clothing. PLoS ONE 2017, 12, e0184642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trung, T.Q.; Ramasundaram, S.; Hwang, B.U.; Lee, N.E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2006, 28, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Kantoch, E.; Augustyniak, P. Human activity surveillance based on wearable body sensor network. Comput. Cardiol. 2012, 39, 325–328. [Google Scholar]
- Chortos, A.; Bao, Z.N. Skin-inspired electronic devices. Mater. Today 2014, 17, 321–331. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Hung, V.W.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 2013, 138, 123–128. [Google Scholar] [CrossRef]
- Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon N. Y. 2017, 111, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Kurra, N.; Kulkarni, G.U. Pencil-on-paper: Electronic devices. Lab Chip 2013, 13, 2866–2873. [Google Scholar] [CrossRef]
- Kong, J.-H.; Jang, N.-S.; Kim, S.-H.; Kim, J.-M. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon 2014, 77, 199–207. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-Based Electronic Sensors. Chem. Sci. 2012, 3, 1764–1772. [Google Scholar] [CrossRef] [Green Version]
- Karim, N.; Afroj, S.; Tan, S.; He, P.; Fernando, A.; Carr, C.; Novoselov, K.S. Scalable Production of Graphene-Based Wearable E-Textiles. ACS Nano 2017, 11, 12266–12275. [Google Scholar] [CrossRef] [PubMed]
- Wearable Technologies. Available online: https://www.wearable-technologies.com/2019/01/qus-sports-introduces-washable-smart-fitness-shirt-and-bra/ (accessed on 27 June 2021).
- Carey, T.; Cacovich, S.; Divitini, G.; Ren, J.; Mansouri, A.; Kim, J.M.; Wang, C.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat Commun. 2017, 8, 1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montazerian, H.; Rashidi, A.; Dalili, A.; Najjaran, H.; Milani, A.S.; Hoorfar, M. Graphene Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications. Small 2019, 15, 1804991. [Google Scholar] [CrossRef]
- Fast Company, E-Textile. Available online: https://www.fastcompany.com/3046871/this-e-textile-could-replace-your-iphone (accessed on 29 March 2021).
- Barakzehi, M.; Montazer, M.; Sharif, F.; Norby, T.; Chatzitakis, A. A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochim. Acta 2019, 305, 187–196. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, Y.; Han, X.L.; Yang, Y.; Ling, J.; Jian, M.; Zhang, Y.; Yang, Y.; Ren, T.L. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano 2018, 12, 9134–9141. [Google Scholar] [CrossRef] [PubMed]
- Afroj, S.; Tan, S.; Abdelkader, A.M.; Novoselov, K.S.; Karim, N. Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 2020, 30, 2000293. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.; Wen, Y.; Hong, T.; Xie, Z.; Yuan, G.; Ji, Q.; Jia, H. Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl. Mater. Interfaces 2017, 9, 32054–32064. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Tang, Z.; Ouyang, J. Highly washable e-textile prepared by ultrasonic nano soldering of carbon nanotubes onto polymer fibers. J. Mater. Chem. C 2018, 6, 883–889. [Google Scholar] [CrossRef]
- Cao, R.; Pu, X.; Du, X.; Yang, W.; Wang, J.; Guo, H.; Zhao, S.; Yuan, Z.; Zhang, C.; Li, C.; et al. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction. ACS Nano 2018, 12, 5190–5196. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Chossat, J.-B.; Park, Y.-L.; Wood, R.J.; Duchaine, V. A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 2013, 13, 3405–3414. [Google Scholar] [CrossRef]
- Han, Y.L.; Liu, H.; Ouyang, C.; Lu, T.J.; Xu, F. Liquid on paper: Rapid prototyping of soft functional components for paper electronics. Sci. Rep. 2015, 5, 11488. [Google Scholar] [PubMed] [Green Version]
- Eom, J.; Jaisutti, R.; Lee, H.; Lee, W.; Heo, J.S.; Lee, J.Y.; Park, S.K.; Kim, Y.H. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 2017, 9, 10190–10197. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, J.; Zhang, X.; Wang, Y. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Lettvol. 2014, 3, 86–90. [Google Scholar] [CrossRef]
- Yoon, S.G.; Koo, H.J.; Chang, S.T. Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl. Mater. Interfaces 2015, 7, 27562–27570. [Google Scholar] [CrossRef] [PubMed]
- McCann, J.; Bryson, D. Smart Clothes and Wearable Technology, 1st ed.; Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar]
- Hu, Y.; Zheng, Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 2019, 56, 16–24. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhu, M.; Li, Z.; Qiu, K.; Liu, X.; Yu, J.; Ding, B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019, 58, 750–758. [Google Scholar] [CrossRef]
- Luheng, W.; Tianhuai, D.; Peng, W. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 2009, 47, 3151–3157. [Google Scholar] [CrossRef]
- Tech Xplore, Washable Fabrics. Available online: https://techxplore.com/news/2018-08-incorporate-optoelectronic-diodes-fibers-washable.html (accessed on 1 June 2021).
- Kim, M.; Kim, H.; Park, J.; Jee, K.; Lim, J.; Park, M. Real-time sitting posture correction system based on highly durable and washable electronic textile pressure sensors. Sens. Actuators A Phys. 2018, 269, 394–400. [Google Scholar] [CrossRef]
- Shimojo, M.; Namiki, A.; Ishikawa, M.; Makino, R.; Mabuchi, K. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens. J. 2004, 4, 589–596. [Google Scholar] [CrossRef]
- ETH, Woven Electronics. 2019. Available online: https://www.ethlife.ethz.ch/archive_articles/100701_smarte_textilien_per/index_EN.html (accessed on 29 October 2020).
- Abdelkader, A.M.; Karim, N.; Vallés, C.; Afroj, S.; Novoselov, K.S.; Yeates, S.G. Ultraflexible and Robust Graphene Supercapacitors Printed on Textiles for Wearable Electronics Applications. 2D Mater. 2017, 4, 035016. [Google Scholar] [CrossRef]
- McKnight, M.; Agcayazi, T.; Ghosh, T.; Bozkurt, A. Chapter 8—Fiber-Based Sensors: Enabling Next-Generation Ubiquitous Textile Systems. In Wearable Technology in Medicine and Health Care; Academic Press: Cambridge, MA, USA, 2018; pp. 153–171. [Google Scholar]
- Lee, S.H.; Choi, M.H.; Han, S.H.; Choo, D.J.; Jang, J.; Kwon, S.K. High-performance thin-film transistor with 6,13-bis(triisopropylsilylethynyl) pentacene by inkjet printing. Org. Electron. 2008, 9, 721–726. [Google Scholar] [CrossRef]
- Brioude, M.D.M.; Guimarães, D.H.; Fiúza, R.D.P.; Prado, L.A.S.D.A.; Boaventura, J.S.; José, N.M. Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Mater. Res. 2007, 10, 335–339. [Google Scholar] [CrossRef]
- talk2myShirt. Koyono BlackCoat Work. 2006. Available online: http://www.talk2myshirt.com/blog/archives/12 (accessed on 12 May 2021).
- Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Vilar-Montesinos, M. A Fog Computing and Cloudlet Based Augmented Reality System for the Industry 4.0 Shipyard. Sensors 2018, 18, 1798. [Google Scholar] [CrossRef] [Green Version]
- Bove, L.A. Increasing Patient Engagement Through the Use of Wearable Technology. J. Nurse Pract. 2019, 15, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Carpi, F.; de Rossi, D. Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 295–318. [Google Scholar] [CrossRef]
- Paul, G.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. An investigation into the durability of screen-printed conductive tracks on textiles. Meas. Sci. Technol. 2014, 25, 025006. [Google Scholar] [CrossRef]
- Ching, K.W.; Singh, M.M. Wearable Technology Devices Security and Privacy Vulnerability Analysis. Int. J. Netw. Secur. Appl. (IJNSA) 2016, 8, 19–30. [Google Scholar] [CrossRef]
- World Health Organization. ICT Facts and Figures. 2017. Available online: https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2017.pdf (accessed on 19 December 2021).
- Mokhtarian, P.L.; Tang, W. Trivariate probit models of pre-purchase/purchase shopping channel choice: Clothing purchases in Northern California. In Choice Modelling; Hess, S., Daly, A., Eds.; Institute of Transportation Studies, University of California Davis: Davis, CA, USA, 2013; pp. 243–273. [Google Scholar]
Category | Name of Technology | Sensor Used/Signals | Monitoring Parameter | Ref |
---|---|---|---|---|
Smart Health | smart clothing | electrocardiogram (ECG), electromyogram (EMG), electroencephalography (EEG) | physical stress levels, breathing patterns, sweat, temperature, energy, burnt rate | [10] |
internet-of-smart-clothing | ECG signals | sleep disorders | [11] | |
T-shirt | ECG signals | heart rate | [12] | |
a smart clothing prototype | ECG monitoring | human respiration | [13] | |
a smart garment | ECGs | respiration rate | [14] | |
Smart Garment | triaxle accelerometer and gyroscope | rehabilitation for assisting osteoarthritis (OA) patients | [15] | |
a Bluetooth-enabled smart garment | acromion sensor | rehabilitating shoulders | [16] | |
vivo metrics life Shirt | accelerometers | pulmonary, cardiac, and other vital signs measurement | [17] | |
sensatex smartShirt | ECG | respiration rate and blood pressure | [18] | |
Baby and Elderly Monitoring | a smart garment | ECG signal, textile electrode | new-born monitoring | [19] |
baby vest | respiratory sensors, electrodes for ECG, moisture and temperature sensors | respiration, heart rate, temperature and humidity, excessive sweating | [20] | |
wearable textile | magnetic reed sensors | accident prevention for babies in crawl phase | [21] | |
baby night watch | ECG, 3D accelerometer, inertial sensor | infant’s body temperature, heart and breathing rates and body position | [22] | |
T-shirt | knitted sensor | heart attack or a stroke for elderly people | [23] | |
garment for older walkers | shimmer sensor (ECG and accelerometer data) | user’s heart rate | [24] | |
Sports and Wellness | smart shirt | body-worn inertial sensors (acceleration sensors) | monitoring posture | [25] |
wearable Instrumented vest | accelerometer sensor | monitoring elderly people’s postures | [26] | |
smart clothing | ECG | heart rate variability (HRV) for mental stress | [27] | |
a smart t-shirt | physiological, ambient and motion sensors | detection of inactive lifestyle using machine learning | [28] | |
a wearable device | accelerometer | acknowledgement of food intake and physical activity | [29] | |
a smart sock | Lilypad Arduino | heart rate, heart rate variation, oxygen saturation, temperature | [30] | |
smart clothing | electrocardiograph signals | physical indicator monitoring | [31] | |
Industry, Defense and Public Safety | a smart vest | ECG, Thoracic Electrical Bio-impedance | musculoskeletal disorders and cardiovascular diseases | [32] |
wearable computers and smart clothing | textrodes, motion sensors | thermal work limits, alertness and fitness for duty status, musculoskeletal fatigue limits, neuropsychological and physiological conditions | [33,34] | |
a smart slim fit T-shirt | accelerometer sensor, ECG | heart rate, heart rate variability (HRV) | [35] | |
a firefighting garment | temperature sensor, heart-beat sensor, accelerometer sensor | heart rate, activity, body temperature | [36] | |
a smart T-shirt, a jacket and a pair of boots | textile motion sensor, CO sensor | heart and breathing rates, body temperature, blood oxygen saturation, position, activity, and posture | [37] | |
Interaction with Environment | a smart wristband | a 3-axis accelerometer (ADXL335), Lilypad Arduino based microcontroller | gesture processing to control lights | [38] |
interactive clothes | NFC tags and IOT | to identify cheap replicas, track loyal customers, minimize the wastage of resources track of the goods using | [39] | |
intelligent T-shirt | accelerometers Lilypad and 3D accelerometer | heart rate | [40] |
Attributes | Specification |
---|---|
Size | XS–S, M–L |
Fabric materials | Polyamide, Polyester and LYCRA, graphene |
Sensors | 3D acceleration sensor with 360-degree high-sensitivity vibration motor Power management module |
Communication | Bluetooth 4.0 or higher wireless technology Smartphone |
Power and Battery | Self-powering |
Care Instruction | Minimal washing (delicate washing conditions), a maximum temperature of 30 °C Wash by hand, maximal temperature 30 °C, handle with care/Washable No bleaching Suitable for tumble drying (no heat setting) Cool iron (Maximum sole-plate temperature of 110°C, steam-ironing may be a risk) No dry cleaning or removing stains with solvents |
App requirement | iOS: 9.0 or later Android: 6.0 or later Support for Bluetooth 4.0 or higher Mobile application |
Sensing Device | Sensing Mechanism/Characteristics | Sensing Parameters | Reference |
---|---|---|---|
Piezoresistive (Carbon nanotube, LM35) | Changes in microstructure of sensing films generates electrical resistance after applying strain while structure of the device is deformed. | Motion detection, measuring temperature, pH, humidity, etc. | [107,108] |
Capacitive (Planar interdigitated capacitor (IDC)) | Applied strain changes distance between two electrodes and thus capacitance is changed. | Motion posture Heart/respiration pulse | [109] |
Piezoelectric (as ZnO, GaN and PZT) | Electromechanical interaction in noncentrosymmetric crystal structure materials generate electric charges by applying external mechanical stimuli. | Lactate, sweat | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, M.; Teay, S.H.; Sayem, A.S.M.; Albarbar, A. Smart Clothing Framework for Health Monitoring Applications. Signals 2022, 3, 113-145. https://doi.org/10.3390/signals3010009
Ahsan M, Teay SH, Sayem ASM, Albarbar A. Smart Clothing Framework for Health Monitoring Applications. Signals. 2022; 3(1):113-145. https://doi.org/10.3390/signals3010009
Chicago/Turabian StyleAhsan, Mominul, Siew Hon Teay, Abu Sadat Muhammad Sayem, and Alhussein Albarbar. 2022. "Smart Clothing Framework for Health Monitoring Applications" Signals 3, no. 1: 113-145. https://doi.org/10.3390/signals3010009
APA StyleAhsan, M., Teay, S. H., Sayem, A. S. M., & Albarbar, A. (2022). Smart Clothing Framework for Health Monitoring Applications. Signals, 3(1), 113-145. https://doi.org/10.3390/signals3010009